


1 Language Learning

1.1 What This Book Is About

This book argues that the linguistic framework of Optimality Theory (OT)
(Prince and Smolensky 1993) makes possible a particularly strong union
of the interests of language learnability and linguistic theory. In support of
this claim, a particular approach to language learning, Robust Interpretive
Parsing / Constraint Demotion (RIP/CD), is presented and evaluated.This
learning proposal is tightly bound to the central principles of OT, and the
success of the learning proposal is evidence in favor of the main claim.

The language learning issue of primary concern in this book is the
ambiguity of the overt information that constitutes the actual data
received by a learner, and the resulting interdependence of the core
grammar and the structural analysis of overt linguistic forms: which
grammar a learner chooses depends on how they interpret the forms
they hear, and which analysis they choose for a form depends on what
grammar they are using. The RIP/CD proposal claims that this interde
pendence can be finessed by successive iteration: the learner can use a
first guess at a grammar to estimate the structural analysis of the data,
use the estimated analyses to improve the grammar, use the improved
grammar to improve the analyses, and so forth. The learning procedure
learns both the correct interpretations of the data and the correct
grammar simultaneously. The viability of this "back-and-forth" strategy
is heavily dependent on the use of OT to characterize the knowledge of
language that the learner comes to possess.

The RIP/CD learning proposal is evaluated by a series of computer
experiments, applying the proposal to overt data from a number of lan
guages generated by an OT system for metrical stress. This system
exhibits a nontrivial degree of ambiguity in the overt forms: most overt
forms have several viable structural interpretations, with different inter
pretations favored by different grammars of the system. The perfor
mance is evaluated both on accuracy-whether or not the correct
grammar was in fact learned-and computational efficiency-the
amount of effort exerted during the process of learning the correct
grammar.

The empirical results just mentioned are supported by stronger formal
results concerning major parts of the proposal. It is not necessary to
conduct any simulations to attempt to measure the amount of informa
tion required by the learner to determine the correct grammar, because
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of a strong upper bound on the amount of data required. This result,
which applies to all language systems defined within OT, is proved
correct in chapter 7. This result is an important part of the proposal made
here, [or it demonstrates that the adoption of OT guarantees a strong
solution to one of the major issues in language learning.

Chapter 1 is devoted to laying out the larger context of this work,
including the nature of relationships between learnability and universal
grammar, and the background work on general learning theory that has
informed and inspired the specific language learning proposal made
here. Readers who would prefer to skip the background on the first
reading are advised to jump to section 1.4, which presents a top-level
outline of the proposals made in this book, along with pointers to the
location of each topic within the book.

1.2 Learnability and Universal Grammar

It has become commonplace in generative linguistics circles to see the
logical problem of language acquisition as a driving force in shaping
grammatical theory (Chomsky 1981). The basic logic is essentially as
follows. Learning a grammar is difficult because there are so many con
ceivable grammars and the available data is so impoverished. Thus a
crucial job of a theory of universal grammar is to restrict the space of
possible grammars the learner must consider, so that impoverished data
may suffice to determine a correct grammar. This notion of restrictive
ness is often reduced to the criterion that a satisfactory grammatical
theory will delimit a finite set of possible grammars-distinguished from
one another by the values of a finite number of parameters, for example.
The fewer the possible grammars, the more learnable the theory.

Or so it would seem. In fact, however, limiting the set of possible gram
mars to a finite number serves only to improve the worst-case perfor
mance of the least informed learning method of all: exhaustive search, in
which every possible hypothesis is examined. For, with finitely many pos
sible grammars, search for a correct one is guaranteed to terminate even
tually: at worst, once all possible grammars have been examined. With
infinitely many possible grammars, such search may continue forever.

But comfort from the finiteness of the space of possible grammars is
tenuous indeed. For a grammatical theory with an infinite number of pos-

sible grammars might be well structured, permitting informed search that
converges quickly to the correct grammar-even though uninformed,
exhaustive search is infeasible. And it is of little value that exhaustive
search is guaranteed to terminate eventually when the space of possible
grammars is finite, if the number of grammars is astronomical. In fact, a
well-structured theory admitting an infinity of grammars could well be
feasibly learnable/ while a poorly structured theory admitting a finite,
but very large, number of possible grammars might not.

