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Abstract

Recent advances in computational modeling have led to significant discov-
eries about the representation and acquisition of phonological knowledge
and the limits on language learning and variation. These discoveries are the
result of applying computational learning models to increasingly rich and
complex natural language data while making increasingly realistic assump-
tions about the learning task. This article reviews the recent developments in
computational modeling that have made connections between fully explicit
theories of learning, naturally occurring corpus data, and the richness of
psycholinguistic and typological data possible. These advances fall into two
broad research areas: (a) the development of models capable of learning the
quantitative, noisy, and inconsistent patterns that are characteristic of nat-
uralistic data and (b) the development of models with the capacity to learn
hidden phonological structure from unlabeled data. After reviewing these
advances, the article summarizes some of the most significant consequent
discoveries.
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Hidden structure:
any abstract
representation that
underlies linguistic
knowledge but is not
directly observable in
the learning data, such
as metrical footing,
underlying
representations, and
exceptionality
diacritics

1. INTRODUCTION

Recent advances in computational modeling of language learning have had a transformative im-
pact on the field of phonology. These developments have made it possible to test and compare
formally precise theories of learning and linguistic endowment while making increasingly real-
istic assumptions about the nature of the learning data and the learning task. Modeling has led
to discoveries about how language knowledge is represented, how it is acquired, and the limits
that exist on learning and variation. These discoveries would not have been possible without the
formalization of the connection between natural language input and linguistic behavior that recent
computational models of learning provide. This link has yielded new methods for testing theoreti-
cal assumptions by comparing the predictions of computational models with measurable linguistic
behavior in psycholinguistic experiments, typological evidence, and empirical observations about
language change and loanword adaptation.

One concrete shift in the field is methodological: Computational modeling has become an
essential tool of modern phonological research. It complements the rise of experimental research
on phonological knowledge and learning and the increase in available linguistic databases, both of
which provide a rich and complex empirical base for developing and evaluating learning models and
phonological theories. The mutually informing link between computational modeling and these
growing empirical resources arose from modeling developments that can be broadly classified into
two areas of research.

First, the development of learning models that can deal with the quantitative, variable, and
inconsistent patterns that are characteristic of naturalistic data has made it possible to apply and
test learning models on data representative of the linguistic experience of human language learners.
While simulations with toy data that abstract from the irregularities of natural language are often
an essential step in the development of new computational models, more realistic assumptions
about the nature of the linguistic input permit greater confidence that resulting conclusions are
applicable to human language learning. This is especially true when making claims about the
sufficiency or insufficiency of the language input to support learning of some linguistic property
or generalization—these questions can only be answered by examining the distribution and nature
of the evidence in naturally occurring data. Likewise, only through detailed comparison of the
quantitative patterns in natural language data and the generalizations that learners infer on the
basis of those data can systematic biases can be fully understood. Section 2 reviews the most
significant recent developments that have made it possible to model learning of phonology from
naturalistic corpus data, arguing that these capabilities require the use of frequency-sensitive
learning approaches such as those inherent to statistical learning models.

The second area of research in computational modeling involves the learning of hidden linguis-
tic structure, representations that learners must infer but that cannot be directly observed in the
learning data. Depending on theoretical assumptions, hidden structure in phonology may include
metrical feet; underlying representations (URs); syllables; moraic structure; autosegmental associ-
ations; derivational ordering; word and other prosodic boundaries; and even the constraints, rules,
and features themselves if they are not innately specified to the learner. Since children learn lan-
guage without direct access to hidden representations, the capacity to learn these representations
is essential to making realistic assumptions about the learning task. How these representations are
inferred and how their learning interacts can only be understood via the development of explicit
learning models capable of learning from incomplete and massively ambiguous data. Section 3
reviews significant discoveries in this area, arguing that statistical methods and other frequency-
sensitive approaches have also been crucial to progress on hidden structure learning.

Finally, Section 4 reviews discoveries that have resulted from the application of frequency-
sensitive models to psycholinguistic and typological questions. A recurring theme in many of
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Ambiguity: when the
learning data are,
either locally or
globally, compatible
with a range of distinct
analyses that the
learner must navigate
and choose between

Free variation: when
a word or morpheme
can be realized in
multiple ways in the
same environment; the
choice of variants may
be statistically
conditioned by
systematic
phonological factors,
but the variation is not
entirely predictable

Gradient
phonotactics:
knowledge of legal and
likely sound
combinations that
make up words in a
language

Lexical classes: a
partition of the lexicon
into disjoint sets, each
associated with a
distinct constellation
of phonological
properties and/or
processes

Patterned
exceptionality:
when systematic
phonological factors
statistically condition
phonological variation
in the aggregate across
the lexicon but
individual words
exhibit fixed behavior

these studies is the fundamental question of nature versus nurture. What is the precise balance of
experience sensitivity and innate predisposition that accounts for human learners’ generalization
from limited exposure to ambiguous, incomplete, and inconsistent natural language input? In what
ways do learners systematically diverge from their language experience, and can these learning
biases account for observed restrictions in language typology and language change? Evaluating
models on their abilities to account for human learning and generalization is essential to answering
these questions, providing a strict litmus test that has already revealed subtle complexities and
strong constraints on the language acquisition device.

2. LEARNING QUANTITATIVE GENERALIZATIONS

Perhaps the most interesting and challenging aspect of modeling language acquisition is under-
standing how learners generalize from data that are inconsistent and incomplete. This section
discusses the challenge posed by inconsistency, while Section 3 focuses on incompleteness, but
these are two sides of the same coin: ambiguity. Ambiguity means that there are multiple inter-
pretations or multiple analytic decisions that the learner could make to account for the same data.
Understanding how learners disambiguate between the wealth of possible analyses of the same
inconsistent, incomplete data gets at the very essence of language learning. To explain the choices
learners make, it is necessary to make fully explicit how learners balance various considerations
against one another and how they integrate various sources of information. Modeling acquisi-
tion from ambiguous data also provides the best opportunity to observe and formalize pressures
that may bias learners’ decisions toward phonetically natural, typologically common, and more
systematic generalizations.

Inconsistencies in natural language data take many forms. The child learning their first lan-
guage is not told which data tokens are errors that should be ignored, or which examples are
exceptions to the general patterns they must infer. Language acquisition is robust enough to de-
tect general patterns in the face of a few exceptions. Language acquisition must also be flexible
enough to detect and differentiate these occasional divergences from the systematic variability
that arises when the realizations of individual words or morphemes vary probabilistically and un-
predictably in the same phonological environment. Speakers’ knowledge of such free variation
includes not only the categorical restrictions on the observed variability but also how the rate of
variation depends on various phonological factors (for reviews, see Anttila 2007, Coetzee & Pater
2011). In the domain of gradient phonotactics, speakers show sensitivity to generalizations of
varying degrees of productivity, and this sensitivity reflects quantitative properties of the language
data, such as the probability of sound co-occurrences and the (under)attestation of certain sound
combinations (Bailey & Hahn 2001, Coleman & Pierrehumbert 1997, Frisch et al. 2000, Hayes &
Wilson 2008). Another type of inconsistency often found in natural language phonologies arises
when lexical classes partition the lexicon into strata, each associated with distinct constellations
of phonological processes and properties (Inkelas et al. 1997, Itô & Mester 1999). Finally, in
patterned exceptionality, speakers have knowledge of language-wide quantitative trends while si-
multaneously encoding the fixed behavior of particular morphemes or morpheme combinations
(Becker et al. 2011, Ernestus & Baayen 2003, Gouskova & Becker 2013, Hayes & Londe 2006,
Zuraw 2000). In all of these cases, the learner is faced with patterns in which phonologically similar
words or morphemes behave inconsistently in the same phonological environments.

