Capturing gradience in long-distance phonology using probabilistic tier-based strictly local grammars

Connor Mayer
Department of Linguistics
University of California, Los Angeles
Los Angeles, CA 90046, USA
connormayer@ucla.edu

Abstract
Phonological processes often exhibit gradience, both in response frequencies and in acceptability judgments. This paper presents a variation of tier-based strictly local grammars, probabilistic tier-based strictly local grammars (pTSL), which assign probabilities to input strings and are well-suited to modeling such variability, particularly for long-distance processes. pTSL naturally extends categorical tier-based strictly local grammars by probabilizing the projection function. After describing the formal properties of pTSL, I illustrate its application using data from Hungarian and Uyghur. pTSL is able to capture distance-based decay in these languages without an explicit notion of distance, and provides a unified account of gradient blocking and distance-based decay. I finish by outlining some of the limitations of pTSL, and how further extensions may overcome these.

1 Introduction
Subregular phonology attempts to find proper subclasses of the finite-state languages and transductions that are sufficiently powerful to model natural language phenomena (see Heinz, 2018). These models provide a strong mathematical foundation for phonological analysis, establish tighter bounds on the range of observed cross-linguistic variation, and have implications for theories of phonological learning (e.g., Lai, 2015; McMullin, 2016; McMullin and Hansson, 2019).

The class of tier-based strictly local languages (TSL; Heinz et al., 2011) has proven useful for modeling long-distance phonotactic phenomena that more restricted classes like the strictly local languages (SL) cannot. It does so by removing all symbols from input strings that do not belong to a specified subset of the alphabet before identifying phonotactic violations, allowing non-local dependencies to be regulated in a local manner.

Long-distance phonology frequently exhibits gradience, both in response frequencies and in speaker acceptability judgments (e.g., Albright and Hayes, 2003; Daland et al., 2011; Zuraw and Hayes, 2017, a.o.). This gradience often manifests as distance-based decay, where long-distance dependencies hold less strongly as the amount of irrelevant material between relevant segments increases. While several accounts of distance-based decay (e.g., Kimper, 2011; Zymet, 2014) have been presented in the framework of Optimality Theory (Prince and Smolensky, 1993/2004), to my knowledge none have been presented using models from subregular phonology.

This paper presents probabilistic tier-based strictly local (pTSL) grammars, a natural extension of TSL that probabilizes the projection function used to construct tier representations. This allows probabilities to be assigned to input strings without exceeding the generative power of TSL. It does so in a way that permits gradience in long-distance patterns to be captured without an explicit notion of distance (see McMullin, n.d., for a similar observation) and presents a unified account of distance-based decay with other types of blocking. This method of probabilizing the projection function may also be applied with minimal modifications to other extensions of TSL (e.g., De Santo and Graf, 2017; Graf and Mayer, 2018).

The paper is structured as follows. Section 2 provides background on the SL and TSL classes. Section 3 defines pTSL and discusses some of its properties. Sections 4 and 5 apply pTSL models to vowel harmony in Hungarian and Uyghur, demonstrating that these models can effectively capture speaker judgments and production frequencies in an interpretable way, while also identifying some shortcomings of the model. Section 6 summarizes the paper and presents several natural extensions of pTSL that overcome its limitations.
2 Background

2.1 Strictly local languages

\(\varepsilon\) denotes the empty string and \(S^*\) the Kleene closure of \(S\). \(S^k\) denotes the proper subset of \(S^*\) that only contains strings of length \(k\), and \(s^k\) is a string consisting of \(k\) occurrences of the symbol \(s\).

Let \(\Sigma\) be some fixed alphabet and \(s \in \Sigma^*\). The set \(f_k(s)\) of \(k\)-factors of \(s\) consists of all the length-\(k\) substrings of \(x^k - 1 \times k - 1\), where \(\times, k \notin \Sigma\) and \(k \geq 1\). For example, \(f_2(abaabc) = \{\times a, ab, ba, ac, c\}\).

Definition 1. A strictly \(k\)-local grammar is a set \(G \subseteq (\Sigma \cup \{\times, \times\})^k\). A stringset \(L \subseteq \Sigma^*\) is strictly \(k\)-local (SL-k) iff there is some strictly \(k\)-local grammar \(G\) such that \(L = \{s \in \Sigma^* | f_k(s) \cap G = \emptyset\}\).

Intuitively, \(G\) defines a grammar of forbidden substrings that no well-formed string may contain. The class SL of strictly local stringsets is \(\bigcup_{k \geq 1} \text{SL}-k\).