And indeed, a principles-and-parameters (P&P) universal grammar
(UG) with n parameters admits at least 2/1 grammars; more, if the para
meters are not binary. Such exponential growth in the number of para
meters quickly leads to spaces much too large to search exhaustively. An
OT UG with N constraints admits N! grammars, which grows still faster.

Thus to achieve meaningful assurance of learnability from our gram
matical theory, we must seek evidence that the theory provides the space
of possible grammars with the kind of structure that learning can effec
tively exploit.

Consider P&P theory in this regard. Two types of learnability research
are useful as contrasts to the results we offer in this book. The first is
cue learning, exemplified by work such as Dresher and Kaye 1990. These
authors adopt a particular parameterized space of grammars, and analyze
in great detail the relationships between the parameter settings and the
forms overtly available to the learner. They propose a specific learning
algorithm to make use of the structure provided by a specific P&P theory.
Their analysis is entirely limited to their particular parametric system for
metrical stress; a cue learning approach to a parametric grammar for
some other component of linguistic theory, or even to an alternative para
metric analysis of metrical stress, would essentially require starting over
from scratch.

Another approach to learnability within P&P, quite different from cue
learning, is represented in the work of Gibson and Wexler (1994) and
Niyogi and Berwick (1996). The triggering learning algorithm (and its
variations) is designed to learn grammars from data overtly available to
the learner. Like those developed in our work, these algorithms apply to
any instance of a very general class of systems: in their case, the class of
P&P systems. Further, Niyogi and Berwick (1996) provide formal analy
sis of the algorithms. However, this work differs from ours in a direction
representing the opposite extreme from cue learning: these learning
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algorithms are minimally informed by the grammatical theory. For trig
gering learning algorithms treat the grammar only as a black box
evaluating learning data as either grammatically analyzable or not;
the algorithms either randomly flip grammar parameters in order to
render an input analyzable (Gibson and Wexler's Triggering Learning
Algorithm), or randomly flip parameters without regard to immediate
resulting analyzability (which, Niyogi and Berwick argue, can actually
outperform the Triggering Learning Algorithm). These learning algo
rithms are equally appropriate as procedures for learning parameterized
grammars and as procedures for, say, training a neural network2 (with
binary weights) to classify radar images of submarines: if flipping a para
meter (connection in the network) gives better classification of a sub
marine, flip it. These are simply generic search algorithms that employ
no properties of the grammatical theory per se.

Further, the learnability results relating to triggering learning algo
rithms assume the existence of overt data that directly reveal individual
parameter values. Such an assumption limits how impoverished the
learning data can be and has unclear relevance to realistic grammars (see
Frank and Kapur 1996); we discuss this further in section 6.1. Finally,
regardless of the availability of such "triggering" forms, these algorithms
offer little justification for confidence in their tractability. In fact, the only
result regarding the time required for learning is that the probability of
learning the correct grammar increases toward 1 as the number of learn
ing instances approaches infinitl-leaving open the possibility of doing
even worse than exhaustive search.

In sum, these two approaches to learnability analysis within P&P
either (1) use grammatical structure in the learning algorithm, but the
structure of a particular parametric system, or (2) develop general algo
rithms applicable to any P&P system, but algorithms so general they
apply just as well to any nongrammatical parameterized system. This
dichotomy of approaches is likely a consequence of the nature of P&P.
A particular P&P system, like one for stress, has sufficient structure to
inform a learning procedure (option 1). But as a general theory of
how grammars may differ (as opposed to how stress systems may differ),
P&P provides little structure for a learner to exploit beyond the exis
tence of a finite space for searching. In particular, P&P theory per se
provides no characteristically grammatical structure for a language
learner to exploit.

But the situation in aT is quite different. This theory is reviewed in
chapter 2, but the immediately relevant claims of aT are these:

(1.1) aT in a nutshell

· What is it that all languages have in common? A set of constraints on
well-formedness.
· How may languages differ? Only in which constraints have priority in
case of conflict.
· Language-particular relative constraint priorities are characterized
by a rank.ing of the universal well-fonnedness constraints into a
dominance hierarchy, with each constraint having absolute priority
over all lower-ranked constraints.
· The grammar of a particular language-its constraint hierarchy-is
an evaluator of structural descriptions, assigning a (nonnumerical)
Harmony value that assesses the degree to which the constraints are
met, taking into account the language-particular priorities. This
provides the harmonic ordering of forms, ordering structural
descriptions from maximal to minimal Harmony.
· The grammatical forms of the language are the optimal ones: the
well-formed structural description of an input is the one with maximal
Harmony.

