Class 6, 1/26/2023: Learnability; Variation I

1. Assignments

- Modern Hebrew homework is due in class Thursday Feb. 2.
- New reading for Tues. 1/22:
> William Labov (1972) "The isolation of contextual styles", Chapter 3 of his Sociolinguistic Patterns, University of Pennsylvania Press. On course web site.
\Rightarrow Do a half-page summary
> Due Tues. Jan 31.

TWO PRODUCTION PHENOMENA SHARED BY CHILDREN AND ADULTS

NEAR-NEUTRALIZATION

2. Near-neutralization in adult phonology

- Near-neutralization is by now a widely-studied topic in adult phonology:
$>$ " $[\mathrm{A}]$ " derived from $/ \mathrm{B} /$ is not the same as $[\mathrm{A}]$ derived without change, or derived from $/ \mathrm{C} /$.
- Some familiar processes that are likely non-neutralizing:
$>$ Final Devoicing in German ${ }^{1}$
$>$ 3rd Tone Sandhi in Mandarin ${ }^{2}$
$>$ North American English Tapping ${ }^{3}$
$>$ The empirical literature can be accessed with a Google Scholar search on "incomplete neutralization phonology".
$>$ A nice theoretical approach, with MaxEnt phonetics, is in the work of Aaron Braver at Texas Tech. https://www.aaronbraver.com/
- Methodologically: it pays to measure, if you think you have a phonological neutralization.
- It's not clear that a near-neutralizing process in an opacity configuration is actually opaque.

3. Near-neutralization in children

- It is probably ubiquitous - diary studies mostly can't detect it.

[^0]- Smith, using just his ear, sometimes was able to spot it.

4. A classic experimental study of near-neutralization in children: Macken and Barton on VOT in children

Macken, Marlys and D. Barton (1980) A longitudinal study of the acquisition of the voicing contrast in American English word-initial stops, as measured by voice onset time. Journal of Child Language 7:41-74.

- Several kids played with a bunch of stop-initial toys in a recording booth, ${ }^{4}$ in various sessions, as they got older.
- General age range was $1 ; 5$ to $2 ; 4$.
- Researchers measured Voice Onset Time for all the word-initial stops.

5. Results

- Early on: vegetative values, including reflection of "more voicing in fronter places," which has an articulatory explanation (Keating and Westbury, J. Linguistics 1986).
- Gradually: the clouds of data for the categories voiced/voiceless part, leaving an ever more perceptible distinction.
- During the middle stages: difference is statistically significant, but transcribers can't hear it.

6. Example: Little Tessa gradually gets it right

AVOIDANCE IN CHILD PHONOLOGY
7. This happens, though less often, for adults

- Here is a possible case.
- The Null Parse candidate means, "shut up, say nothing". No constraints other than *Null Parse are violated.

[^1]| /happy + ly/ | ${ }^{*}[\mathrm{I}]+\mathrm{LY}$ | ${ }^{*} \mathrm{VC}_{\mathrm{x}} \mathrm{C}_{\mathrm{x}} \mathrm{V} \mathrm{V}$ | *NULL PARSE |
| :--- | :---: | :---: | :---: |
| ['hæpəli] | | | |
| Null Parse | | | $*!$ |
| ['hæpili] | *! | | |

vs.

/silly + ly/	$[\mathrm{I}]+\mathrm{LY}$	*VC $_{\mathrm{x}} \mathrm{VC}_{\mathrm{x}} \mathrm{V}$	*NULL PARSE
Null Parse			$*$
['siləli]		$*!$	
['sılili]	$*!$		

- Exceptions to $* \mathrm{VC}_{\mathrm{x}} \partial \mathrm{C}_{\mathrm{x}} \mathrm{V}$: canonization, classicist, diocesan, probable, indescribable; all are in derived forms. I don't know how to allow these but forbid *sillily.

8. A reference for NullParse

- There are other papers that take this on but my favorite is:
> McCarthy, John J., and Matthew Wolf. "Less than zero: Correspondence and the null output." Linguistics Department Faculty Publication Series (2007): 22.

9. Avoidance is probably more common for little kids

- To prove it you have to show that the kid knows a lot of words with the avoided sound or sequence; this has been done.