The following subsections address these various forms of inconsistency, reviewing the ap-
proaches that have been developed to cope with them.1 Addressing these inconsistencies requires

1Inconsistency can also arise through phonetic (Boersma 2011, Pierrehumbert 2001) and phonological (Legendre et al. 2006,
Smolensky & Goldrick 2016) gradience.
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sensitivity to quantitative properties of the data; therefore, much of this section focuses on ways
in which computational models make use of quantitative information.

2.1. Preliminaries

Many of the models that have been developed to cope with quantitative phonological generaliza-
tions rely on probabilistic extensions of Optimality Theory (OT; Prince & Smolensky 2004) or
Harmonic Grammar (HG; Legendre et al. 1990, Smolensky & Legendre 2006). Stochastic OT
(Boersma 1997, Boersma & Hayes 2001), Noisy HG (Boersma & Pater 2016), and Maximum
Entropy HG (MaxEnt; Goldwater & Johnson 2003, Jäger 2007, Johnson 2002, Wilson 2006)
are three common probabilistic extensions of these frameworks (see also Jarosz 2015). Each of
these frameworks encodes a stochastic grammar that assigns conditional probabilities to surface
realizations of a given UR. This section illustrates these approaches using the MaxEnt model as
an example (for in-depth comparisons, see Hayes 2017, Smith & Pater 2017).

Probabilistic constraint grammars formalize phonological mappings in terms of interactions of
violable constraints, their language-specific prioritization, and the optimization that determines
which among a set of candidate pronunciations is selected as the surface realization of a given UR.
In MaxEnt (and HG), constraints are numerically weighted, and these weights are multiplied by the
constraint violations incurred by each candidate and then summed to determine each candidate’s
overall harmony:

H(x, y) =
∑
c∈C

wcvc (x, y) .

The harmony H(x, y) of an input–output pair (x, y) is the summation over all constraints c ∈ C of
the product of the weight of each constraint wc and the number of violations vc(x, y) assigned to
(x, y) by that constraint. Violations vc(x, y) are usually expressed as negative integers and weights
wc as nonnegative real values so that overall harmony is a negative real number, with values closer
to zero being more harmonic.

Table 1 illustrates harmony calculations in MaxEnt using an example of free variation, English
t/d-deletion, based on Coetzee & Pater (2011). This table shows three tableaux that compare faith-
ful and deleted realizations of stem-final, postconsonantal [t] in three environments: (a) prepausal,
(b) preconsonantal, and (c) prevocalic. There is one constraint that penalizes postconsonantal [t]
(∗CT), one general MAX constraint, and two contextual variants of MAX, one specific to the pre-
vocalic context (MAX-P-V) and one to the phrase-final context (MAX-FIN). The table shows the
harmony calculations assuming weights of <4, 1, 2, 3> for the constraints <∗CT, MAX-P-V, MAX-
FIN, MAX>, respectively. Each violation has a numeric value of −1. In tableau a, MAX-FIN (2)

Table 1 Example of English variable t/d-deletiona

∗CT MAX-P-V MAX-FIN MAX

Input Output w1 = 4 w2 = 1 w3 = 2 w4 = 3 HARMONY PROBABILITY

a /Ct/ [Ct] –1 (–1)∗w1 = –4 ∼= 73.1%

[C_] –1 –1 (–1)∗w3+(–1)∗w4 = –5 ∼= 26.9%

b /CtC/ [CtC] –1 (–1)∗w1 = –4 ∼= 26.9%

[C_C] –1 (–1)∗w4 = –3 ∼= 73.1%

c /CtV/ [CtV] –1 (–1)∗w1 = –4 = 50.0%

[C_V] –1 –1 (–1)∗w2+(–1)∗w4 = –4 = 50.0%

aTable based on Coetzee & Pater (2011).
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Online learning
algorithm: an
algorithm that
incrementally
processes learning
data, making updates
on a word-by-word
basis

Batch learning
algorithm: an
algorithm that
processes the learning
data en masse, making
updates after
consulting the entire
data set

Error-driven
learning: a learning
strategy that assumes
updates to learners’
hypotheses occur
when their current
hypothesis fails to
generate a match with
the observed data

and MAX (3) together assign a harmony of −5 to the deletion candidate (/Ct/, [C_]), whereas the
faithful candidate (/Ct/, [Ct]) violates only ∗CT, receiving a harmony of −4. Thus, in the prepausal
context, the faithful candidate has higher harmony and is preferred according to these weights. In
the second competition representing the preconsonantal context (tableau b), the deletion candi-
date (/CtC/, [C_C]) violates only the general MAX (3), making it more harmonic than the faithful
candidate (/CtC/, [CtC]). In tableau c, representing the prevocalic context, the two candidates tie.

In MaxEnt, harmony is used to define the conditional probability P (y |x) of an output y given
an input x:

P (y |x) = exp
(∑

c∈C wcvc (x, y)
)

Z
.

The probability is proportional to the exponential of the harmony, and the constant Z is a nor-
malizing term to ensure the conditional probabilities sum to 1 for each input. Specifically, Z is the
sum of the exponentiated harmonies for all output candidates y ∈ Y (x) for a given input x:

Z =
∑

y∈Y (x)

exp

(∑
c∈C

wcvc (x, y)

)
.

The last column of Table 1 shows the MaxEnt probabilities for each tableau. In tableau a,
the faithful candidate has probability [exp(−4)]/[exp(−4) + exp(−5)] ∼= 73.1%, whereas the dele-
tion candidate has probability [exp(−5)]/[exp(−4) + exp(−5)] ∼= 26.9%. With these weights, the
probabilities of the faithful candidates in tableaux b and c are roughly 26.9% and 50%, respectively.

Coetzee & Pater (2011) show how different weightings of these constraints can account for
empirically observed, phonologically conditioned rates of t/d-deletion across a wide range of
English dialects. MaxEnt, Stochastic OT, and Noisy HG are all able to achieve a close fit with the
observed rates. Beyond t/d-deletion, there are many other successful examples of modeling free
variation in the literature using these frameworks (see, e.g., Boersma & Hayes 2001, Coetzee &
Pater 2008, Goldwater & Johnson 2003).

2.2. Learning Free Variation

Numerous successful algorithms have been developed for learning categorical OT rankings and
HG weightings from full structural descriptions (Boersma & Pater 2016, Goldwater & Johnson
2003, Jäger 2007, Magri 2012, Soderstrom et al. 2006, Tesar 1995). Learning from full structural
descriptions means that the learner is provided with access to all representations referenced by
constraints, including hidden representations. How models have been extended to move beyond
this simplifying assumption is the focus of the next section.

Given full structural descriptions, a number of algorithms exist for both OT and HG which
are guaranteed to find a categorical target grammar for any set of input–output pairs, as long as
such a target grammar exists. Both online learning algorithms, which process learning data one
by one, and batch learning algorithms, which compute updates after consulting all the data, have
been developed. The online error-driven constraint demotion (EDCD) algorithm (Tesar 1995)
has been particularly influential and forms the basis of a number of the frequency-sensitive models
discussed below. “Error-driven” (Gibson & Wexler 1994, Rosenblatt 1958, Wexler & Culicover
1980) means that updates to the grammar are triggered when the learner’s own predicted output
fails to match the observed output in the learning data.

Learning free variation presents a greater challenge since the learner must account not only for
categorical properties of the data but also for quantitative patterns. Variable patterns introduce
inconsistency, which means there is no categorical ranking or weighting that can account for all the
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Likelihood
maximization: an
objective function for
fitting parameters of
generative statistical
models that prefers
hypotheses that assign
maximal probability to
the observed data,
favoring hypotheses
that tightly fit the
observed distributions

data. Instead, the learning task involves identifying a stochastic weighting or ranking that captures
the rates of occurrence of observed phonological variants on the basis of input–output pairs, their
relative frequencies, and the constraint violations of all candidates for each input. Sensitivity to
frequency is inherent to the learning task: Only learning models with sensitivity to quantitative
properties can capture the numerical tendencies in the data.