Note that the constraints mentioned in (1.1) are the same in all lan
guages: they contain no parameters. Unlike P&P, this is a theory of
crosslinguistic variation with sufficient structure to enable grammatically
informed learning algorithms independent of substantive grammatical
assumptions.

(1.2) Main' claim of this book: aT is a theory of UG that provides
sufficient structure at the level of the grammatical framework itself to
allow general but grammatically informed learning algorithms to be
formally defined. Further, the efficiency of the algorithms can be
argued to follow in large part from the formal structure of the
grammatical framework.

The algorithms we develop are procedures for learning the priority
ranking of constraints that, by (1.1), is all that distinguishes the grammar
of a particular language. These are unquestionably grammar learning
algorithms, not generic search algorithms.4 Yet the structure that makes



1.3 Decomposing the Learning Problem

1.3.1 Grammar Learning and Robust Interpretive Parsing,
To begin our analysis of grammar learning, we must distinguish the fol
lowing three types of linguistic structure:
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these algorithms possible is not the structure of a theory of stress, nor a
theory of phonology: it is the structure defining any OT grammar, that
given in (1.1).

Of course, if a grammatically uninformed learning algorithm, such as
the Triggering Learning Algorithm, is desired, it can be obtained as easily
in OT as in P&P; in fact, Pulleyblank and Turkel (1995, 1998) have already
formulated and studied the Constraint-Ranking Triggering Learning
Algorithm. Indeed, we can apply any of a number of generic search algo
rithms to the space of OT grammars-for example, Pulleyblank and
Turkel (1995, 1998) have also applied the genetic algorithm to learning
OT grammars. But unlike P&P, with OT we have an alternative to gram
matically uninformed learning: learning algorithms specially constructed
to exploit the structure provided by OT's theory of crosslinguistic
variation.

(1.3) The players in order of their appearance

· Overt part ofgrammatical forms: directly accessible to the learner
· Full structural descriptions: combine overt and nonovert ("hidden")
structure
· The grammar: determines which structural descriptions are well formed

These three elements are all intimately connected, yet we propose to dis
tinguish two subproblems, as schematically shown in figure 1.1.

(An interpretive parser is "robust" if it can parse an overt structure with
a grammar, even when that structure is not grammatical according to the
grammar. The importance of robustness will be discussed shortly.)

(104) Decomposition of the problem

· Robust interpretive parsing: mapping the overt part of a form into a
full structural description, complete with all hidden structure-given a
grammar
· Learning the grammar-given a (robust) parser



2 An Overview of Optimality Theory

This chapter presents the fundamental principles of OT. The defining ref
erence is by Prince and Smolensky (1993) (abbreviated P&S here). Sec
tions 2.1 and 2.2 provide the basics of the linguistic theory, while section
2.3 formulates the precise grammar learning problem posed by OT.
Readers familiar with OT may wish to move directly to section 2.3.

We present the basics of OT as a series of general principles. To under
score the generality of the grammatical theory and our learnability
analysis, we exemplify these principles with two running examples, one
in phonology and one in syntax. The phonological example is the Basic
CV Syllable Theory of P&S (chapter 6); we abbreviate this CVT. Our
syntactic example is the theory of the distribution of clausal subjects pro
posed in Grimshaw and Samek-Lodovici 1995 (see also Samek-Lodovici
1994, 1996; Grimshaw and Samek-Lodovici 1998); we dub this theory
GSL. Both examples will be used in chapter 3 to illustrate the Constraint
Demotion learning procedure.

2.1 Constraints and Their Violation

Our starting point is a very basic principle.

(2.1) Grammars specify functions.
A grammar specifies a function that assigns to each input a structural
description or output. (A grammar per se does not provide an
algorithm for computing this function, e.g., by sequential derivation.)

In CVT, an input is a string of C's and V's-for example, NCVCI. An
output is a parse of the string into syllables, denoted as in (2.2).

