Class 2, 1/12/2023: Faithfulness, Factorial Typology, the Rich Base

1. Practical

• Can everyone access the course web site? I believe it is posted ok now.

2. Assignments

- Read: Extract from McCarthy (2003) *A thematic guide to Optimality Theory*. On web site.
- Read: "How to solve phonology problems." On web site.
- Start the first homework, on Ilokano. Download pdf and Word doc from website. It is due in a week, 1/19/23.

WHAT WE HAVE SO FAR

3. Finnish as a canonical OT-case

• Hopefully, complexity from simplicity via ranking

4. Algorithms (implemented in software) can help

- Many people have programmed Recursive Constraint Demotion (enacted last time), and it can check whether your constraints can select the right winner from your candidates.
- It also finds strata that define a set of feasible rankings.
- In some implementations, you can rerun the system eliminating each constraint in turn, testing for necessity.
- I went to my OTSoft program (https://linguistics.ucla.edu/people/hayes/otsoft/) and got some reassurance.

Stratum #1	
Align(W,Ft)	Align(W,Ft)
*Clash	*Clash
FootBin	FootBin
Stratum #2	
Non-Fin	Non-Fin
Dep	Dep
Stratum #3	
Lapse	Lapse
Stratum #4	
*(L H)	*(L H)
Stratum #5	
All feet L	All feet L

- Note that this defines 12 rankings that work ...
- Tableaux:

```
/L H L L L/:
            Align(W,Ft) '*Clash 'FootBin Non-Fin 'Dep Lapse |* (L H) |All feet L
                                      | | 1 | 1 |
>(L H)(L L)L
                                                          2
                                 | 1
                                                          3!
 (L H) L (L L)
                                                | 1
                                                     | 4! | 1
 (L H) L L L
                                        | 1
 (L H)(L L)(L)
                            1! | 1
                                                          6
                                        1! ¦
 (L)(H L)(L L)
                            1
                                                          4
                                 -
                                           -
                                                     1!
                                                          4
                                        -
L (H L) (L L)
```

etc.

• Necessity:

```
Status of Proposed Constraints: Necessary or Unnecessary
```

```
Align(W,Ft) Necessary
*Clash Necessary
Non-Fin Necessary
Lapse Necessary
*(L H) Necessary
All feet L Necessary
FootBin Necessary
Dep Necessary
```

5. Another really helpful algorithm: FreD (Prince and Brasoveanu 2011)

- Ref.: Brasoveanu, Adrian, and Alan Prince. 2011. Ranking & Necessity: the Fusional Reduction Algorithm. *NLLT* 29:1, 3-70.
- This finds all the ranking arguments and makes a Hasse diagram.
- This turns out to be a *big* computational task! For a large problem set an implemented version can run for half an hour.
- It seems that for nontrivial cases human efforts should not be trusted.
- OTSoft output for Finnish:

```
FootBin >> { *(L H), All feet L, Dep }
Dep >> { *(L H), All feet L }
*(L H) >> All feet L
Lapse >> { *(L H), All feet L }
Non-Fin >> { Lapse, *(L H), All feet L }
*Clash >> { Lapse, *(L H), All feet L }
Align(W,Ft) >> { Non-Fin, Lapse, *(L H), All feet L, Dep }
```

- ['ravin_tolat] is winner ['ravinto_lat] is winner Align(W,Ft) FootBin Align(W,Ft) Dep *Clash Non-Fin FootBin *(L H) Lapse Dep *Clash Non-Fin *(L H) Lapse All feet L All feet L
- We were curious how an alternative outcome could be derived:

• You can try comparing these Hasse diagrams (or wait for us to do the same thing with a MaxEnt grammar).

QUICK REVIEW OF FAITHFULNESS CONSTRAINTS

6. Historical note

- In the original OT work, Prince and Smolensky (1993) proposed a system of Faithfulness not well-articulated enough to handle phonology in general
- You will see references to it from time to time but it is not widely employed today.

7. Source for the standard constraints used today

• McCarthy and Prince (1995): Faithfulness and Reduplicative Identity, in *University of Massachusetts Occasional Papers in Linguistics* 18: Papers in Optimality Theory. Ed. by Jill Beckman, Suzanne Urbanczyk and Laura Walsh Dickey. Pp. 249–384.

8. In principle, there are many ways to do Faithfulness

- Faithfulness is based on resemblance.
- Resemblance can be formalized in many ways.
- Conventional *SPE*-representations (sequences of feature matrices) make it easy, but one might also pull in
 - hierarchical structure (phrasing, syllables, feet, autosegmental tiers)
 - actual phonetic form (spectra)
- More on this later.