Example 1. Consider a language with the following stress pattern: (a) words must have primary stress on the final syllable; (b) words must contain exactly one syllable with primary stress.

Assuming \(\Sigma := \{\hat{\delta}, \sigma\}\), this pattern can be generated using the SL-2 grammar \(G := \{\hat{\delta}\delta, \delta\sigma, \sigma\times, \times\times\}\), and thus is SL-2. For example, the string \(\sigma\delta\) is illicit because \(f_2(\sigma\delta) \cap G = \{\delta\sigma, \sigma\times\} \neq \emptyset\), whereas the string \(\sigma\hat{\delta}\) is licit because \(f_2(\sigma\hat{\delta}) \cap G = \emptyset\).

2.2 Tier-based strictly local languages

For every \(T \subseteq \Sigma\), a simple tier projection \(\pi_T\) is a transduction that deletes all symbols not in \(T\):

\[
\pi_T(\varepsilon) := \varepsilon \\
\pi_T(\sigma u) := \begin{cases}
\sigma \pi_T(u) & \text{if } \sigma \in T \\
\pi_T(u) & \text{otherwise}
\end{cases}
\]

where \(\sigma \in \Sigma\) and \(u \in \Sigma^*\).

Definition 2. A tier-based strictly \(k\)-local (TSL-k) grammar over an alphabet \(\Sigma\) is a tuple \((T, G)\), where \(T \subseteq \Sigma\) and \(G \subseteq (T \cup \{\times, \times\})^k\). A stringset \(L \subseteq \Sigma^*\) is TSL-k iff there exists a TSL-k grammar such that \(L := \{s \in \Sigma^* | f_k(\pi_T(s)) \cap G = \emptyset\}\). It is TSL iff it is TSL-k for some \(k\).

In other words, TSL languages are string languages that are SL once one masks out all irrelevant symbols or, alternatively, languages that are SL over a tier to which a subset of relevant symbols are projected (cf. Goldsmith, 1976).

Example 2. Consider a language over the alphabet \(\Sigma := \{\hat{\delta}, \sigma\}\) such that no word may contain more than one primary stress (i.e., more than one \(\hat{\delta}\)). This language cannot be characterized by any SL-k grammar: for example, for any value of \(k\) we can produce strings of the form \(\sigma\delta^k - 1 \sigma\), which violate the restriction on multiple primary stresses but cannot be prohibited by a SL-k grammar because the window of length \(k\) is not large enough to “see” both stresses at the same time.

We can define a TSL-2 grammar that accepts this language. Let \(T := \{\hat{\delta}\}\) and \(G := \{\times\times, \hat{\delta}\delta\}\). Any illicit string of the form \(\hat{\delta}\sigma^k - 1 \hat{\delta}\), for instance, will first be projected to \(\hat{\delta}\hat{\delta}\). This projection will be rejected because \(f_2(\hat{\delta}\hat{\delta}) \cap G = \{\hat{\delta}\hat{\delta}\} \neq \emptyset\).

3 Probabilistic tier-based strictly local languages

3.1 Probabilistic tier projection functions

Definition 3. A discrete probabilistic function \(f : X \rightarrow (Y \rightarrow [0, 1])\) assigns to each \(x \in X\) a conditional probability distribution over the set \(Y\). For a particular \(x\), \(\sum_{y \in Y} f(x)(y) = 1\).

The simple tier projection function \(\pi_T\) discussed in the previous section can be generalized to a probabilistic tier projection function \(\pi_P : \Sigma^* \rightarrow \Sigma^* \rightarrow [0, 1]\). This is a discrete probabilistic function that, given a string, returns a probability distribution over projections of that string to a tier. \(\pi_P\) can be thought of as a special case of \(\pi_P\) where a single output has a probability of 1 and all other outputs have a probability of 0.

The distribution over outputs given an input is calculated based on probabilities associated with projecting individual symbols. Let \(P_{proj} : \Sigma \rightarrow [0, 1]\) represent the probability that a symbol in \(\Sigma\) is projected to the tier: for example, \(P_{proj}(a) := 0.5\) indicates that there is a 50% chance that each a symbol will be projected.

We may notate a sequence of symbols \(x = (x_n)_{n \in I}\) where \(I\) is the index set of the sequence. A sequence \(y\) that is a subsequence of \(x\) can be written \((y_n)_{n \in I}\) where \(J \subseteq I\). Using this notation, we can define the probability of projecting a particular subsequence \(y = (y_n)_{n \in J}\) from the input \(x = (x_n)_{n \in I}\) as follows:
\[\pi_P(x)(y) := \prod_{k \in J} P_{\text{proj}}(x_k) \prod_{k \in \Gamma \setminus J} [1 - P_{\text{proj}}(x_k)] \]

That is, the probability of projecting the output \(y \) given the input \(x \) is the product of the probabilities associated with projecting each symbol that is projected and with not projecting each symbol that is not projected. Any projection that is not a subsequence of \(x \) will receive a probability of zero.