(2.2) Examples of the input string NCVc/ parsed into syllables
a..Y.CVc. ::= [cr V] [cr CVe]
b. (V).CV(C) ::= V [cr CV] C
c. (V).CY.CO.::= V [cr CV] [cr CO]
d. nVCV(C) ::= [cr OV] [cr CV] C

Output (2.2a) is an onsetless open syllable followed by a closed syllable
(periods denote the boundaries of syllables). Output (2.2b) contains only
one, open, syllable. The initial V and final C of the input are not parsed
into syllable structure, as notated by the angle brackets (). These seg
ments exemplify underparsing and are not phonetically realized, so
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(2.2b) is "pronounced" simply as .Cv. The form .Cv. is the overt form
contained in (2.2b). Output (2.2c) consists of a pair of open syllables, in
which the nucleus of the second syllable is not filled by an input segment.
This empty nucleus is notated 0 and exemplifies ave/parsing. The pho
netic interprctation of this empty nucleus is an epenthetic vowel. Thus
(2.2c) has .CV.Cv. as its overt form. As in (2.2b), the initial V of the input
is unparsed in (2.2c). Output (2.2d) is also a pair of open syllables (pho
netically, .CV.Cv.), but this time it is the onset of the first syllable that is
unfilled (notated D; phonetically, an epenthetic consonant), while the
final C is unparsed.

In Grimshaw and Samek-Lodovici's theory, GSL, an input is "a lexical
head with a mapping of its argument structure into other lexical heads,
plus a tense specification ... as in Grimshaw (1997). The ... input also
specifies which arguments are foci, and which arguments are coreferent
with the topic" (Grimshaw and Samek-Lodovici 1995:590). The example
we will use is shown in (2.3); it represents the predicate sing, in the
present perfect tense, with a masculine singular argument that is the
current discourse topic.

An output in GSL is an X' structure, a possible extended projection
for the lexical head in the sense of Grimshaw 1990.

(2.3) Some outputs for the input 1== (sing(x), x = topic, x = he;Tense =
present perfect)
a. [rp has [sung]]
b. [IP he; has [t; sung]]
c. [IP has [[t; sung] he; ]]
d. [IP it has [[t; sung] he; ]]

In the following discussion, these outputs will consistently be labeled
(a)-(d) as in (2.3). Output (a) is a clause with no subject: the highest pro
jection of the verb, labeled IP, has no Spec position. Output (b) has he
in SpecIP, co-indexed with a trace in SpecVP. Output (c) has no SpecIP
position, and he right-adjoined to VP, co-indexed with a trace in SpecVP;
output (d) is the same, but with an expletive subject in SpecIP.

The second principle of OT is a prerequisite for the competition
involved in the determination of optimality.

(2.4) Gen: UG provides a function Gen that, given any input I,
generates Gen(I), the set of candidate structural descriptions for I.

The input I is an identified substructure contained within each of its
candidate outputs in Gen(I). The domain of Gen implicitly defines the
space of possible inputs.

In CVT, for any input I, the candidate outputs in Gen(I) consist of all
possible parses of the string into syllables, including the possible over
and underparsing structures exemplified in (2.2b)-(2.2d). All syllables
are assumed to contain a nucleus position, with optional preceding onset
and following coda positions. CVT adopts the simplifying assumption
(true of many languages) that the syllable position's onset and coda may
each contain at most one C, and the nucleus position may contain at most
one V. The four candidates of NCVCI in (2.2) are only illustrative of the
full set Gen(NCVCI). Since the possibilities of overparsing are un
limited, Gen(lVCVCI) in fact contains an infinite number of candidates.

For the syntactic input 1== (sing(x), ...) given in (2.3), Gen(I) includes
the four X'-structure outputs (2.3a)-(2.3d), along with others such as the
entirely empty null parse, 0. Each structural description of I in Gen(!)
should be understood to include I itself as a subpart, along with the
output X' structure. Following McCarthy and Prince 1995, we may
assume that each structural description includes a correspondence rela
tion linking the lexical heads in I with their correspondents in the output.
Output (2.3a), [IP has [sung]], displays unde/parsing: an element of the
input, x, has no correspondent in the output. Output (2.3d), [IP it has [[t;
sung] he;]], displays overparsing: an element of the output, it, has no cor
respondent in the input.

The next principle identifies the formal character of substantive gram
matical principles.

(2.5) Can: UG provides a set Can of universal well-formedness
constraints l

.