9. McCarthy and Prince's strategy: SPE representations + atomism

• I believe their idea was to find the ways that two representations could differ — allocating constraints to the *smallest possible differences*.

10. Indices

To make the differences explicit, we put an index on every segment (we will see shortly why this is necessary).

• IDENT = differ in one feature value

 $/p_1 a_2 k_3/$, candidate $[b_1 a_2 k_3]$ violates IDENT(voice) $/p_1 a_2 k_3/$, candidate $[m_1 a_2 k_3]$ violates IDENT(voice) and other constraints

• MAX = an underlying segment of *some natural class* (specified with features) is missing in the surface form.

/p₁ a₂ k₃/, candidate [p₁ a₂] violates ?? (multiple answers)

• DEP = a surface segment of some natural class (specified with features) is missing in the underlying form.

 $/a_2 k_3/$, candidate [$?_1 a_2 k_2$] violates multiple DEP constraints.

• LINEARITY, violated when the linear order of any pair of segments is switched. Count the violations here:

/p1 a2 k3/, candidate [p1 k3 a2] has one violation /p1 a2 k3/, candidate [k3 a2 p1] (how many violations?)

Socrates: What about this candidate: $[p_3 a_2 k_1]$

- CONTIGUITY, violated when two segments are adjacent in the input but not the output, or vice versa (IO, OI)
- ANCHOR, violated when a segment is adjacent to an edge in the input but not the output.

11. Not a standard Faithfulness constraint

- IDENT(p) "Don't change anything about [p] so it isn't [p] any more."
 - You're welcome to deviate from the "standard" theory but in the interest of scientific coherence, you need to *label* such deviations.
 - This raises issues of what is your "scientific community", your "community standards"—inevitable in writing up research results.

12. Extensions of Faithfulness

• Between a base form and a form derived from it (Benua 1997¹ and much later work)

heal ['hit] healing ['hitiŋ] compare: Darjeeling [daɪ'dʒilıŋ]

You might try this for the homework.

• Between a reduplicated morpheme and its base (McCarthy and Prince 1994)²

DEFINING FACTORIAL TYPOLOGY

13. Assume

- A class of universal inputs
- Some version of GEN
- A set of constraints

then, each ranking of the constraints defines a set of outputs (many rankings define the same output set, however)

The set of distinct sets of outputs constitutes the **factorial typology** of the system [called "factorial" because *n* constraints permit *n*! rankings]

14. The appeal of factorial typology

- Proposals can be tested against typological data.
- We can consider them for defects of both undergeneration (instantly fatal) and overgeneration (hard to assess)

15. Some work in factorial typology

- Elenbaas, Nine and René Kager. 1999. Ternary Rhythm and the *LAPSE constraint. *Phonology* 16: 273-330.
- Matthew Gordon (2002) A factorial typology of quantity insensitive stress, *Natural Language and Linguistic Theory* 20, 491-552
- Abigail Kaun (1995) The Typology of Rounding Harmony: An Optimality Theoretic Approach. Ph.D. Dissertation, UCLA. Basis of readings.

¹ Benua, Laura. Transderivational identity. Ph.D. dissertation, University of Massachusetts Amherst, 1997.

² McCarthy, J. and A. Prince 1995 Faithfulness and Reduplicative Identity, *University of Massachusetts Occasional Papers in Linguistics 18: Papers in Optimality Theory*. Amherst, MA: GLSA, University of Massachusetts.

16. How to compute a factorial typology

- Chose an empirical domain (we can't do all of phonology at once).
- Choose constraints: these embody a proposal in phonological theory.
- Choose inputs: they must somehow suffice to illustrate the full range of possible phenomena.
- Choose candidates (ditto)
- Calculate the typology, by hand or with software.