The probabilities of all possible projections for an input string \(x \) sum to one:

\[\sum_{y \in \Sigma^*} \pi_P(x)(y) = 1 \]

Example 3. Let \(\Sigma := \{a, b, c\} \), and assume that \(\pi_P \) is defined using the following projection probabilities:

\[P_{\text{proj}}(a) := 1.0 \]
\[P_{\text{proj}}(b) := 0.5 \]
\[P_{\text{proj}}(c) := 1.0 \]

For the input \(abbc \) the probability of projecting \(ac \), \(\pi_P(abbc)(ac) \), is

\[
= P_{\text{proj}}(a)[1 - P_{\text{proj}}(b)][1 - P_{\text{proj}}(b)]P_{\text{proj}}(c)
= 1.0 \cdot 0.5 \cdot 0.5 \cdot 1.0 \\
= 0.25
\]

The complete distribution over possible projections of \(abc \) is:

\[
\pi_P(abbc)(abbc) = 0.25 \\
\pi_P(abbc)(abc) = 0.5 \\
\pi_P(abbc)(ac) = 0.25
\]

All other projections have probabilities of zero.

3.2 Probabilistic tier-based strictly local grammars

Definition 4. A *probabilistic tier-based strictly \(k \)-local grammar* over an alphabet \(\Sigma \) is a tuple \((\pi_P, G)\), where \(\pi_P \) is a probabilistic projection function with specified projection probabilities for each \(s \in \Sigma \) and \(G \subseteq (\Sigma \cup \{\hat{\star}, \hat{\star}\})^k \) is a set of prohibited \(k \)-factors.

Definition 5. The function \(\text{val}(\pi_P, G) \) computes the probability that is assigned to a input string \(x \) by the corresponding pTSL-\(k \)-grammar. \(\text{val}(\pi_P, G)(x) \) is defined as

\[\sum_{y: f_k(y) \cap \Gamma = \emptyset} \pi_P(x)(y) \]

In other words, the probability computed by \(\text{val}(\pi_P, G)(x) \) is the sum of the probabilities of all possible subsequences (or projections) of the input string \(x \) that do not contain a prohibited \(k \)-factor. Note that \(\text{val} \) does not constitute a probability distribution over input strings: in general \(\sum_{x \in \Sigma^*} \text{val}(\pi_P, G)(x) \neq 1 \). Instead, \(\text{val} \) may be interpreted as the conditional probability of any well-formed tier projection given the input.

Example 4. Assume a pTSL-2 grammar defined over the alphabet \(\Sigma := \{a, b, c\} \). Let \(\pi_P \) be defined as in Example 3 and \(G := \{ac\} \). \(\text{val}(\pi_P, G)(abc) = 0.75 \), because the sum of the probabilities of all projections of \(abc \) that do not contain the 2-factor \(ac \) is \(0.25 + 0.5 = 0.75 \).

3.3 Some properties of pTSL

A stringset \(L \subseteq \Sigma^* \) is probabilistically tier-based strictly \(k \)-local (pTSL-\(k \)) iff there is some pTSL-\(k \) grammar \((\pi_P, G)\) such that \(L = \{ w \in \Sigma^* | \text{val}(\pi_P, G)(w) > 0 \} \). Alternatively, we may say that \(L \) is accepted by this grammar. It is straightforward to show that for every \(L \) that is TSL-\(k \), it is possible to define a pTSL-\(k \) grammar that accepts \(L \). I conjecture that this relationship holds in the opposite direction as well: that is, given a pTSL-\(k \) stringset \(L \), it is always possible to construct a TSL grammar that accepts \(L \). In other words, probabilizing the projection function does not increase the generative power of TSL. See Appendix A for additional discussion.

3.4 Relating pTSL probabilities to production frequencies

Studies of gradience in phonology typically use as empirical data either speaker ratings of individual forms (e.g., Albright and Hayes, 2003; Daland et al., 2011) or response frequencies of particular word forms (Hayes and Londe, 2006; Zuraw and Hayes, 2017). To model empirical data using pTSL, we must be explicit about how the probabilities assigned to words correspond to these measurements. In the case of word ratings, it seems sensible to suggest that assigned probabilities should be positively correlated with ratings. The case of response frequencies is more difficult. Consider a case where a particular word occurs in two forms: \(y_1 \) or \(y_2 \) (for example, with the front
or back form of a suffix). It will not in general be the case that \(\text{val}(\pi_P, G)(y_1) + \text{val}(\pi_P, G)(y_2) = 1 \), so the probabilities supplied by the model cannot be treated as response frequencies.