Online algorithms for learning free variation include the error-driven Gradual Learning Al-
gorithm for Stochastic OT (OT-GLA; Boersma 1997, Boersma & Hayes 2001) and the closely
related version for Noisy HG (HG-GLA; Boersma & Pater 2016). Grammar updates work simi-
larly in both algorithms. Suppose the learning data includes the faithful input–output pair (/Ct/,
[Ct]) from Table 1, and the learner incorrectly selects the deleting (/Ct/, [C_]) as the winning
candidate—an error. The learner compares the constraint violations of the observed candidate
(/Ct/, [Ct]) with the violations of the error (/Ct/, [C_]), slightly demoting constraints that fa-
vor the error (∗CT) and slightly promoting constraints that favor the observed form (MAX and
MAX-FIN). Under the assumption that the current weights are <4, 1, 2, 3> and the learning rate
(how much weights are adjusted on each update) is 0.1, the updated weights will be <3.9, 1, 2.1,
3.1>, increasing the probability of the faithful candidate to approximately 78.6% (from 73.1%).
In general, each update results in a small adjustment to the probability distribution defined by
the stochastic grammar, making the observed candidate slightly more likely than the error (for
technical details, see Boersma & Pater 2016, Jarosz 2016a).

When there is free variation, the same input occurs with multiple different outputs in the
learning data. For example, the word cost in English might sometimes be realized as [kAs] and
sometimes as [kAst] in the same environment. This creates inconsistency, but the GLA is oblivious
to this, updating the grammar slightly on the basis of each observation independently. Each time
the learner observes (/kAst/, [kAst]), it must predict [kAst] as the output, and [kAs] will be treated
as an error, whereas each time the learner observes (/kAst/, [kAs]), the opposite is true. The right
outcome in each case is unpredictable, so the learner will continue to make small updates in
opposite directions throughout learning, but these updates will be made in proportion to the rate
at which these variants occur in the data. Updates favoring the more frequent variant will be made
more often, and the learned grammar will therefore generate the frequent variant more often.
The model’s sensitivity to input frequency is essential for learning free variation and matching
the relative rates of occurrence in the data. When exposed to systematic free variation, the GLA
yields variable final grammars which generally match the empirical rates of variation quite well.
The GLA often works well in practice; however, it is not guaranteed to find a grammar compatible
with the data in all cases, even for categorical patterns (Pater 2008).

MaxEnt models have been widely utilized in psycholinguistics and sociolinguistics, as well
as outside linguistics in a variety of machine learning and natural language processing contexts.
Indeed, MaxEnt is simply another name for multinomial logistic regression, which is one of the
most broadly applied and widely understood statistical models in all of the social sciences. There are
numerous well-understood optimization algorithms for finding weights that optimize fit with the
data (Berger et al. 1996, Della Pietra et al. 1997, Goldwater & Johnson 2003, Hayes & Wilson 2008,
Jäger 2007, Johnson 2002, Wilson 2006). For example, standard algorithms exist for performing
(stochastic) gradient descent (SGD) for these models, and they are guaranteed to find the weights
that best fit the observed distribution. Online learning for MaxEnt is a specific application of SGD,
and Jäger (2007) shows that SGD updates for MaxEnt look exactly like the HG-GLA updates.
Data fit in MaxEnt modeling is usually defined in terms of likelihood maximization: Likelihood
is maximized when the learned grammar matches observed frequencies in the data as well as
possible. In MaxEnt models it is also straightforward to include priors, or regularization terms, in
the objective function to keep weights low and prevent overfitting (Goldwater & Johnson 2003) or
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to encode other biases on weightings of constraints (Pater et al. 2012, Wilson 2006). This capacity
plays an important role in modeling the learning biases discussed in Section 4.

For the GLA, frequency sensitivity is inherent to the mechanics of learning, while for MaxEnt,
frequency sensitivity is part of the learner’s objective function. In both cases, the statistical nature
of the model is essential for learning and representing free variation.

2.3. Gradient Phonotactics

The MaxEnt, Stochastic OT, and Noisy HG frameworks can also be used for modeling graded
acceptability and phonotactics (Boersma & Hayes 2001, Coetzee & Pater 2008, Hayes & Wilson
2008).2 The most common approach follows Hayes & Wilson (2008) in using only markedness
constraints to define a probability distribution over the entire space of possible word forms in
the language. Rather than defining probabilistic mappings (conditional distributions over out-
puts for each input), phonotactic grammars simply define a single distribution over all possible
output forms. Each possible word form has an associated probability relative to other possible
word forms, and this probability is determined by the weights of the markedness constraints that
each form violates. In one application, Hayes and Wilson used a MaxEnt model to represent
graded acceptability of English onset clusters. Highly weighted constraints, such as ∗N, penal-
ized onsets heavily, reducing their probability to near zero, while weaker constraints, such as
∗[+cont,−strid] (no interdental fricatives), reduced the probability slightly. The frequency sen-
sitivity of the model is what allows it to represent weak penalties for observed yet statistically
underrepresented patterns.

The predicted probabilities of various forms can be numerically transformed and correlated
with acceptability scales or other behavioral measures. The Phonotactic Learner (Hayes & Wilson
2008) has been especially broadly applied in recent years and has performed well in predicting
experimentally elicited phonotactic scales, numerical ratings based on human well-formedness
judgments of nonce words (see, e.g., Albright 2009, Daland et al. 2011). For example, Hayes
and Wilson showed that their MaxEnt grammar for English onsets, whose weights were fitted
based on the type frequency of actual English onsets, correlates strongly with human ratings of
nonce words. These applications are discussed further in Section 4. In addition to dealing with
inconsistency, the Phonotactic Learner takes on a hidden structure learning problem, learning
constraints, which is discussed further in Section 3.

2.4. Classes, Exceptions, and Lexicalized Variation

Learning of classes, exceptions, and lexicalized variation presents both inconsistency and hidden
structure challenges: Phonologically similar morphemes behave differently in the same environ-
ments, and the learner must infer the hidden classification underlying this inconsistency. If the
learner is faced with even a few exceptions to a general pattern, they must infer which examples
should be treated as exceptions and which can be treated as part of the general pattern. Similarly,
if the learning data have lexical strata with distinct phonological properties, the learner must infer
which examples fall into each stratum while learning the grammars corresponding to these strata
and how they differ from one another.

Due to the difficulty of this learning task, most approaches are rather recent. The earliest
research on learning lexical exceptionality in a constraint-based framework (Becker 2009, Coetzee

2For other approaches to modeling gradient phonotactics, see Albright (2009), Bailey & Hahn (2001), Coleman &
Pierrehumbert (1997), Frisch et al. (2000), and Vitevitch & Luce (2004).
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Winner–loser pairs:
in constraint-based
learning, a pair of
candidates, one of
which is the observed
form (winner) and the
other a competitor
(loser), together with
their constraint
violations;
error-driven learning
can be used to identify
informative losers for
each winner

Subset problem: the
challenge of learning a
restrictive grammar
that captures
systematic
prohibitions and
regularities in the
language without
overgeneralizing on
unseen data

2009, Pater 2010) builds on the categorical constraint learning algorithm Recursive Constraint
Demotion (RCD) and its ability to detect inconsistency (Tesar & Smolensky 1998). RCD keeps
track of winner–loser pairs, efficiently finds a ranking that favors all winners over losers, if one
exists, and efficiently detects inconsistency otherwise. When there are exceptions in the data,
there will be inconsistency. Pater (2010) proposes an extension of this algorithm that constructs
lexically specific constraints for the data forms that triggered the inconsistency. These lexically
specific constraints are indexed to the deviant morphemes and can be ranked separately from their
general versions to resolve the inconsistency.

