A method for learning features from observed phonological classes

Connor Mayer1 and Robert Daland2

1UCLA \quad 2Independent

Annual Conference of the Canadian Linguistics Association
University of British Columbia
June 3, 2019
This talk describes a fairly formal/computational paper.\(^1\)

My goal is to **ignore as much of this formalism as possible!**

Instead, I hope to:

- Convince you that the theoretical approach is worthwhile.
- Give you a sense of how the computational bits work.
- Convince you that this is a useful tool, even if you’re not a computationalist!
 - There is a freely available Python implementation of the algorithms I describe.

\(^1\)Mayer and Daland resubmitted
Where do features come from?

Classic texts propose features are universal.²

- All languages can be described by the same finite set of features.

- Reflect phonetic properties of the vocal tract and perceptual system that facilitate categorical distinctions.
 - And not just in humans.³

- Phonological processes operate on the classes they define.

²e.g., Chomsky and Halle 1968
³e.g., Kuhl and Miller 1975
Many classes **cannot be defined by a single set of phonetic properties.**

- **Classic example:** Sanskrit *ruki*.\(^4\)
 - `/s/` becomes retroflexed following `{r, u, k, i}`

- **Recent example:** Cochabamba Quechua.
 - Gallagher (2019) shows that `/b/` patterns as a voiceless stop.

- Mielke (2008) collected many such cases from grammars.
 - Only 71% of classes from 600 languages could be picked out by any feature system!

\(^4\) e.g., Kiparsky 1973; Vennemann 1974
Alternative explanations for phonetic disparity

Maybe we need to expand our feature systems.

- e.g., /l/ seems to be [+continuant] in some languages and [–continuant] in others.\(^5\)

- Should we add [midsagittal-continuant] and [parasagittal-continuant]?

It’s unclear that this approach has explanatory value.

- How many additional features would we need?

- Could these features all be given a phonetic interpretation?

- How do learners determine which features are relevant for their language?

\(^5\) e.g., Kaisse 2002; Mielke 2008
Learned features

Researchers have proposed that features may be learned and language-specific.\(^6\)

- Feature systems are derived from perceived similarities between sounds.

- Typological patterns are by-products of general human cognitive capabilities, properties of human vocal tract and auditory system, channel bias, etc.

\(^6\) e.g., Blevins 2004; Mielke 2008; Archangeli and Pulleyblank 2015; MacWhinney and O’Grady 2015; Archangeli and Pulleyblank 2018
Learned vs. universal features

Learned features are compatible with the basic motivation for universal feature theory!

- Certain phonetic properties are naturally salient.

A few additional assumptions:

- The *distribution* of sounds can inform their features.
 - Phonotactic properties, conditioning of processes, etc.

- No one dimension has primacy.
 - The learner uses the full range of available information.

- Features may vary cross-linguistically.
What do we gain from emergent features?

With universal features, we start from **typology** and then worry about exceptions.

With emergent features, we focus on **learning mechanisms**.

- What are these mechanisms?

- How do they contribute to typological patterns?

- To what extent can distribution contribute to feature learning?\(^7\)

\(^7\)e.g., Moreton 2008; Hayes et al. 2009
We assume a model of feature learning like below.

- The learner has converged on a segmental representation.\(^8\)
- Some mechanism has identified a set of input classes.
 - Based on acoustic, articulatory, distributional similarity, etc.
- A feature system is derived from the set of input classes.

\(^8\)e.g., Lin 2005; Feldman et al. 2013
Why start from classes?

It’s unclear how features can be learned without being motivated by the classes they characterize.

Past approaches to learning phonological categories learn **classes**.

- From phonetic data.\(^9\)
- From distribution.\(^{10}\)

Class learning likely involves integration of multiple such sources of information.

\(^9\) e.g., Lin 2005; Mielke 2012
\(^{10}\) e.g., Calderone 2009; Goldsmith and Xanthos 2009; Mayer submitted
Scope of this work

We focus on how to get from classes to features.
A **class system** is a set of classes.

A **feature system** is a set of features over a segmental inventory, and the values they can take.

- Features are **functions** that map segments to values.

- **Vowels**
- **Glides**
- **Liquids**
- **Nasals**
- **Obstruents**

<table>
<thead>
<tr>
<th></th>
<th>syl</th>
<th>cons</th>
<th>approx</th>
<th>son</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Featural descriptors

A featural descriptor is a set of feature/value pairs.

- *Intensional* description of a class.

\[
\begin{bmatrix}
+\text{son} \\
+\text{apprx}
\end{bmatrix}
\]

- Its *extension* is a set of segments.

\[
\langle \begin{bmatrix}
+\text{son} \\
+\text{apprx}
\end{bmatrix} \rangle = \{V, G, L\}
\]

A feature system *covers* a class system if there is (at least) one unique featural descriptor for (at least) every class.
Combining featural descriptors

Intersection of classes corresponds to **union** of featural descriptors.

\[
\langle [+\text{son}] \rangle = \{V, G, L, N\}
\]
\[
\langle [+\text{cons}] \rangle = \{L, N, T\}
\]
\[
\langle [+son, +cons] \rangle = \{L, N\} = \{V, G, L, N\} \cap \{L, N, T\}
\]
Parent/child relationships

Class systems are **hierarchical**.