10. Jacob Hankamer's velar stops (Menn reading p. 18)

$\# \mathrm{k}$	\rightarrow	$\# \mathrm{k}$
$\# \mathrm{~g}$		don't try to say these words
$\mathrm{k} \mathrm{\#}$	\rightarrow	$\mathrm{k} \#$
$\mathrm{~g} \mathrm{\#}$	\rightarrow	k (or null)

- Faithfulness is characteristically very high in initial position (often though to be for psycholinguistic reasons; see Noah Elkins UCLA M.A. or Becker et al. 20215)
- Avoidance might be a way to avoid both markedness and faithfulness violations.

[^2]

/k\#/:

/g\# /:

LEARNING THE PARENTAL SYSTEM

11. (Some of) the data we are responsible for

- Infancy: head-turn preference and similar results
- Early childhood: Passive data still relevant, but we can also wait till Junior speaks clearly enough to inform us about her intuitions:
$>$ Wug-test, as in Berko (1958)
$>$ Just plain elicitation can be very informative! See Do (2018) for some nice methodology. ${ }^{6}$
> I'm not sure we can blick-test, but perhaps ...

12. Research methods

- Write grammars that make sense of the infants and little kids' intuitions and behavior.
- Collaborate with computationalists in trying to model the learning process itself.
$>$ This is going on here at UCLA; e.g. Hunter with Perkins, Sundara with Hayes and Ph.D. Breiss ${ }^{7}$

[^3]- It seems, learnability, especially early learnability, has been a really fruitful area for computational participation in linguistic research.
> Why so? The early stuff is amenable to simply tracking distributions, something computationalists are good at.

13. There are lots of tasks to be carried out by the child

- Presentational scheme here:
$>$ learning task
$>$ representative modeling work (just a sample; with a tendency to UCLA-bias)
- Figure out the phoneme inventory
> Kristine Yu dissertation
- Perhaps also the allophonic distribution.
$>$ Martin, Andrew, Sharon Peperkamp, and Emmanuel Dupoux. "Learning phonemes with a protolexicon." Cognitive science 37, no. 1 (2013): 103-124.
- Perhaps, figure out a language-specific feature system
> Mayer, Connor, and Robert Daland. "A method for projecting features from observed sets of phonological classes." Linguistic Inquiry 51, no. 4 (2020): 725-763.
- Divide utterances into words and form a "proto-lexicon" (words that may not have definitions)
> Goldwater, Sharon, Thomas L. Griffiths, and Mark Johnson. "A Bayesian framework for word segmentation: Exploring the effects of context." Cognition 112, no. 1 (2009): 21-54.
- Armed with a set of words, and perhaps meaning, find what affixes are present
> Goldsmith, John. "Linguistica: An automatic morphological analyzer." In Proceedings of 36th meeting of the Chicago Linguistic Society. 2000.
- Figure out the phonotactics (of words and other domains)
$>$ Hayes, Bruce, and Colin Wilson. "A maximum entropy model of phonotactics and phonotactic learning." Linguistic inquiry 39, no. 3 (2008): 379-440.
- Establish the UR's of morphemes (more than one, if allomorphs)
$>$ For a partial bibliography, see Yang Wang and Bruce Hayes (in progress, borrowable) "Learning underlying representations: An approach guided by the Kenstowicz-Kisseberth UR Hierarchy"
- Discover the constraints (Markedness, Faithfulness) that govern phonotactics and alternations (unless they are innate).
> see Yang and Hayes paper for bibliography
- Establish how these constraints are ranked or weighted.
$>$ Bruce Tesar and Paul Smolensky (2000 Learnability in Optimality Theory) - classical OT
$>$ Paul Boersma 1998 dissertation, published - Stochastic OT
> Goldwater, Sharon, Mark Johnson, Jennifer Spenader, Anders Eriksson, and Östen Dahl. "Learning OT constraint rankings using a maximum entropy model." In Proceedings of the Stockholm workshop on variation within Optimality Theory, vol. 111, p. 120. 2003.
- Often, the latter tasks will require further hidden structure: syllabification, feet, phrasing
$>$ Jarosz, Gaja. "Learning with hidden structure in optimality theory and harmonic grammar: Beyond robust interpretive parsing." Phonology 30, no. 1 (2013): 27-71. Also, secret 2015 ms ., borrowable from Bruce