While the RCD-based exceptionality approach can deal with one kind of inconsistency (excep-
tions), it cannot cope with learning data that have exceptions and other kinds of inconsistency or
ambiguity, such as variability or hidden structure. Various approaches to learning exceptions or
classes in the face of variability have recently been developed by extending frequency-sensitive ap-
proaches such as those discussed in the previous two subsections (Nazarov 2016, 2018; Pater et al.
2012; Shih 2018). Although the details vary, all of these approaches crucially rely on the ability
to model general statistical trends in the learning data while allowing individual lexical items the
ability to counter the broader language-wide grammatical pressures. Related modeling research
focuses on the gradient productivity of morphophonological transformations using rules (Albright
& Hayes 2003) and constraints (Allen & Becker 2015, Becker & Gouskova 2016, Moore-Cantwell
& Staubs 2014).

A related empirical and theoretical problem of particular interest in recent modeling research
is that of gradient, or patterned, exceptionality. This type of exceptionality provides a particularly
powerful empirical argument for quantitative models of phonological knowledge because existing
psycholinguistic findings indicate that language learners extract statistical generalizations about
phonological alternations even when alternations are lexicalized. Numerous experimental studies
across multiple languages have shown that modeling speakers’ generalization abilities requires
the capacity to predict the fixed behavior of particular lexical items while simultaneously making
gradient predictions for novel forms (Becker et al. 2011, Ernestus & Baayen 2003, Gouskova &
Becker 2013, Hayes & Londe 2006, Zuraw 2000). For example, Zuraw (2000) shows that, across
the lexicon in Tagalog, the rate of nasal substitution is statistically conditioned by phonological
factors—voicing and place—and that native speakers reproduce these statistical trends for nonce
words even though most prefix–stem combinations exhibit fixed behavior. Approaches to this
problem model the lawful, phonologically conditioned statistical patterns in the lexicon using
the GLA or MaxEnt model while incorporating constraints that allow individual lexical items’
memorized pronunciations to be utilized when available (Moore-Cantwell & Pater 2016, Smith
2015, Zuraw 2000).

Lexicalized variation presents a version of the notoriously difficult subset problem (Berwick
1985). Since the target grammar requires lexicalization, and lexicalization perfectly accounts for
the learning data, what prevents the learner from simply memorizing the exceptions and fail-
ing to learn anything general about the language-wide phonological patterns and restrictions?
Put differently, what ensures that the learner will acquire a grammar that generalizes appro-
priately beyond the learning data? Several recent studies have shown that statistical models
such as MaxEnt and the GLA for Stochastic OT generally learn language-wide patterns more
quickly than they do lexically specific patterns (Moore-Cantwell & Pater 2016, Pater et al. 2012,
Zuraw 2000). This capacity is, again, dependent on these models’ sensitivity to frequency: All the
learning data support language-wide patterns, while support for lexically specific patterns occurs
rarely, only when a particular lexical item is observed. In one case study, Moore-Cantwell & Pater
(2016) showed that a MaxEnt model learned default stress patterns more robustly when excep-
tions were rarer in the data. In general, statistically sensitive models naturally favor learning of
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language-wide preferences more quickly or more robustly and idiosyncratic properties of lexical
items more slowly or less robustly because statistical learning is sensitive to the quantity of data
supporting each generalization.

3. LEARNING HIDDEN PHONOLOGICAL STRUCTURE

Learning of hidden phonological structure pushes the bounds of current learnability capabilities.
In the presence of hidden structure, no known approach is guaranteed to succeed at efficiently
learning every (arbitrary) phonological system. To deal with the massive ambiguity created by hid-
den structure, models place restrictions on the kinds of phonological patterns that can be learned
in principle or learned reliably well. For frequency-sensitive models, it also means that quanti-
tative properties of the data can dramatically influence learning outcomes. In either case, certain
patterns or phenomena are predicted to be more difficult (or impossible) to learn. Modeling thus
raises difficult and important questions about the kinds of patterns and representations learning
models must account for and the kinds of biases that are needed. What are the limits on learn-
ability, and to what extent are observable typological generalizations derivable from these limits?
Modeling hidden structure learning also affords a unique opportunity to investigate the richness
and universality of phonological representations. Which aspects of phonological representations
must be innate, and which can be acquired? How abstract and structured is phonological knowl-
edge? Which theoretical frameworks and assumptions lead to better learning outcomes or better
fits to behavioral observations? Answering these questions requires a tight connection between
computational modeling and the empirical sources of evidence for learning outcomes and learning
biases: typology, psycholinguistic studies, and sound change.

This section does not attempt a comprehensive review of the rich and ever-growing literature
on hidden structure learning in phonology (for recent overviews, see Jarosz 2013, 2015, 2016a;
Tesar 2013). Rather, after highlighting some of the unique challenges posed by hidden structure
and the developments that led to the existing range of solutions, the section outlines some of
the major learnability results and discusses novel insights into long-standing debates that recent
modeling research has begun to produce.

3.1. Hidden Structure Challenges

Ambiguity is particularly challenging for hidden structure learning: The space of possible analyses
the learner must be capable of navigating is too large to search exhaustively. Even when the space
is finite, such as with metrical footing, it grows exponentially, or worse, with the number of words,
features, or constraints (Prince 2010). In the case of learning abstract URs, rules, or constraints, the
space is potentially infinite, even for categorical languages. To take a simple example, in a language
that deletes final consonants, there is no bound in principle on the number of final consonants
that may be posited underlyingly. Likewise, there is no bound in principle on the maximal length
of phonotactic constraints (see Hayes & Wilson 2008) or on the length of phonological contexts
of rules (see Albright & Hayes 2003). Therefore, the learner must somehow constrain their search
through this vast space of possibilities while finding ways to explain generalizations that can only
be discovered with reference to patterns across many lexical items.

One kind of ambiguity that arises in hidden structure learning is the credit (or blame) problem
(Dresher 1999), which has a “chicken-and-egg” character. When the learner’s current hypothesis
makes an erroneous prediction, hidden structure prevents the learner from directly observing the
source of the error. For example, when simultaneously learning phonological mappings and URs,
an error could be the result of an incorrect lexical representation or an incorrect phonological
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Bias–variance
trade-off: the balance
between tightly fitting
observed data (low
bias) and generalizing
appropriately to
unseen data (low
variance)

mapping, and the learner must somehow determine which should be blamed. Similarly, since
metrical footing cannot be directly observed, when an error occurs, it is not clear which constraints,
parameters, or rules are to blame. For example, when the learner observes a trisyllabic word with
stress on the medial syllable, such as [tE"lEfOn], it is not clear whether this form supports left-aligned
iambs [(tE"lE)fOn] or right-aligned trochees [tE("lEfOn)]. If the learner knew the target footing, they
could determine the constraint violations of the observed form and the required update to the
grammar using one of the algorithms discussed in Section 2.1. Conversely, if they knew the target
grammar, they could make inferences about the footing of this form. Since learners have prior
knowledge of neither, they must overcome this chicken-and-egg ambiguity if they are to make
any progress with hidden structure learning.

Another source of ambiguity in hidden structure learning is the relative breadth or narrowness
of inferred generalizations. The subset problem discussed above for exceptionality arises when
learning URs or any other lexically specific properties.3 A related issue arises when learning rules
or constraints: How broad or narrow should constraints or rules be? The learner must general-
ize from the incomplete data sample representing the target language’s patterns. The observed
data (and, indeed, entire language lexicons) do not contain every combination of segments, fea-
tures, and contexts to which a rule or constraint is potentially relevant (for related discussion, see
Wilson & Gallagher 2018). On what basis does the learner generalize, and how broadly? Relat-
edly, when does the learner have enough evidence to abstract a general rule or constraint rather
than treating a pattern as accidental? Modeling human learning requires just the right balance
between restrictively fitting the observed data—with its noise and accidental gaps—and general-
izing appropriately to “similar” unseen data. This is sometimes called the bias–variance trade-off.
Defining precisely what “similar” means in phonological learning—and how features, represen-
tations, and substantive and quantitative factors influence this process—is an important area of
ongoing research.