Parent/child relationships are one way of expressing this hierarchy.
- **Crucial** for deriving feature systems.
The **intersectional closure** of a class system is the set of all intersections of its classes.
Bringing it all together

Intersectional closure covering theorem
If a feature system covers a class system, it also covers its intersectional closure.

- e.g., if you have [+high] and [+front], you can’t help getting [+high +front].

Multiple parenthood theorem
If a class in the intersectional closure has more than two parents, it is exactly equal to the intersection of any two of its parents.

- This entails that any class with more than one parent can be uniquely identified by the union of the features of any two of its parents!
Now we can turn to the main question:

How do we learn features from classes?

Central insight

We need a feature/value pair for every class that has a single parent in the intersectional closure.

- If a class has no parents, it’s the segmental inventory.
- If a class has more than one parent, it can be picked out by the union of its parents’ features.
We will use a toy class system for expository purposes.
- A more complex example is provided later.

This class system:
- is intersectionally closed.
- does not contain all singleton classes.
Privative specification

Privative specification algorithm

Assign a new $+f$ feature/value pair to all segments in each class that has exactly one parent.

Assigns privative values: $\{+, 0\}$

Compatible with theories that consider all features privative.\(^{11}\)

<table>
<thead>
<tr>
<th>σ</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^{11}\) e.g., Anderson and Ewen 1987; Avery and Rice 1989; Lahiri and Marslen-Wilson 1991; Frisch 1996
Complementary specification

Complementary specification algorithm

Assign a new $+f$ feature/value pair to each class that has exactly one parent, and a $-f$ feature/value pair to the complement of that class with respect to its parent if it is present in the input.

Assigns **contrastive** values: $\{+, -, 0\}$

There are theoretical reasons to allow ‘$-$’ feature values.\(^\text{12}\)

<table>
<thead>
<tr>
<th>σ</th>
<th>$F1$</th>
<th>$F2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$+$</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>c</td>
<td>$-$</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^{12}\text{e.g., Archangeli and Pulleyblank 1994; Archangeli 2011}\)
Inferential complementary specification

Inferential complementary specification algorithm

Assign a new $+f$ feature/value pair to each class that has exactly one parent, and a $-f$ feature/value pair to the complement of that class with respect to its parent *even if it is not present in the input*.

Assigns **contrastive** values: $\{+, -, 0\}$

Assumes limited generalization based on input classes.

<table>
<thead>
<tr>
<th>σ</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$+$</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>c</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>
Inferential complementary specification algorithm

Assign a new $+f$ feature/value pair to each class that has exactly one parent, and a $-f$ feature/value pair to the complement of that class with respect to the *full segmental inventory* even if it is not present in the input.

Assigns **full** values: $\{+, -\}$

Prohibits underspecification.\(^\text{13}\)

<table>
<thead>
<tr>
<th>σ</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^{13}\text{e.g., Chomsky and Halle 1968}\)
More realistic input

alphabet	{a, i, u, e, o, y, ∅}
non-low	{i, u, e, o, y, ∅}
high	{i, u, y}
front	{i, e, y, ∅}
round	{u, o, y, ∅}

<table>
<thead>
<tr>
<th>σ</th>
<th>low</th>
<th>front</th>
<th>high</th>
<th>round</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>u</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>e</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>o</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>∅</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>
A symbolic feature system can be learned from a set of input classes.
- Done without reference to phonetic properties.

We presented four algorithms that differ in assumptions about
- what feature values are permitted.
- whether there is generalization from the input classes.

They operate based on insights into the hierarchical structure of class systems.
Applications to future research

We freely provide the code for use and extension in future research.

Input:
- Set of classes.
- Choice of featurization algorithm.

Output:
- A feature system that covers those classes.

Can be used as a component in phonological learning systems.
- E.g., systems that take us from a data set to a phonological grammar.
Applications to future research

We can revisit cases of **phonetically disparate classes**.
- Understand the feature systems that underpin these.

We can think more about **underspecification**.
- These algorithms *deterministically* predict underspecification.
- Testable against the literature and artificial grammar learning\(^{14}\) studies.
- Allow us to avoid “opportunistic underspecification.”\(^{15}\)
- Similar to contrastive hierarchies,\(^{16}\) but with different inputs and less stipulation.

We can study how learners **generalize from the input**.
- Provides testable predictions about how learners might generalize across classes.
- Also testable with artificial grammar learning studies.

\(^{14}\)e.g., Moreton and Pater 2012
\(^{15}\)Steriade 1995
\(^{16}\)Dresher 2003; Hall 2007
Acknowledgements

Thanks to Bruce Hayes, Kie Zuraw, Tim Hunter, and the members of the UCLA phonology seminar for their valuable questions and insights. This research was supported by a Social Sciences and Humanities Research Council of Canada Doctoral Award to the first author.

See connormayer.com for the full paper and code.
References

References II

References III

References IV

References