14. The tension of stepwise vs. all-at-once: all at once works better

- Linguists love components and like to work one component at a time
- Goldwater $\left(2018^{8}\right)$: all at once is in principle, better: don't ignore data
- The normal term for this is joint learning
- A well-known paper is
$>$ Feldman, Naomi H., Thomas L. Griffiths, Sharon Goldwater, and James L. Morgan. "A role for the developing lexicon in phonetic category acquisition." Psychological review 120, no. 4 (2013): 751.
> Jointly learn the vocabulary and the phonemes

15. Another example of the virtue of joint learning: phonotactics and word learning

- Lots of results from Anne Cutler and other psycholinguists show word segmentation is aided by phonotactics.
$>$ E.g. English iambic words (balloon, believe) are rare.
$>$ Children tend to split them up in segmenting: the gui \mid tar is. ${ }^{9}$
$>$ Not so for other languages.
- Finnish kids can use "vowel harmony breaks"; Suomi, McQueen, \& Cutler, 1997^{10}
- So, it pays to simultaneously detect words in utterances, and detect phonotactics of words.

16. The trouble with all-at-once

- Modern learning systems typically define a search space and specify a criterion for best member of search space - this guides learning in a systematic way.
- Joint learning multiplies out the candidate hypotheses for each component, eventually making the search space too big to handle.

VARIATION IN PHONOLOGY

17. Classifying phonological variation

- Type variation: different lexical items differ according to how they undergo particular phonological or processes. E.g. serene [sə'si:n] undergoes Trisyllabic Shortening ${ }^{11}$ in [sə'.ıenəti], obese does not ([ou'biss], obesity [ou'bissəti])
- Token variation: the very same morpheme can be pronounced differently on different occasions by the very same speaker-often in response to speaking styles (talk [tuək, tok], Labov readings)

[^4]
TOKEN VARIATION

18. Who are the experts here?

- Sociolinguists
- Some references:
> Sociolinguistics, by Peter Trudgill, a short text
$>$ Sociolinguistic Patterns (source of your reading) and Language in the Inner City, early classics by William Labov. I find these very useful for getting oriented; though everything they say was subjet to later amendment.
$>$ Labov's magnum opus, Principles of Linguistic Change, in four volumes
- Sociolinguistics has evolved since the readings paper
$>$ Massive infusion of statistical modeling
$>$ Broader range of societal interests and focus on personal identity

19. Readings

- Covers some techniques used to gather forms in free variation
$>$ Note the extreme contradiction between the scientific goal of controlled study and the goal of accessing the vernacular forms
- Claims considerable systematicity for the patterns thus obtained.

20. The crucial variable phonological phenomena of New York City English

R Dropping

$"(r-0) "$	beard is [biəd], r-less;
"r-1"	beard is [bi.Id], r-ful

- Notes:
$>$ Labov thinks / $\mathrm{I} /$ is underlyingly present, learned from nondeleted tokens in the ambient language.
$>$ i.e. language learners can distinguish "always [so]" from "sometimes [so], sometimes [sox]" (saw/sore)
$>$ This would not not be true, I suspect, of people like Standard British speakers, who hear no variation in these forms during childhood.

/æ/ Diphthongization

"eh-1" bad [bİd]
"eh-4" bad [bæd]

/0/Diphthongization

"oh-1" coffee ['kűfi]
"oh-5" coffee ['kofi]

/ $\theta /$ and / $\mathbf{/} /$ Hardening

"th-3" thin [tin]
"dh-3" this [dis]
"th-2" [$\mathrm{t} \theta \mathrm{In}$]
"dh-2" [d didis]
"th-1" [$\theta \mathrm{m} \mathrm{m}]$
"dh-1" [ðıs]

Claim: these often vary in lockstep by speaking style. It's like there is a knob, controlling all of the grammar at once.

21. The informal meter of style

A free conversation with interviewer
B interview
C read paragraph
D read words from a list
22. Phonological free variation in the speech of Miriam

- Miriam is 35 years old, graduated Hunter College and St. John's law school, works as lawyer.

23. Variation in the speech of Doris

- Doris is 39, homemaker, African-American.
- She doesn't have perfect lockstep
- Labov thinks that for Doris, and others, r-dropping is more sensitive to style than other processes.