17. Language example: Turkish epenthesis

Nom.	Accus.	1sg poss.	Dative	Nom. Plur.	Ablative	gloss
Idil	idili	idilim	idile	idiller	idilden	ʻidyll'
vezin t∫enk	vezni t∫enki	veznim t∫enkim	vezne t∫enke	vezinler t∫enkler	vezinden t∫enkten	'meter' 'hand'

- "Epenthesize before a consonant that wouldn't be syllabifiable."
- The idea is that [idil] is /idl/.
- It has to be Epenthesis, not Syncope
 - alternating vowel is always /i/ (or its partners in vowel harmony)
 - /vezin/ doesn't alternate.
- /tʃenk/ has good sonority and makes a good syllable in Turkish

18. Egyptian Arabic

• This language also has /vezn/ for 'meter', but in this language the epenthetic vowel is final: [vezni]

19. Palestinian Arabic

• Like Turkish, but *all* CC sequences are repaired, not just sonority-violating ones: /taxt/ → [taxit] 'bed'

20. Sample inputs for factorial typology

- /ipl/ Exemplifies a bad-sonority coda
- /ilp/ Exemplifies a coda with good sonority profile

21. Reasonable outputs

/ipl/	ipl	/ilp/	ilp
	i.pil		i.lip
	ip.li		il.pi
	i.pli		i.li.pi
	i.pi.li		1

- Do we have them all?
- If not, what would we include to expand the typology?

22. Should we include [i.lpi] among the outputs?

- Proposal: to keep the problem under control, you can assume some constraints to be undominated (i.e. "we are considering only the class of languages that don't allow sonority-reversed codas").
- Often, this leaves enough languages under consideration to make the problem still worthwhile.
- Thus, let's avoid, for /ilp/: i.lpi, il, ip, lip, pli, ilu (p becomes u).
 - Undominated: *HORRIBLE ONSET, MAX(C), LINEARITY, IDENT(syl)

Name		
1. DEP(i)	Penalizes insertion of vowels; quality ignored here.	
2. *BAD SONORITY CODA	Should be suitably formalized; violated by final [pl].	
3. *CC CODA	Violated by [ilp] as well.	
4. *Coda	Inviolable in Hawaiian, Bantu languages, etc.	
5. *BRANCHING ONSET	i.e. *[_σ CC	
6. CONTIGUITY	one violation for each pair of segments adjacent input but not	
	output — penalizes internal epenthesis	
7. Anchor	one violation for each segment adjacent to a particular word edge	
	in the input but not in the output — penalizes <i>external</i> epenthesis	

23. Proposed constraints

24. Some outputs we need never consider

$$/ipl/ \rightarrow [ip.il]$$

[i.pi.li.i.i.i]

These bad outputs are **harmonically bounded** and (in classical OT) can never win. [Socrates: take a look at the tableau rows.]

25. Harmonic bounding

Candidate A harmonically bounds candidate B if A has a strict subset of B's violations.

26. A software-derived factorial typology of epenthesis

Method employed: keep adding inputs, run Constraint Demotion over and over, regain all combos that have a feasible ranking.

	Output #1	Output #2	Output #3	Output #4
/ipl/:	[ipl]	[i.pil]	[i.pil]	[ip.li]
/ilp/:	[ilp]	[ilp]	[i.lip]	[ilp]
	faithful	Turkish	Palestinian	I know no case; = Egyptian-
	outcomes;		Arabic	Turkish blend
	Persian			
	(væzn,			
	tæxt)			

	Output #5	Output #6	Output #7	Output #8
/ipl/:	[ip.li]	[i.pli]	[i.pli]	[i.pli]
/ilp/:	[il.pi]	[ilp]	[i.lip]	[il.pi]
	Egyptian	French, at least in		I know no case; =
	Arabic	some speaking		Egyptian-French
		styles		blend

	Output #9	Output #10
/ipl/:	[i.pli]	[i.pi.li]
/ilp/:	[i.li.pi]	[i.li.pi]
		Japanese loan adaptation:
		$tax \rightarrow [takusu]$

27. Basics of Factorial Typology interpretation

- **Undergeneration:** real case that the constraint system can't get under any ranking; indubitably bad
- Overgeneration: hypothetical case that the linguist feels could never occur. How bad?
- Linguists differ greatly in how seriously to take the argument "gosh, I've never seen a case of this kind". A forceful statement of skepticism of this kind of thinking may be found in:
 - McCollum, Adam., Eric Baković, Anna Mai, and Eric Meinhardt. 2020. Unbounded circumambient patterns in segmental phonology. *Phonology* 37:215-255.

Perhaps some day we will use some form of statistical analysis to authenticate our gaps.

28. Sometimes the missing case walks in the door

• **Majority-rule vowel harmony**³: "Harmonize a suffix in backness with which ever kind of vowel (back or front) occurs more often in the stem." (Linda Lombardi⁴; for a remedy see Baković 1999⁵.)

³ Unless Margit is right...