The constraints in Can evaluate the candidate outputs for a given
input in parallel (i.e., simultaneously). Given a candidate output, each
constraint assesses a multiset of marks, where each mark cOlTesponds to
one violation of the constraint. The collection of all marks assessed a can
didate parse p is denoted marks(p). A mark assessed by a constraint C
is denoted *C. A parse Px is more marked than a parse py with respect
to C if and only if C assesses more marks to Px than to PJ" (The theory
recognizes the notions more and less marked, but not absolute numeri
cal levels of markedness.)
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The CVT constraints are given in (2.6).
. . 2

(2.6) Basic CV Syllable Theory constramts
a. ONSET: Syllables have onsets.
b. NOCODA: Syllables do not have codas.
c. PARSE: Underlying (input) material is parsed into syllable structure.
d. FILLNuc: Nucleus positions are filled with underlying material.
e. FILLall': Onset positions (when present) are filled with underlying

material.

These constraints can be illustrated with the candidate outputs in
(2.2a)-(2.2d). The marks incurred by these candidates ar.e summ~rized

in table 2.1. This is an OT constraint tableau. The competmg candIdates
are shown in the left column. The other columns are for the universal
constraints, each indicated by the label at the top of the column. Con
straint violations are indicated with asterisks, one for each violation.

Candidate (2.2a) = .v.CVc. violates ONSET in its first syllable and
NOCODA in its second; the remaining constraints are satisfied. The single
mark that ONSET assesses .V.CVc. is denoted *ONSET. This candidate is
a faithful parse: it involves neither underparsing nor overparsing, and
therefore satisfies the faithfulness constraints PARSE and FILL

3
. By con

trast, (2.2b) = (V).CV.(C) violates PARSE, and more than once. This

tableau will be further explained later.
The GSL constraints are given in (2.7) (Grimshaw and Samek-

Lodovici 1995:590).

(2.7) Constraints of the GSL theory of subjects .,
a. SUBJ(ECT): The highest A-specifier in an extended prOjectIOn must

be filled (Grimshaw 1997).

b. FULL-INT(ERPRETATION): Elements of the output must be interpreted
(Grimshaw 1997).
c. DROP-ToP(IC): Arguments coreferent with the topic are structurally
unrealized.
d. AL(IGN)-Foc(us): The left edge of a focused constituent is aligned
with the right edge of a maximal projection.
e. PARSE: Input constituents are parsed (have a correspondent in the
output).

These constraints can be illustrated with the candidate outputs in (2.3),
as shown in table 2.2. (In all candidates, AUGN-Focus is vacuously satis
fied, because this input has no focus.) We can interpret PARSE and FULL
INTERPRETATION as members of the FAITHFULNESS family of constraints,
which play the important role in OT of requiring that an output faith
fully parse its input: each input element has one output correspondent
with identical featural content, and vice versa. (Relative to OT phonol
ogy, the technical details of FAITHFULNESS in OT syntax are more obvi
ously an open question for research. In phonology the "vocabulary" of
the input and output are more nearly identical, so requiring one-to-one
correspondence between input and output is more straightforward.)

2.2 Optimality and Harmonic Ordering

In OT, each underlying form is assigned a structural description, selected
from the set of possible candidates. The selected candidate is, by defini
tion, the grammatical candidate. The basis for this selection is the
constraint violations assessed to each candidate. Intuitively, the gram
matical candidate should be the one "least offensive" to the constraints.
However, constraints can conflict, and the case shown in table 2.1, with

Table 2.1
Constraint tableau for L , Table 2.2

Constraint violations in GSL

(sing(x), x = topic, x = he; T = pres perf) PARSE SUB) FULL-INT DROP-Top i\L-Foc

(b) [,P he, has [t, sung]] *
(d) ['P it has [[t i sung] he, ]] * *
(c) ['P has [[t, sung] he, ]] * *
(a) [,P has [ sung]] * *

* *

**

ONSET NOCODA FlLL
Nuc

PARSE FILLa"'

NCVC/-+
* *1& (d) .DV.CV~~ j + -----------f-----

--------------(b)-- (V).CV.(C)
----,. :I: *
_____________J0_ (V).CV.CO. ----------------i----If--- ---------- ------------f-----

(a) .V.CVe.