For a pTSL grammar \((\pi_P, G)\), I relate probabilities assigned by \(\text{val}(\pi_P, G)\) to response frequencies as follows:

\[
P(y_1) := \frac{\text{val}(\pi_P, G)(y_1)}{\text{val}(\pi_P, G)(y_1) + \text{val}(\pi_P, G)(y_2)}
\]

\[
P(y_2) := 1 - P(y_1)
\]

The next two sections provide some empirical justification for this assumption and use pTSL to analyze two cases of gradient, long-distance phonological processes.

4 Gradient transparency in Hungarian vowel harmony

The Hungarian vowel harmony system requires suffix vowels to match the backness of the final front (/y y: ø ø:/; Table 1) or back (/u u: o o:/; Table 2) vowel in the stem (e.g., Hayes and Londe, 2006; Hayes et al., 2009).

<table>
<thead>
<tr>
<th>Table 1: Simple front harmonizing forms (Hayes et al., 2009, p. 829)</th>
</tr>
</thead>
<tbody>
<tr>
<td>yjt-nrk/*-nok</td>
</tr>
<tr>
<td>smolj-nrk/*-nok</td>
</tr>
<tr>
<td>fofor-nrk/*-nok</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Simple back harmonizing forms (Hayes et al., 2009, p. 829)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oblok-nak/*-nark</td>
</tr>
<tr>
<td>biro-nak/*-nark</td>
</tr>
<tr>
<td>glykonz-nak/*-nark</td>
</tr>
</tbody>
</table>

The front unrounded vowels /i i: e: e/ are transparent to harmony, meaning that they do not serve as harmony triggers for suffixes, but allow the harmonic values of preceding segments to "pass through" them. Stems with only transparent vowels generally take front suffixes (Table 3), but a small set takes back suffixes (Table 4). Stems with front vowels followed by transparent vowels invariably take front suffixes (Table 5), while stems with back vowels followed by transparent vowels vary in whether they take front or back suffixes (Table 6).

This variation is sensitive to the height and count of transparent vowels: harmony from the back trigger is more likely to be blocked (and a front suffix attached) if the intervening transparent vowels are lower (i.e., /i/ and /i:/ are less likely to block than /e:/, which is less likely to block than /e/), and as their number increases (Hayes and Londe, 2006; Hayes et al., 2009).

As part of a broader study, Hayes et al. (2009) administered an online wug test (Berko, 1958) to 131 Hungarian speakers. Participants were presented with 13 wug words from a set of about 1600 wug words embedded in frame paragraphs and asked to choose the form of the dative suffix to attach (front [-nRK] or back [-nK]). Participants were then asked to rate each form and suffix combination on a scale of 1-7, with 7 being the best. Each word belonged to one of the following templates: BN, BNN, and N, where each B and N were sampled from the set of back and transparent vowels respectively according to their lexical frequencies. For simplicity, I treat consonants as completely transparent, ignoring the effects of final consonant on suffix choice observed by Hayes et al. (2009).

To test whether the equation relating word ratings to response frequencies given in Section 3.4 holds for real data, I calculated the predicted pro-
portion of back suffixes per stem type based on speakers’ ratings of front and back suffixed forms. The correlation between the proportion of back responses predicted using this method and the proportion observed was extremely high \((r = 0.99)\), suggesting that this method is a good characterization of the link between ratings and response frequencies.

To test whether pTSL can adequately model this data, I defined a pTSL-2 grammar \((\pi_P, G)\) over \(\Sigma := \{B, I, e, c, e, S_f, S_b\}\), where \(I := \{i, i`\}\), \(e = e\) and \(S_f\) and \(S_b\) are front and back suffixes. Note that although TSL (and hence pTSL) is not in general closed under relabeling, it is closed if no segment corresponds to more than one abstract symbol. This is the case here, and hence the relabelings used here and in the next section do not influence the expressiveness of the models.

The set of prohibited 2-factors \(G\) was defined to be \(\{BS_f, IS_b, c:S_b, eS_b\}\). \(P_{proj}\) was fixed to 1 for \(\{F, B, S_f, S_b\}\). Maximum likelihood optimization was used to calculate the values of \(P_{proj}\) for the remaining symbols using the `minimize` function from the Python library `scipy.optimize` (Virtanen et al., 2020). Optimization was performed 100 times with random starting probabilities. The difference in maximum log likelihood between the best and worst fits was less than \(10^{-6}\), and the differences between optimal projection probabilities similarly small, indicating that the search space is largely convex.