⁴ Lombardi, Linda. 1996. Positional Faithfulness and Voicing Assimilation in Optimality Theory. Ms., University of Maryland, College Park

⁵ http://roa.rutgers.edu/files/340-0899/roa-340-bakovic-2.pdf

- But Margit Bowler's work suggests this happens in Warlpiri.
- I believe that "cases walking in the door" are fairly frequent so many languages, so little analysis.

29. Typological work

- You can mine libraries (Noah Elkins, 2021 UCLA MA thesis; my 1995 book *Metrical Stress Theory*
- UCLA has a fantastic descriptive collection (stroll one minute north to YRL, fourth floor, roughly PK-PL).
- Interlibrary Loan has gotten more efficient (on my desk, a book from Harvard)
- And the internet has more resources

30. Interpretation of factorial typology: T-orders

• We examine the factorial typology, and compile all true statement of the following form:

In all grammars in which Output A_m is derived from Input A, Input B must yield Output B_n .

- Arto Anttila, in various papers⁶ emphasizes this kind of implication (i.e. a complete set of them) as a way of diagnosing the structure of a factorial typology.
- For a brief intro see http://www.stanford.edu/~anttila/research/torders/t-order-manual.pdf

31. The T-order for the epenthesis typology (complete)

If this input	has this output	then this input	has this output
/ipl/	[ipl]	/ilp/	[ilp]
/ipl/	[i.pi.li]	/ilp/	[i.li.pi]

THE RICH BASE, PHONOTACTICS AND ALLOPHONY

32. Phonotactics

- = phonological legality, grammaticality
- Chomsky and Halle (1965, *Journal of Linguistics*):
 - [b.Ik]is possible and exists[bIk]is possible and doesn't exist*[bnIk]is impossible
- Phonotactic well-formedness is gradient (?[poik]), but (since we are working with classical OT) we will idealize for the moment to a grammatical/ungrammatical distinction.

⁶ e.g. http://www.lingref.com/cpp/wccfl/26/paper1655.pdf

• Phonotactics is learned in the absence of negative evidence: from what we do hear, we figure out what would should never expect to hear.

33. Why do we have phonotactic knowledge?

- One theory is that it helps guide speech perception: we prefer phonotactically well-formed interpretations of the waveform.
- A famous paper:
 - Massaro, Dominic W., and Michael M. Cohen (1983) Phonological context in speech perception. *Perception & psychophysics* 34: 338-348.
 - A synthesized [r]-[1] F3 continuum is biased to be heard as [r] after [t], as [1] after [s].

34. The standard OT account of phonotactics: the Rich Base (Prince and Smolensky 1993⁷)

- Assume that the set of possible inputs is *every conceivable phonological representation*.
- An adequate grammar converts any unpronounceable input into a pronounceable one thus expressing the phonotactics.

35. Pseudo-derivations in Rich Base theory

- For bad things: Markedness outranks at least one Faithfulness constraint whose violation could repair an input that is bad.
- This assumes fictional "derivations", like English /qæt/ → [kæt]
 > (BH recite the Parable of the Space Aliens.)
- Such grammar is often (harmlessly, I think) indeterminate we don't know what repair "would be" used.⁸
- Socrates: what other Faithfulness constraints could be violated in repairing /qæt/?

36. The fundamental principle for phonotactics in Rich Base theory

- The higher-ranked the Faithfulness constraints, the more things emerge from the grammar.
 - > Intuition: without Faithfulness, we could say only [ta] (or perhaps nothing).
- This basic point can be elaborated into a typology of phonotactics, based on ranking
 - > illegality
 - ➢ phonemicness
 - > allophony
 - contextually-limited contrast (two ways to do it)

⁷ They attribute the idea to David Stampe, who thought of it for his theory of Natural Phonology, a rule-based precursor to OT (universal rule set!).

⁸ Though we can make an educated guess (work of Steriade, later): default is repair to the phonetically closest legal entity.

WORKING THROUGH RICHNESS OF THE BASE WITH MINI-TABLEAUX

37. Case I: Illegality

• As above, for /qæt/

38. Case II: Phonemicness

• A feature will be phonemic if the faithfulness constraint for it dominates the conflicting markedness constraint.

IDENT([voice])	(Faithfulness)
*[-sonorant, +voice]	(Markedness; cf. Hawaiian)

39. Case III: Allophony

• This is: two conflicting Markedness constraints, special one with context, general one ranked second, both above Faithfulness.