3.2. Approaches and Progress

A common theme unifies many of the results summarized in this section: Much of the progress
on hidden structure learning in phonology can be traced to a productive integration of linguis-
tic theory with machine learning approaches and statistical methods used throughout the social
sciences. Numerous models discussed in this section build on well-studied techniques such as
likelihood maximization for incomplete data (Dempster et al. 1977), minimum description length
(Solomonoff 1964), and information theory and maximum entropy modeling (Berger et al. 1996).
These successes are a testament to the possibilities that actively integrative computational mod-
eling research can yield.

The previous section argued that frequency-sensitive learning models are necessary for mod-
eling human learning of quantitative patterns such as variability, gradient well-formedness, and
exceptionality. Frequency-sensitive learning approaches can also provide a way to “break into”
the chicken-and-egg ambiguity that hidden structure creates. Modeling research on various lin-
guistic interfaces has shown that learning of quantitative preferences, even if those preferences
are based on incomplete or noisy data, can guide subsequent learning. For example, learning of
phonotactic distributions can facilitate learning of phonological rules (Calamaro & Jarosz 2015, Le
Calvez et al. 2007, Peperkamp et al. 2006) and word boundaries (Blanchard et al. 2010, Daland &

3There is a sizable literature on strategies that favor restrictive phonological grammars (Alderete & Tesar 2002; Hayes 2004;
Jarosz 2006, 2009; Jesney & Tessier 2011; Prince & Tesar 2004; Tesar & Prince 2007; Tessier 2009).
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Pierrehumbert 2011, Jarosz & Johnson 2013, Johnson 2008a) from noisy corpus data. Learning of
lexical entries (Feldman et al. 2009) and phonemes (Dillon et al. 2013) can help with the learning
of phonetic categories, and simultaneous learning of word co-occurrences and word boundaries
can be mutually informing (Goldwater et al. 2009, Johnson 2008b). Quantitative modeling also
enables general and principled solutions to the subset problem, making it possible to formalize
mathematically how learners balance conflicting considerations such as the simultaneous pressures
to tightly fit ambiguous and gappy observed data and to extract broad and simple generalizations
(Dillon et al. 2013, Hayes & Wilson 2008, Jarosz 2006, Rasin & Katzir 2016, Wilson & Gallagher
2018).

3.3. Overview of Modeling Results

This subsection reviews developments on a variety of hidden structure learning problems in
phonology, emphasizing the contributions of cross-disciplinary research to progress in these areas
and highlighting the insights that the resulting models have revealed.

3.3.1. Prosodic structure. One of the best-studied hidden structure learning problems in
phonology is that of metrical structure. While metrical structure has attracted particular attention,
many of the approaches discussed below could be applied equally well to other types of abstract
representations, such as syllables or autosegments.

Modeling learning of metrical parameter settings in the Principles and Parameters framework
(Chomsky 1981) provides a concrete example of how computational modeling can contribute to
debates regarding fundamental questions about innate linguistic knowledge. To address the over-
whelming ambiguity created by metrical footing, pioneering research (Dresher 1999, Dresher
& Kaye 1990) developed an approach called cue-based learning. In the cue-based learning ap-
proach, each parameter is innately associated with a “cue”—a pattern in the data that prompts
the learner to set that parameter to a certain value. For example, upon observing that stress
occasionally falls on the rightmost syllable, the learner may determine that (right) extrametri-
cality is set to “off ” in the target language. Dresher and Kaye hypothesized that, in addition
to innate cues, successful learning requires that parameters have default settings and an inher-
ent ordering. More recently, Pearl (2011) applied a statistical learning model proposed for syn-
tactic parameters (Yang 2002) to the learning of metrical structure, which made it possible to
learn parameter settings from noisy data. In support of innate language-learning processes, Pearl
found that the statistical learning algorithm needed to be supplemented with cues and param-
eter ordering. However, building on statistical machine learning approaches (see Jarosz 2015),
Nazarov & Jarosz (2017) recently found that the more nuanced statistical inference capabilities of
their proposed learning model, the Expectation Driven Parameter Learner, allowed it to succeed
at learning a wide range of metrical parameter systems without the need for cues, default set-
tings, or inherent ordering, thereby weakening the arguments for innate domain-specific learning
processes.

Prosodic structure was also the first hidden structure domain addressed in OT. Tesar &
Smolensky (1998, 2000) proposed a parsing strategy called Robust Interpretive Parsing (RIP)
that allows the learner to make an educated guess about the prosodic structure of the learning
data. RIP adapts a standard statistical machine learning approach called Expectation Maximiza-
tion (EM) to the categorical OT setting (Dempster et al. 1977). The basic intuition behind RIP
(and EM) is that the learner can use their own current grammar to choose among competing
interpretations, or parses, of the overt forms in the data. This allows the learner to circumvent the
chicken-and-egg problem discussed above: They use their current grammar to guess the hidden
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structure in the learning data, and then they use that hidden structure to calculate the update to
their grammar. Returning to the example of structurally ambiguous [tE"lEfOn], RIP works by limit-
ing the candidate set to metrical parses of the observed form (e.g., [(tE"lE)fOn] and [tE("lEfOn)]) and
selecting whichever parse is optimal according to the current ranking. The candidate correspond-
ing to that fully structured form is then compared with the learner’s own production, which is the
optimal candidate among all possible stress assignments for /tElEfOn/ under the current grammar.
If there is a mismatch, the constraint ranking is updated as usual on the basis of the constraint
violations of both candidates.

The parsing strategy proposed by Tesar & Smolensky (1998, 2000) was later extended to the
stochastic setting, where it has been used to explore learning biases and compare the learning con-
sequences of weighted versus ranked constraints (Apoussidou 2007, Apoussidou & Boersma 2003,
Boersma 2003, Boersma & Pater 2016, Breteler 2018, Jarosz 2013). Boersma (2003) extended
this approach to the OT-GLA, while Boersma & Pater (2016) extended it to the HG-GLA and
presented simulations comparing the performance of RIP as applied to categorical OT, OT-
GLA, and HG-GLA. They found that the statistical models and especially those with weighted
constraints performed best, suggesting a potential learnability advantage of HG over OT. Jarosz
(2013) subsequently showed that the original formulation of RIP for the GLA selects parses of
overt data in a way that is incompatible with the learner’s production grammar, leading to in-
ternal inconsistencies and inefficiencies during learning. Jarosz (2013) proposed two alternative
parsing strategies that incorporated insights from statistical machine learning to enhance the
learner’s utilization of their probabilistic knowledge during parsing. The essential insight behind
the alternative parsing strategies, Resampling Robust Interpretive Parsing (RRIP) and Expected
Interpretive Parsing (EIP), again comes from EM: Parses of overt forms should be sampled in
proportion to their probability according to the production grammar. Jarosz showed these strate-
gies substantially outperformed RIP for both OT and HG. Of greater theoretical interest is the
associated finding that the improvements affected OT more than HG, leveling the performance
of the OT and HG learning models and thus revealing that the OT disadvantage discovered by
Boersma & Pater (2016) was due to properties specific to RIP rather than OT per se. In follow-up
research, Jarosz (2015) drew further inspiration from EM and proposed a novel learning approach
for probabilistic OT, whose performance on learning metrical structure slightly surpasses the best
parsing strategies and extends to other kinds of hidden structure, such as lexical representations
and derivations (discussed in the next subsection).

In summary, insights from statistical machine learning have been crucial to several key advances
in the learning of hidden prosodic structure. Not only have these advances improved the perfor-
mance and robustness of phonological learning models, they have also been integral to debates
about the contents of the language acquisition device more generally.