24. Free variation in society is structured as well

- Fig. 4.2 from William Labov (1972) Sociolinguistic Patterns

Fig. 4.2. Class stralification of a linguistic variable in process of change: (r) in guard, gar, best, beard, board, ntc. SEC (Socioeconomic class) scale: 0-1, lower class; 2-4, working class; 5-6, 7-8, lower middle class: 9 , upper raiddle cilass, A, casual speech: B. careful speech: C, reading style; D, word lists; D^{\prime}, minimal pairs.

- from 81 native speakers of New York City English
- Vertical axis: what percentage of underlying $/ \mathrm{x} /$ are retained in the output?
- An independent investigation sorted the speakers into their social classes.
- The "leaping up" of the lower-middle-class speakers in the formal styles is found in other studies, and is claimed to reflect a social insecurity independently diagnosed by other tests. ${ }^{12}$

25. More on knobs

- It is sensible, at least metaphorically, to see the linguistic system as a whole is attached to "knobs" - external factors that cause its output to vary.
- Here are some knobs:
$>$ style (casual-formal, per Labov reading)
$>$ speaking rate
$>$ frequency of words being said

26. The claim of true randomness

- Claim: even when we include the knobs, speakers are essentially stochastic devices we can predict the distribution of outputs in a large sample, but not the outcome in each speaking occasion.
- Here, we will start with just the stochastic-device idea, and later discuss the rather small amount of theoretical work that has been done with knobs.

27. A case of speakers acting as stochastic devices

- Hayes and Londe (Phonology 2009)
- Hungarian stems whose last vowels are [+back], then [e:] go both ways with harmony.
$>$ Mostly, stem-by-stem
$>$ A few individual stems are vacillators.
- We wug-tested [ha:de:l] and [kole:n]
> Options for dative: [ha:de:l-nっk, ha:de:l-n\&k], [kole:n-nっk, kole:n-nek]
- "In a series of chi-square tests, we found that consultants who gave [ha:de:l-nok] were no more likely to give [kole:nnok] than consultants who gave [ha:de:l-nek]. We obtained similar results for all other pairs where enough data were available for testing."

28. An informal observation

- Speakers who make such a random decision often feel that their choice was correct.
- [Try this yourself on past tense of spling]
- Psychologists might call this "self-priming".

[^5]
[^0]: ${ }^{1}$ Fourakis, Marios, and Gregory K. Iverson. "On the 'incomplete neutralization'of German final obstruents." Phonetica 41, no. 3 (1984): 140-149.
 ${ }^{2}$ Yuan, J. H., and Yiya Chen. "3rd tone sandhi in standard Chinese: A corpus approach." Journal of Chinese Linguistics 42, no. 1 (2014): 218-237.
 ${ }^{3}$ Braver, Aaron. "Incomplete neutralization in American English flapping: A production study." University of Pennsylvania Working Papers in Linguistics 17, no. 1 (2011): 5.

[^1]: 4 "If your family has a Piglet cuddly, please bring it."

[^2]: ${ }^{5}$ Becker, Michael, Andrew Nevins, and Jonathan Levine. "Asymmetries in generalizing alternations to and from initial syllables." Language (2012): 231-268.

[^3]: ${ }^{6}$ Young-Ah Do (2018) Paradigm uniformity bias in the learning of Korean verbal inflections, in Phonology.
 ${ }^{7}$ The latter case shows that the computationalists can be consumers, rather than inventors.

[^4]: ${ }^{8}$ Talk given at the inaugural meeting of the Society for Computation in Linguistics.
 ${ }^{9}$ Jusczyk, P. W., Houston, D. W., \& Newsome, M. (1999). The beginnings of word segmentation in English-learning infants. Cognitive Psychology 39, 159-207.
 ${ }^{10}$ Suomi, K., McQueen, J. M., \& Cutler, A. (1997). Vowel harmony and speech segmentation in Finnish. Journal of Memory and Language, 36, 422-444.
 ${ }^{11}$ For Americans this is $[\mathrm{ar}, \mathrm{eI}, \mathrm{i}, \mathrm{ou}] \rightarrow[\mathrm{I}, \mathfrak{x}, \varepsilon, \mathrm{a}]$ when a non-final atonic syllable follows. Many alternations triggered by suffixes, e.g. -ical, -ity.

[^5]: ${ }^{12}$ For example: series of questions: "how do you say this word? ... how should this word be said?", total cases of difference.