Special markedness ↓ General Markedness ↓ Faithfulness

VTV *[-son, -voice] / V V (cf. Korean, Yidin, various Australian)
*D *[-sonorant, +voice] (Hawaiian)
IDENT [DENT([voice]) in obstruents

• Socrates: How does this ranking distribute [t] and [d]?

40. Case IV: contextually limited contrast by the Markedness Sandwich

• Assume:

IDENT([voice] in obstruents / ___ [+sonorant]) *[-sonorant, +voice] IDENT([voice] in obstruents)

- Describe the resulting distibution of [t] and [d], justifying your answer with little tableaux.
- $\bullet \ \ General\ recipe:\ Special\ Faithfulness >> Markedness >> General\ Faithfulness$

41. Socrates

• What is the factorial typology of the three constraints we're working with?

42. Case V: contextually limited contrast by the Faithfulness Sandwich

- Here, what's different is that we put the context into the Markedness constraint, not Faithfulness.
- Assume:

*[-sonorant, +voice] in codas	special markedness
IDENT([VOICE]	Faithfulness
*[-sonorant, +voice]	general markedness

• Describe the resulting distribution of [t] and [d], justifying your answer with little tableaux.

RICHNESS OF THE BASE, ALLOPHONES, AND CONCRETE URS

43. Often, many URs are compatible with a given SR

Socrates: suggest some URs for [khǎt] 'cat'

44. One way to resolve: Lexicon Optimization (hypothesis of Prince and Smolensky 1993)

- All else being equal, learned morphemes are represented in the lexicon in whatever way minimizes their constraint violations (necessarily, of Faithfulness).
- The "all else being equal" is a pretty broad loophole...
- [Socrates: what would lead you to list something different from phonetic form?]

45. Good old allophones

- Beginners to this day are taught to collect sounds that are phonetically similar and in complementary distribution (e.g. for /t/: [t^h], [t], [[?]t], [t̪]).
 - Socrates: dredge up your memory of where these allophones of /t/ are distributed.
- Standard OT provides no basis for this actually happening. Why?
 - > Old theory: constraints on underlying forms included phoneme inventory.
 - But if the constraints all apply at the surface there is no such thing, only a phone inventory.
- Nonstandard OT? Perhaps we relax Lexicon Optimization, permitting underlying-surface disparities to minimize the number of categories in UR.

46. *Should* phonemes be unified?

- For experiments suggesting that native speakers sometimes hear allophones as "the same sound", see
 - Jaeger, Jeri J. (1980) "Testing the psychological reality of phonemes," Language and Speech 23, 233-253
 - Bruce Derwing, Terrance M. Nearey, and Maureen L. Dow (1986) "On the phoneme as the unit of the 'second articulation," *Phonology Yearbook* 3:45-70.

- Likewise, experiments teaching people how to read: what letter do they pick for an allophone untaught to them? Gudschinsky, Popovich, and Popovich (1970)⁹, who got a untutored speaker to spell [ik] as *kk*, [i] being the contextual allophone of /k/.
- Anecdote: my son, when little, trained to string-reverse words by sound: *cat* [k^hæ²t] → [t^hæ²k], but *fill* [ft¹] → [[†]tf]

47. Can phonemes be unified under standard OT?

- Some may be unified at a pre-symbolic, categorization level—creation of categories by the warping of perceptual space. References:
 - Guenther, Frank and Marin N. Gjaja (1996) The Perceptual Magnet Effect as an Emergent Property of Neural Map Formation, *Journal of the Acoustical Society of America* 100: 1111-1121.
 - Jessica Maye, Janet F. Werker, and LouAnn Gerken (2002) Infant sensitivity to distributional information can affect phonetic discrimination. *Cognition* 82:101–111.
 - > UCLA dissertations of Ying Lin, Kristine Yu, on our web site
- More interesting are allophones that are not in a cloud, but discrete, e.g. [r] and [χ] as allophones (putative) of "/r/" in Portuguese.
- OT opts for "invariance":¹⁰
 - For every phoneme, there is a set of feature values shared by all allophones of that phoneme and by none of allophones of any other phoneme.

To my knowledge, no one has published anything on invariance-violating phonemes in OT ...

⁹ Gudschinsky, Sarah C., A. Harold Popovich, and Frances B. Popovich. 1970. "Native reaction and phonetic similarity in Maxakalí phonology." *Language* 46: 77-88

¹⁰ Origin: Noam Chomsky, *Current issues in linguistic theory* (The Hague: Mouton, 1964). pp. 75-95. N.B. Chomsky puts forth invariance as a straw-man position.