3.3.2. Lexical representations. Much of the earliest research on learning URs focused on lexical
accent. Even when learning is restricted to learning underlying features of observed segments—
that is, when insertion and deletion mappings are not considered—the space of possible URs
is exponentially large. To be computationally feasible, models must either restrict the feature
values or forms considered by the learner to a limited set observed on the surface (Hayes 2004,
Pater et al. 2012, Tesar 2006) or find computational strategies for efficiently searching through a
larger space of abstract URs ( Jarosz 2015, Merchant 2008, Tesar 2013). Various representational
approaches have been developed for modeling lexical properties. Some assume the traditional
UR that the grammar uses as the input to the phonological mapping (Akers 2012, Dresher 2016,
Jarosz 2015, Merchant 2008, Tesar 2013), while others rely on lexical (or UR) constraints that
interact with grammatical constraints in parallel (Apoussidou 2007, Pater et al. 2012). With the
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latter approach, the models developed for learning of structural ambiguity (e.g., RIP, RRIP, EIP)
can also be applied to the learning of lexical representations.4

The computational pressure is intensified when alternations involving insertion and deletion
are considered (Alderete & Tesar 2002; Cotterell et al. 2015; Jarosz 2006, 2009; Merchant 2008;
O’Hara 2017; Pater et al. 2012; Rasin & Katzir 2016). As discussed above, learning of deletion
mappings opens the door to a potentially infinite space of abstract URs. To model this aspect
of phonological learning, assumptions about the range of lexical options available to the learner
must be made explicit. Research on learning of such alternations thus necessarily makes claims
about the abstractness or concreteness of lexical representations and the restrictions on possi-
ble types of alternations, reviving classic debates on abstractness in the phonological literature
(Kisseberth & Kenstowicz 1977). Currently, these limits are not well understood; however, mod-
eling research is beginning to provide new arguments for both abstract (O’Hara 2017) and concrete
lexical representations (Allen & Becker 2015). For instance, O’Hara (2017) shows that a MaxEnt
learner equipped with the capacity to consider a range of abstract URs nevertheless inherently
favors less-abstract lexical entries, deriving principles of economy proposed in the phonological
literature. There is great potential to make explicit the trade-offs between more abstract lexical
representations and the ability to (efficiently) learn attested kinds of alternations by applying,
extending, and testing the current range of learning models.

3.3.3. Derivations and intermediate representations. Learning of serial derivations—
phonological mappings that allow intermediate representations between input and output—is
probably the least well understood learning problem in phonology. Most of the progress on this
task has occurred in the last several years, building on machine learning techniques and solutions
developed for other hidden structure problems.

Prior to OT, there was limited research on learning of rules and rule ordering, and even learning
of individual rules (let alone a system of ordered rules) given pairs of underlying and surface forms
continues to be a challenging problem. Johnson (1984) proposed a procedure for learning of URs
and ordered rules from paradigmatic information, but this procedure makes strong simplifying
assumptions about the types of rules and interactions allowed—for example, insertion and deletion
are not considered. Gildea & Jurafsky (1996) showed that learning a single simple rule from
naturalistic data, English flapping, presents numerous challenges. Learning is unsuccessful even
though the algorithm makes strong restrictions on possible mappings (they must be subsequential;
Mohri 1997) and is guaranteed to learn the target mapping in the limit (Oncina et al. 1993). Gildea
and Jurafsky showed that the problem arises due to lack of sufficient restrictions on generalization.
As discussed above, naturalistic data do not provide every combination of features or segments
that instantiate a rule or pattern. Without biases favoring more natural5 phonological rules, the
algorithm fails to generalize appropriately to unseen data. More recent studies on subregular
formalizations of phonology have investigated even tighter formal restrictions on permissible
mappings (Chandlee et al. 2014, Chandlee & Heinz 2018). However, these learning procedures
still assume that the learner observes input–output pairs and all combinations of segments that
instantiate the pattern.

Frequency-sensitive approaches have also been developed recently. Rasin et al. (2015) pursue
an approach using principles of minimum description length (Solomonoff 1964) to learn both URs

4See Jarosz (2015) for a discussion of why RIP cannot be applied to learning of traditional URs.
5Gildea & Jurafsky (1996) proposed three biases that improved learning outcomes: faithfulness, community, and context. See
Calamaro & Jarosz (2015) and Peperkamp et al. (2006) for related research on biases needed for learning rules from noisy
corpus data.
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and ordered rules. Staubs & Pater (2016) and Jarosz (2016b) propose novel approaches for learn-
ing serial derivations in Harmonic Serialism (HS; McCarthy 2000, Prince & Smolensky 2004),
while Nazarov & Pater (2017) model learning of derivations in a MaxEnt version of the Stratal
OT framework (Bermúdez-Otero 1999, Kiparsky 2000). These approaches have the potential to
address long-standing conjectures about the naturalness of process interactions (Kiparsky 1968,
1971). Indeed, initial simulation results are starting to provide evidence that learnability may be
able to capture Kiparsky’s hypothesized biases under certain conditions ( Jarosz 2016b, Nazarov &
Pater 2017). Both the HS ( Jarosz 2016b) and Stratal MaxEnt (Nazarov & Pater 2017) models pre-
dict easier learning of certain transparent process interactions over opaque interactions (Kiparsky
1971), and under certain conditions, the HS model ( Jarosz 2016b) also predicts easier learning of
feeding and counterbleeding interactions over bleeding and counterfeeding interactions (Kiparsky
1968). Psycholinguistic results have provided initial support for these biases as well, suggesting
that human learning of artificial languages in the lab may indeed be sensitive to similar pressures
(Prickett 2018a).

These findings suggest important questions that require further empirical investigation, such
as the relative rates and availability of phonological contexts in which processes interact and
occur independently. A complete understanding of how learning biases may influence diachronic
rule reordering and rule loss will require substantial further computational, experimental, and
typological work. Investigating how learning of URs affects these pressures is a concrete area for
future research.

3.3.4. Constraints. A decade ago, Hayes & Wilson (2008) introduced a MaxEnt model and
an associated software package for learning of phonological constraints from natural language
data that has had a transformative impact on the field. Previously, most constraint-based learning
models made the traditional OT assumption that constraints are innate and therefore provided
to the learner at the outset. Hayes and Wilson demonstrated, however, that many phonological
generalizations can be successfully induced from naturalistic data by constructing constraints that
account for underattested patterns. Crucially, they also showed that successful learning required
reference to abstract phonological representations: features, natural classes, and autosegmental
tiers. This work inspired a substantial body of follow-up research, discussed in the next section,
investigating computationally and experimentally what biases are required to account for human
learning and generalization.

To formalize underattestation and learn restrictive phonotactic grammars, Hayes and Wilson
found an efficient solution to a difficult computational problem. To calculate weight updates in
MaxEnt models, the learner must compare the number of observed violations of each constraint
in the learning data with the expected number of violations of that constraint given the current
grammar and weights. Calculation of the observed violations is straightforward: It involves sum-
ming the violations of each constraint in the observed data. However, the expected violations
require estimating the number of violations that result from applying the current constraints to
a base of all possible phonological forms—an infinite set, in principle. Concretely, to calculate
weight updates and learn constraints for unattested patterns, the learner must have access to losing
candidates, that is, unattested patterns. Only by noticing that a constraint such as ∗#N correctly
rules out unattested forms that would otherwise be predicted can the learner induce this constraint
and weight it highly. Hayes and Wilson’s solution is to represent the set of possible forms and
their associated constraint violation vectors in a finite-state machine. To simplify computation,
they restrict attention to the finite set of all possible forms no longer than those in the learning
data. Given the finite-state representation, it is possible to efficiently sum the violations of each
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Wug test: a task used
to test productivity of
morphophonological
knowledge by asking
speakers to produce (or
rate) a morphological
derivative of a nonce
word

constraint over all the forms in the machine (Eisner 2002)—exactly what is needed to estimate
expected violations.

Comparing expected and observed distributions also provides a way to quantify the robustness
of a phonological generalization to determine whether a pattern supports a general constraint or
represents an accidental gap (Wilson & Gallagher 2018). As discussed above, accidental gaps are
characteristic of natural language input and must be distinguished from robust restrictions. It is
only through sensitivity to quantitative patterns that learners can make such crucial distinctions
given gappy and noisy learning data.