The optimal values were approximately:

\[
\begin{align*}
P_{proj}(I) &= 0.39 \\
P_{proj}(c) &= 0.66 \\
P_{proj}(e) &= 0.82
\end{align*}
\]

These probabilities directly reflect the tendencies of these segments to act as harmony blockers. Fig. 1 shows the probability distribution over projections of the input form \(Be:IS_f\), demonstrating how \(val(\pi_P, G)\) calculates its probabilities.

Fig. 2 plots the proportion of back suffix responses predicted by the model against the observed proportions in wug tests. The correlation between the two is strong \((r = 0.83)\). The correlation between probabilities assigned to each word by the model and human ratings is also strong \((r = 0.88)\). Note that although the predicted frequencies of the model differ somewhat from the observed responses, it captures the observed effects of height and count on responses. Direct comparison between the maximum entropy Optimality Theory models fit to wug test data in Hayes et al. (2009) and this model is difficult for several reasons: Hayes et al. fit their data to individual forms rather than averages over templates, include constraints that model stem-final consonant effects on vowel harmony, and do not present predicted frequency data. I note, however, that the authors report a correlation of \(r = 0.575\) between predicted and observed frequencies, which suggests this model may be more successful in capturing height and count effects on vowel harmony.

Note that the pTSL model has the least success predicting the frequency of neutral forms with back suffixes: it predicts they should be more common than they are. The final section of this paper discusses how pTSL may be extended to capture this phenomenon.

5 Gradient judgments in Uyghur

backness harmony

Like Hungarian, Uyghur (Turkic: China) displays backness harmony (e.g., Lindblad, 1990; Hahn, 1991a,b; Abdulla et al., 2010).

The basic characterization of this process is that suffixes must agree in backness with the final front
(i ø y; Table 7) or back (u o u; Table 8) harmonizing stem vowel.

ty-r-dæ/*-dæ ‘type-LOC’
pæn-lær/*-lær ‘science-PL’
munbær-ge/æ/*-ra ‘podium-DAT’

Table 7: Simple front harmonizing forms

pu-lær/*-gæ ‘money-DAT’
to-p-qær/*-kæ ‘ball-DAT’
eætr-tær/*-tæ ‘surroundings-LOC’

Table 8: Simple back harmonizing forms

The vowels /i e/ are transparent to harmony (Tables 9 and 10).

mæstfit-tær/*-ta ‘mosque-LOC’
ymid-lær/*-lær ‘hope-PL’
mømnin-gæ/*-ra ‘believer-DAT’

Table 9: Front stems with transparent vowels

student-lær/*-lær ‘student-PL’
uniwersitet-tær/*-tæ ‘university-LOC’
amil-ge/æ/*-ra ‘element-DAT’

Table 10: Back stems with transparent vowels

If a stem contains no harmonizing vowels, the front dorsals /k g/ (Table 11) and back dorsals /q K X/ (Table 12) may serve as harmony triggers.

kishi-lær/*-lær ‘person-PL’
negiz-ge/æ/*-ra ‘basis-DAT’

Table 11: Front dorsal stems that take front suffixes

qiz-lær/*-lær ‘girl-PL’
jisin-da/*-da ‘meeting-LOC’
jiris-ra/*-gæ ‘grimace-DAT’

Table 12: Back dorsal stems that take back suffixes

There are a small number of stems with front dorsals that take back suffixes (Table 13). The opposite case (stems with only back dorsals that take front suffixes) does not appear to occur.

When a stem contains a harmonizing vowel with a following dorsal that conflicts in backness, the final vowel generally takes precedence (Table 14), although there are a small number of stems containing front vowels with following uvulars that take back suffixes (Table 15).

The uvular consonants may thus be characterized as gradient blockers: they generally allow the backness of the preceding vowel to pass through to the suffix, but will occasionally impose their own, blocking harmony with the vowel. See Mayer and Major (2018) for a discussion of the challenges of modeling this pattern using TSL.

5.1 Wug-testing backness harmony

Mayer et al. (2019, 2020) present results from wug tests performed on 23 speakers of Uyghur living in Kazakhstan. These tests included nonce words of the templates shown in Table 16, where C, K, and Q are transparent, velar, and uvular consonants, and N, F, and B are transparent, front, and back vowels respectively.