4. MODELING HUMAN LEARNING, GENERALIZATION,
AND TYPOLOGY

So far, this article has argued that sensitivity to quantitative patterns in natural language data is
essential for modeling variation, gradience, and exceptionality and for addressing learning chal-
lenges posed by hidden structure. This final section reviews some of the most significant findings
on human learning and generalization that such models have revealed. Natural language contains
statistical information, and learners are sensitive to this information—only by modeling learners’
sensitivity to this information can we draw firm conclusions about what learners can and cannot
infer from data. Frequency-sensitive models have shown that learners can successfully extract
more from their language input than many imagined was possible. One example, discussed above,
is Hayes & Wilson’s (2008) MaxEnt model for inducing constraints and their weights from unla-
beled data. Another is Nazarov & Jarosz’s (2017) Expectation Driven Parameter Learner, which
learns stress parameter settings without language-specific learning mechanisms. At the same time,
the integration of modeling and behavioral research has provided concrete evidence of biases and
restrictions on human learning and generalization that could help explain much about typology,
language change and language development.

4.1. Modeling First Language Acquisition

The learning models discussed above have been applied to a range of behavioral tasks, each of which
provides unique insights into the learning biases that shape first language acquisition. One way
to study learning biases is to compare the predictions of models exposed to natural language data
representative of learners’ first language input to adults’ behavior on linguistic tasks in their native
language. To approximate learners’ language input, models are typically provided with large data
sets of phonetically or phonemically transcribed words or paradigms in the target language. By
comparing predictions of models making different theoretical or representational assumptions,
one can make inferences about the likely contents of the human language acquisition device.
Wug tests (Berko 1958) are used to study speakers’ productive knowledge of morphophonological
alternations in their language and can be compared with models that generate predictions about
alternations. Another way to probe speakers’ knowledge is by comparing acceptability judgments
on phonotactic patterns or alternations with models’ numerical predictions about the relative
goodness of various patterns. In both cases, models are tasked with predicting speakers’ end-state
knowledge of their native language phonologies, which makes it possible to directly investigate
biases that affect the outcomes of first language acquisition.

This approach has produced a sizable literature leading to discoveries about a wide range
of learning biases needed to successfully model phonological acquisition. Initial research using
quantitative models demonstrated the success of stochastic grammars capable of extracting abstract
generalizations from the lexicon (Albright & Hayes 2003, Boersma & Hayes 2001, Coleman
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Substantive bias:
a type of inductive, or
analytic, bias that
favors the learning of
patterns with
perceptual or
articulatory
motivations

Analytic bias:
a cognitive
predisposition, or
inductive bias, that
makes learners more
receptive to some
patterns than others

Channel bias:
phonetically
systematic errors in
language transmission
between speaker and
hearer

& Pierrehumbert 1997). For example, Albright & Hayes (2003) showed that abstract rules better
capture learning of morphophonological alternations than do analogical models that directly
compute overall similarity with the lexicon. A subsequent series of studies demonstrated that
sensitivity to abstract phonological representations, such as features, natural classes, syllables, and
tiers, is needed to capture behavioral results (Albright 2009, Coetzee & Pater 2008, Daland et al.
2011, Hayes 2011, Hayes & Wilson 2008). For example, Daland et al. (2011) showed that several
models can predict English speakers’ acceptability ratings on nonce words with initial consonant
clusters varying in their sonority profiles. Crucially, only models with the capacity to represent
aspects of syllable structure and featural similarity can successfully predict speakers’ gradient
preferences for consonant clusters with higher sonority rises (Clements 1990, Selkirk 1982).

Perhaps the most broadly investigated question in recent modeling research concerns the role
of phonetic naturalness and substantive bias (Becker et al. 2011; Berent et al. 2007; Davidson
2006; Hayes & Londe 2006; Hayes & White 2013; Hayes et al. 2009; Jarosz & Rysling 2017;
O’Hara 2018; Prickett 2018b,c). It has long been observed that phonetic naturalness plays a role
in shaping typology, yet the exact nature of this pressure continues to be a matter of debate.
Are effects of naturalness encoded as hard grammatical universals in Universal Grammar (UG;
Prince & Smolensky 2004) or as soft analytic biases in the language acquisition device (Hayes
1999, Moreton 2008, Wilson 2006), or do they affect language change indirectly via channel
bias (Blevins 2004, Ohala 1993)? Although more research is needed, the emerging view that
recent modeling work supports is that phonetic substance likely affects how easily or robustly
patterns are learned, but it does not place categorical limits on learnability. For example, Jarosz
& Rysling (2017) found that modeling Polish adults’ phonotactic judgments on initial clusters
with varying sonority profiles supported a combined role of frequency sensitivity and sensitivity
to a soft substantive universal favoring larger sonority rises. While this may seem like an obvious
conclusion, it conflicts with a prevailing view in the field that there are categorical, substantive
constraints on possible, and therefore learnable, languages. One promising way to formalize soft
inductive biases is via priors in MaxEnt, which can be used to incorporate phonetic difficulty
(as formalized in, e.g., Steriade 2008), making it harder to learn high weights for phonetically
unmotivated constraints (White 2017, Wilson 2006). However, much work remains to be done in
formalizing exactly how substantive factors influence learning and understanding whether these
kinds of pressures could give rise to universal generalizations observed crosslinguistically.

In summary, modeling of first language acquisition has provided evidence for the role of abstract
phonological representations and soft substantive biases.6

4.2. Modeling Artificial Language Learning

Another approach that has been used to investigate learning biases is artificial language learning
(ALL). In ALL, participants are presented with miniature languages in the lab and tested on
their learning and generalization of those patterns. ALL differs from the first language acquisition
process in numerous ways; however, it allows for precise control of the linguistic input that makes
it possible to investigate the learning of patterns that cannot be easily found or manipulated in
natural languages. In the ALL context, evidence for substantive bias (Finley & Badecker 2009,
White 2017, Wilson 2006) has been rather weak and mixed (for a review, see Moreton & Pater
2012a). Since evidence from first language acquisition has demonstrated sensitivity to phonetic

6Modeling of the first language acquisition process in children has also supported a role for representational and substantive
learning pressures (Boersma & Levelt 2000; Hayes 2004; Jarosz 2006, 2010, 2017; Jarosz et al. 2017; Jesney & Tessier 2011;
Prince & Tesar 2004).
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Iterated learning:
a type of agent-based
model that simulates
vertical transmission of
language across
generations by
modeling
“parent–child”
interactions in which
one agent (the
“parent”) provides
input from a target
language to the other
agent (the “child”),
who eventually
becomes the parent in
the next generation

Cumulativity:
a type of constraint
interaction possible in
weighted grammars
wherein violations on
lower-weighted
constraints combine to
overpower the
preferences of
higher-weighted
constraints

Interactive learning:
a type of agent-based
model that simulates
interactions between
speakers within a
generation to
understand how
communicative
pressures may cause
languages to drift over
time

naturalness, this discrepancy is likely due to the differences between first language acquisition
and ALL. One substantial difference is that first language learners must discover the phonetic
categories of their first language and cope with perceptual and articulatory difficulties in acquiring
them and the phonological system, whereas participants in ALL studies have already learned the
categories and their relationships in their first language.

Nonetheless, ALL studies have yielded consistent evidence of another important learning bias:
complexity. In general, patterns that require fewer features to express are easier for participants to
learn (for a recent review, see Moreton & Pater 2012b). Moreton & Pater (2012a) show that it is
important to keep the effect of complexity in mind when examining other learning pressures since
complexity and naturalness are often correlated (see also Prickett 2018c). Formalizing simplicity
and comparing its effects in linguistic and nonlinguistic domains have also been investigated
(Moreton et al. 2015).