These templates vary the distance between final harmonizing vowel and suffix, as well as the presence or absence of a conflicting dorsal between the two. Participants produced four words from each template (48 words total) in unsuffixed and suffixed form in paragraphs designed to provide a naturalistic context. Suffixed forms were coded for whether they contained a back or a front suffix. See Mayer et al. (2019, 2020) for more detail.

The proportion of back responses is shown in Fig. 3. These results indicate that (a) disharmonic suffix forms become more likely as the distance

ingliz-lær ‘English person-PL’
etnik-lær ‘ethnic group-PL’
rentgen-ra ‘x-ray-DAT’
gips-qær ‘plaster-DAT’

Table 13: Front dorsal stems that take back suffixes

mæntiq-gæ ‘logic-DAT’
æqul-gæ ‘intelligence-DAT’
rak-lær ‘shrimp-PL’
pakit-lær ‘fact-PL’

Table 14: Conflicting vowels and dorsals, vowel takes precedence

stems containing front vowels with following uvulars that take back suffixes (Table 15).

The uvular consonants may thus be characterized as gradient blockers: they generally allow the backness of the preceding vowel to pass through to the suffix, but will occasionally impose their own, blocking harmony with the vowel. See Mayer and Major (2018) for a discussion of the challenges of modeling this pattern using TSL.

5.1 Wug-testing backness harmony

Mayer et al. (2019, 2020) present results from wug tests performed on 23 speakers of Uyghur living in Kazakhstan. These tests included nonce words of the templates shown in Table 16, where C, K, and Q are transparent, velar, and uvular consonants, and N, F, and B are transparent, front, and back vowels respectively.

These templates vary the distance between final harmonizing vowel and suffix, as well as the presence or absence of a conflicting dorsal between the two. Participants produced four words from each template (48 words total) in unsuffixed and suffixed form in paragraphs designed to provide a naturalistic context. Suffixed forms were coded for whether they contained a back or a front suffix. See Mayer et al. (2019, 2020) for more detail.

The proportion of back responses is shown in Fig. 3. These results indicate that (a) disharmonic suffix forms become more likely as the distance

ingliz-lær ‘English person-PL’
etnik-lær ‘ethnic group-PL’
rentgen-ra ‘x-ray-DAT’
gips-qær ‘plaster-DAT’

Table 13: Front dorsal stems that take back suffixes

mæntiq-gæ ‘logic-DAT’
æqul-gæ ‘intelligence-DAT’
rak-lær ‘shrimp-PL’
pakit-lær ‘fact-PL’

Table 14: Conflicting vowels and dorsals, vowel takes precedence

stems containing front vowels with following uvulars that take back suffixes (Table 15).

The uvular consonants may thus be characterized as gradient blockers: they generally allow the backness of the preceding vowel to pass through to the suffix, but will occasionally impose their own, blocking harmony with the vowel. See Mayer and Major (2018) for a discussion of the challenges of modeling this pattern using TSL.

5.1 Wug-testing backness harmony

Mayer et al. (2019, 2020) present results from wug tests performed on 23 speakers of Uyghur living in Kazakhstan. These tests included nonce words of the templates shown in Table 16, where C, K, and Q are transparent, velar, and uvular consonants, and N, F, and B are transparent, front, and back vowels respectively.

These templates vary the distance between final harmonizing vowel and suffix, as well as the presence or absence of a conflicting dorsal between the two. Participants produced four words from each template (48 words total) in unsuffixed and suffixed form in paragraphs designed to provide a naturalistic context. Suffixed forms were coded for whether they contained a back or a front suffix. See Mayer et al. (2019, 2020) for more detail.

The proportion of back responses is shown in Fig. 3. These results indicate that (a) disharmonic suffix forms become more likely as the distance

ingliz-lær ‘English person-PL’
etnik-lær ‘ethnic group-PL’
rentgen-ra ‘x-ray-DAT’
gips-qær ‘plaster-DAT’

Table 13: Front dorsal stems that take back suffixes

mæntiq-gæ ‘logic-DAT’
æqul-gæ ‘intelligence-DAT’
rak-lær ‘shrimp-PL’
pakit-lær ‘fact-PL’

Table 14: Conflicting vowels and dorsals, vowel takes precedence

stems containing front vowels with following uvulars that take back suffixes (Table 15).

The uvular consonants may thus be characterized as gradient blockers: they generally allow the backness of the preceding vowel to pass through to the suffix, but will occasionally impose their own, blocking harmony with the vowel. See Mayer and Major (2018) for a discussion of the challenges of modeling this pattern using TSL.
between the final harmonizing vowel and the suffix increases, and that this effect is significantly stronger for front stems, and (b) an intervening uvular between a front vowel and suffix skews responses towards back, but an intervening velar between a back vowel and a suffix does not.