4.3. Modeling Diachrony and Typology

A growing body of research is using quantitative models of phonological learning to investigate
soft learning biases that could be responsible for crosslinguistic tendencies and universals.7 A stan-
dard assumption in OT is that the universal set of constraints should define the space of possible
languages via factorial typology. Under this view, systematic gaps in the typology must be cate-
gorically ruled out by UG. This perspective precludes the possibility of modeling crosslinguistic
tendencies rather than strict universals and overlooks pressures aside from UG that may be in-
volved in shaping the observed typology, such as domain-general learning biases. As discussed
above, models of phonological learning make predictions about the relative ease of learning of
various patterns: Some patterns are learned more quickly or require fewer data than others, and
when there is hidden structure, current models predict that some patterns should not be learned
at all, at least not under all conditions.

Examining the correspondence between models’ learning difficulties and typology has revealed
a number of possible ways that learning might shape typology. Learning biases favoring certain
process interactions over others are discussed in Section 3.3.3. Several recent studies have inves-
tigated how biases inherent to statistical learning may in part shape the typology of stress and
tone systems (Breteler 2018, Stanton 2016, Staubs 2014). For example, Stanton (2016) shows that
learning pressures provide a possible explanation for the absence of a stress pattern known as the
midpoint pathology. The evidence necessary to distinguish this pattern from competing analyses
of the same data occurs rarely in distributions representative of natural languages. Using the it-
erated learning paradigm (Kirby et al. 2004), Hughto (2018) shows, by simulating generations of
child–parent learning interactions, that MaxEnt learning models can, over time, introduce biases
into the typology that favor phonological systems which minimize free variation and cumulativity.
Using interactive learning, Pater (2012) shows that preferences for systemic simplicity—wherein
a language expresses a general preference across multiple contexts, such as uniform headedness
across multiple categories—naturally emerge in MaxEnt learning models. Thus, modeling studies
are beginning to provide evidence that learners’ sensitivity to the distributional information in
the language input may help explain some crosslinguistic tendencies. These results have broad
implications for linguistic theory because they show that biases inherent to statistical learning can
systematically skew the typological predictions derived from theoretical assumptions.

7Research on formal language characterizations of phonological patterns and processes provides a complementary perspective
on typological restrictions (for an overview, see Heinz 2018). So far, there has been little work integrating formal language
constraints on typology with the kind of quantitative modeling and abstract phonological representations that this article has
argued are essential to modeling human learning in the face of noise and ambiguity (but see Lamont 2018, Yu 2017).
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5. CONCLUSIONS

This article has reviewed learnability results that have made it possible to apply computa-
tional learning models to variable, ambiguous, and incomplete language data, arguing that
probabilistic modeling has played an indispensable role in recent progress on these challenges.
The most direct arguments for probabilistic models come from consistent behavioral findings
demonstrating speakers’ sensitivity to statistical phonological properties—such as rates of varia-
tion, gradient phonotactics, and statistically conditioned phonological alternations discussed in
Section 2—together with the success of statistical models in capturing these linguistic capacities.
The article has also argued, however, that successful modeling of biases shaping human gener-
alization and learning of hidden phonological structure—such as exceptions, prosodic structure,
URs and constraints—from noisy, gappy data requires quantitative models that can formalize
how learners balance conflicting considerations, such as tightly fitting observed restrictions and
extracting broad and natural generalizations. By modeling human learning of quantitative gen-
eralizations, the solutions to these challenges have in turn led to significant empirical discoveries
about the role of phonological representations, substantive biases, and other inductive biases in
shaping phonological learning and typology. As reviewed in Section 4, recent findings have shown
that statistical learning of phonology is sensitive to abstract phonological representations—such
as features, natural classes, and syllables—and to inductive biases, such as those favoring simpler,
more phonetically natural, and more systematic patterns. The connections between psycholin-
guistic data, quantitative models, and typology are also starting to provide deeper insights into
how learning biases may influence sound change and typology.

These exciting discoveries notwithstanding, there is still much work to be done to continue to
make more realistic assumptions about the learning task, to formalize the interaction of powerful
statistical learning and soft inductive biases, and to understand the relationship between learning
and other factors that shape typology. Advances in hidden structure learning and in the learning
of quantitative generalizations have largely proceeded independently, yet the key ingredients for
integrating these approaches and modeling the learning of deeper phonological structure from
natural language data are now available. This integration will undoubtedly lead to further empir-
ical breakthroughs in our understanding of the representations and computations that underlie
phonological knowledge and learning.

SUMMARY POINTS

1. Recent developments in computational phonology have made it possible to model
learning from ambiguous, inconsistent, and incomplete data characteristic of natural
languages.

2. Learning of quantitative generalizations in the face of noise, variability, and exceptions
is an area of substantial recent progress.

3. Another area of significant recent progress is learning in the face of hidden structure and
ambiguity.

4. Models that are sensitive to quantitative properties of language data, such as probabilistic
models, have been indispensable to progress in both areas by providing principled ways
to formalize trade-offs between conflicting pressures and to navigate ambiguity.

5. These models have made it possible to create formal links between explicit theories of
learning and a rich and complex empirical base, including findings from psycholinguistics,
typology, and diachrony.
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6. These links have in turn led to significant empirical discoveries about the representations
and computations that underlie phonological knowledge and learning.

DISCLOSURE STATEMENT

The author is not aware of any affiliations, memberships, funding, or financial holdings that might
be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

For valuable comments I am grateful to Dan Jurafsky, Aleksei Nazarov, Joe Pater, Kristine Yu,
and members of the University of Massachusetts, Amherst, Sound Workshop.

LITERATURE CITED

Akers C. 2012. Commitment-based learning of hidden linguistic structures. PhD thesis, Rutgers Univ., New
Brunswick, NJ

Albright A. 2009. Feature-based generalisation as a source of gradient acceptability. Phonology 26:9–41
Albright A, Hayes B. 2003. Rules versus analogy in English past tenses: a computational/experimental study.

Cognition 90:119–61
Alderete J, Tesar B. 2002. Learning covert phonological interaction: an analysis of the problem posed by the interaction

of stress and epenthesis. RuCCS tech. rep. TR-72, Rutgers Univ., New Brunswick, NJ
Allen B, Becker M. 2015. Learning alternations from surface forms with sublexical phonology. Unpubl. ms., Univ.

B. C., Vancouver, Can./Stony Brook Univ., Stony Brook, NY. http://ling.auf.net/lingbuzz/002503
Anttila A. 2007. Variation and optionality. In The Cambridge Handbook of Phonology, ed. P de Lacy, pp. 519–36.

Cambridge, UK: Cambridge Univ. Press
Apoussidou D. 2007. The Learnability of Metrical Phonology. Utrecht, Neth.: LOT
Apoussidou D, Boersma P. 2003. The learnability of Latin stress. In Proceedings from the Institute of Phonetic

Sciences 25, pp. 101–48. Amsterdam: Univ. Amsterdam
Bailey TM, Hahn U. 2001. Determinants of wordlikeness: phonotactics or lexical neighborhoods? J. Mem.

Lang. 44:568–91
Becker M. 2009. Phonological trends in the lexicon: the role of constraints. PhD thesis, Univ. Mass., Amherst
Becker M, Gouskova M. 2016. Source-oriented generalizations as grammar inference in Russian vowel dele-

tion. Linguist. Inq. 47:391–425
Becker M, Nevins A, Ketrez N. 2011. The surfeit of the stimulus: Analytic biases filter lexical statistics in

Turkish laryngeal alternations. Language 87:84–125
Berent I, Steriade D, Lennertz T, Vaknin V. 2007. What we know about what we have never heard: evidence

from perceptual illusions. Cognition 104:591–630
Berger AL, Della Pietra VJ, Della Pietra SA. 1996. A maximum entropy approach to natural language pro-

cessing. Comput. Linguist. 22:39–71
Berko J. 1958. The child’s learning of English morphology. Word 14:150–77
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