5.2 Modeling wug test data using pTSL

I defined a pTSL grammar \((\pi_P, G)\) over \(\Sigma := \{C, K, Q, N, F, B, S_f, S_b\}\), with \(G := \{FS_b, BS_f, KS_b, QS_f, NS_f\}\). The first four \(k\)-factors prohibit backness clashes between suffixes and stem vowels and consonants. The final \(k\)-factor captures the overall tendency towards back suffixes as the distance between the harmonizing vowel and suffix increases. Note that in Uyghur the neutral vowels behave as gradient triggers for back harmony, while in Hungarian they trigger front harmony.

\(P_{proj}\) was fixed to 1 for \(\{F, B, S_f, S_b\}\). Maximum likelihood optimization on the remaining parameters was performed in the same manner as for the Hungarian data.

The optimal values were approximately:

- \(P_{proj}(C) = 0.08\)
- \(P_{proj}(K) = 0.07\)
- \(P_{proj}(Q) = 0.24\)
- \(P_{proj}(N) = 0.30\)

Fig. 4 shows the proportion of back response predicted by the model.

The model captures both the gradient blocking displayed by uvulars and the distance-based decay over transparent vowels. Although the model assigns virtually identical frequencies to back stems with and without blockers, this is perhaps not a major shortcoming, since the observed differences are fairly small and difficult to account for in a principled way. More worrying is that the model incorrectly predicts the rate of distance-based decay introduced by transparent vowels. The wug test responses for front stems in Fig. 3 show a smaller decrease in front responses between 1 and 2 syllables, followed by a larger decrease between 2 and 3 syllables. The predictions of the model shown in Fig. 4 display a larger decrease in front responses between 1 and 2 syllables than between 2 and 3. This is an unavoidable consequence of the mathematical properties of pTSL: as independent probabilities are multiplied together to form a joint probability, the rate of change of the joint probability slows with each multiplication (see Fig. 5).

The failure of the model to represent this pattern should not be seen as a significant shortcom-
ing, however. Zymet (2014) identifies decay rates for a range of phonological patterns, and finds that all of them exhibit the kinds of exponential properties that pTSL can represent. Thus the Uyghur wug test results present an interesting exception to general rates of distance-based decay. I discuss this issue in more detail in the next section, and show how pTSL can be extended to cope with it.

6 Conclusion

pTSL grammars allow probabilities to be assigned to stringsets in ways that capture gradient effects in long-distance phonological patterns, and without exceeding the generative capacity of the class of TSL grammars. The parameters of these grammars have a simple and intuitive interpretation from the perspective of autosegmental phonology: the set of prohibited k-factors \(G \) corresponds to a set of inviolable local markedness constraints, and the probabilistic projection function \(\pi_P \) defines how likely each segment is to be projected to the tier on which these violations are evaluated. This allows superficially disparate effects such as distance-based decay and gradient blockers to be treated uniformly.

McMullin (n.d.) observed independently that the idea of modeling distance-based decay as a function of probabilities associated with intervening material, as pTSL does, is similar to the decay functions used in Kimper (2011) and Zymet (2014). For example, he shows that the decay function in Zymet (2014), \(\frac{1}{1 + x} \), where \(k \) is a constant and \(x \) is the number of transparent segments between trigger and target, can be implemented by assigning all intervening segments a probability \(\frac{1}{1 + x} \) of serving as a blocker. A detailed comparison of these models with pTSL is beyond the scope of this paper: however, I note that decay functions treat all intervening segments alike, while pTSL allows individual projection frequencies for each segment (though this is complicated by the effects of constraint definitions and weights). In addition, pTSL lends itself to natural extensions that overcome the limitations of both pTSL and decay functions, while extensions of OT models with decay functions are less straightforward.

6.1 Extending pTSL to handle contextual projection and biases

Generalizations of TSL where the projection function is sensitive to input context (e.g., De Santo and Graf, 2017), output (or tier) context (e.g., Mayer and Major, 2018), or both (e.g., Graf and Mayer, 2018) may be probabilized in a way similar to what has been presented here. This will allow projection probabilities to be conditioned on context. For example, instead of \(P_{proj}(x_i) \), we may use \(P_{proj}(x_i|x_{i-1}) \), \(P_{proj}(x_i|y_{j-1}) \) (where \(y_{j-1} \) is the previously projected symbol), \(P_{proj}(x_i|x_{i-1}, y_{j-1}) \), etc.

This extension is useful to address two shortcomings of pTSL observed in the Hungarian and Uyghur examples above. In Hungarian, the pTSL model assigns substantially higher ratings to \(NS_b \) forms than speakers do. These ratings are simply \(1 - P_{proj}(N) \): if the transparent vowel projects, the form will contain an illicit \(k \)-factor, while if it does not project, the stem will be licit. A better fit for these forms could be achieved by conditioning on the preceding vowels: that is, transparent vowels are more likely to project when not preceded by a back vowel. pTSL may also be extended to capture lexically-specific phonology (e.g., Pater, 2000) by conditioning projection probabilities on word identity rather than local context.

The Uyghur model successfully captures distance-based decay and gradient blocking effects of uvular consonants. It fails, however, to predict the correct rate of decay: specifically, the observed productions show a small increase in back responses when a single transparent vowel intervenes between a front vowel and suffix and a larger increase when an additional transparent vowel is added. The model predicts the opposite (see also Mayer et al. (2019), where a similar result emerges from the use of decay functions). The correct rate can be achieved by conditioning the projection probability of neutral vowels on the preceding vowel: neutral vowels after a harmonizing vowel are less likely to project than those after a neutral vowel.

Finally, biases towards particular constraint weights have been employed in previous optimality theoretic models of phonology to explore how biased learning differs from simpler optimization methods like maximum likelihood estimation (e.g., Wilson, 2006). It is straightforward to incorporate similar biases into pTSL models by defining priors over projection probabilities and incorporating them into the learning process. I leave this as an interesting area for future research.
A Relating TSL and pTSL grammars

This appendix outlines a conjecture that pTSL grammars have equal generative power to TSL grammars, and describes an algorithm for converting between the two.

Conjecture 1. $pTSL = TSL$

First, we must show that $TSL \subseteq pTSL$. Consider an arbitrary TSL grammar (T, G) over Σ that accepts the stringset L. In order to define a pTSL grammar (π_P, G) that also accepts L, we define the projection probabilities for each $s \in \Sigma$ as follows:

$$P_{\text{proj}}(s) := \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{otherwise} \end{cases}$$

G remains the same. Under this definition of π_P, each input will have exactly one possible projection, and this input will receive a non-zero probability only if this projection contains none of the prohibited k-factors in G. This evaluation procedure is identical to that used by TSL grammars.

Second, we must show that $pTSL \subseteq TSL$. Consider an arbitrary pTSL grammar (π_P, G). There are two necessary steps to convert this to an equivalent TSL grammar (T, G'):

1. Let $G' := \{(g_n)_{n \in I} \in G | \forall i \in I P_{\text{proj}}(g_i) = 1\}$
2. Let $T := \{s \in \Sigma | P_{\text{proj}}(s) > 0\}$

I do not provide a formal proof of correctness for this algorithm here, but rather an intuitive motivation of each step.

Step 1 considers whether prohibited k-factors in the input will be projected. An input will only receive a probability of 0 if all of its possible projections contain prohibited k-factors. Any input containing a prohibited k-factor that has a symbol with a projection probability of less than one will have at least one possible projection that does not contain this k-factor. Thus inputs will never receive a probability of 0 on the basis of this k-factor, and it must be removed from the corresponding TSL grammar.

Step 2 considers how prohibited k-factors that are not present in the input may be generated in the output by failing to project intervening material. Consider an input that does not contain a prohibited k-factor, but whose projection may contain one if certain symbols are deleted. If any of these symbols have projection probabilities greater than 0, there will be at least one possible projection where they are not deleted. Hence this input will not receive a probability of zero. Defining T to be the set of all symbols with non-zero projection probabilities ensures that such strings will be accepted by the corresponding TSL grammar.

Example 5. Consider the TSL-2 grammar presented in Example 2. The corresponding pTSL-2 grammar uses the same G, and defines the projection probabilities as:

$$P_{\text{proj}}(\sigma) = 0$$
$$P_{\text{proj}}(\delta) = 1$$

Example 6. Consider the pTSL-2 grammar defined in Example 4. The corresponding TSL-2 grammar has $G = \{ac\}$ and $T = \{a, b, c\}$. This grammar accepts all input strings over $\{a, b, c\}$ except those that contain the substring ac; note that this exactly the set to which the original pTSL-2 grammar will assign non-zero probabilities.

Acknowledgments

I would like to thank Bruce Hayes, Tim Hunter and Kevin McMullin for their helpful feedback, Kie Zuraw for providing the Hungarian data, and Travis Major and Mahire Yakup for collecting the Uyghur data.

References