Candidates
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every candidate violating at least one constraint, is by far the most
common. Thus, the grammar needs a basis for resolving such conflicts.

aT gives a quite specific and restrictive theory of how constraint con
flict is resolved. In a given language, different constraints are assigned
different priority levels. When a choice must be made between satis
fying one constraint or another, the stronger must take priority. The
result is that the weaker will be violated in a grammatical structural
description.

(2.8) Constraint ranking: A grammar ranks the universal constraints
in a dominance hierarchy.

When one constraint C r dominates another constraint C 2 in the hier
archy, the relation is denoted C 1 » C 2• The ranking defining a grammar
is total; the hierarchy determines the relative dominance of every pair
of constraints: C 1 » C 2 » ... » CIl"

(2.9) Harmonic ordering (H-eval): A grammar's constraint ranking
induces a harmonic ordering < of all structural descriptions. Two
candidate structural descriptions D[ and D 2 are compared by
identifying the highest-ranked constraint C x with respect to which Dr
and D 2 are not equally marked. The candidate less marked with
respect to C x is the more harmonic, or the one with higher Harmony
(with respect to the given ranking).

Dr < D 2 denotes that D j is less harmonic than D z. The harmonic order
ing < determines the relative Harmony of every pair of candidates. For
a given input, the most harmonic of the candidate outputs provided by
Gen is the optimal candidate: it is the one assigned to the input by the
grammar. Only this optimal candidate is well formed (grammatical); all
less harmonic candidates are ill formed.

Given the definition of grammaticality in terms of relative Harmony,
along with the requirement that grammars be defined by total rankings
of the constraints, there is only one possible way that more than one
competing candidate can be simultaneously grammatical: both candi
dates must have identical constraint violations. Two candidates assessed
exactly the same marks by all the constraints cannot be distinguished on
the basis of any constraint ranking relation and will always be equally
harmonic. If two (or more) candidates have equal Harmony, and both

are more harmonic than all the other candidates, the two candidates are
both optimal, with the interpretation of free alternation. If candidates D]
and D z have equal Harmony, that relationship is denoted D] - D 2• In
practice, it is quite rare to have more than one optimal candidate for any
given input.

A couple of properties are worth stressing. First, the harmonic evalu
ation of candidates is purely relative, with no significance attached to the
absolute number or distribution of constraint violations assessed to a
candidate. A candidate with 150 constraint violations is no less gram
matical for it, provided it better satisfies the ranked constraints than any
of its competitors. Second, the only comparisons directly relevant to the
grammaticality of forms are those between the optimal candidate and its
competitors. The relative Harmony, with respect to each other, of two
suboptimal candidates is assigned no significant interpretation. One sub
optimal competitor is not "closer to grammatical" than another even
though it is more harmonic than the other.

A formulation of harmonic ordering that will prove quite useful for
learning involves Mark Cancelation. Consider a pair of competing can
didates Da and Db, with corresponding lists of violation marks marks(D

a
}

and marks(Db}. Mark Cancelation is a process applied to a pair of lists
of marks: it cancels violation marks in common to the two lists. Thus, if
a constraint C x assesses one or more marks *Cx in both marks(D

a
} and

marks(Db) , an instance of *<Cx is removed from each list, and the process
is repeated until at most one of the lists still contains a mark *Cx . (Note
that if Da and Db are equally marked with respect to <CX> the two
lists contain equally many marks *C.n and all occurrences of *<C

x

are eventually removed.) The resulting lists of uncanceled marks are
denoted marks' (D a ) and marks'(Db). If a mark *Cx remains in the
uncanceled mark list of D a, then D a is more marked with respect to Cx.
If the highest-ranked constraint assessing an uncanceled mark has a
mark in marks'(Da) , then D a < Db: this is the definition of harmonic
ordering < in terms of Mark Cancelation. Mark Cancelation is indicated
by "crossing out the marks" in the tableau in table 2.3: one mark *PARSE

cancels between the candidates (d) and (b) of table 2.1, and one
uncanceled mark *PARSE remains in marks'(b).

Defining grammaticality via harmonic ordering has an important
consequence.
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Table 2.3
Mark Cancelation

Table 2.4
Constraint tableau for L2

(2.12) Constraint hierarchy for L 2:

ONSET» NoCoDA » FILLOns » PARSE» FILLNllC

guage uses overparsing (of consonants) to provide missing onsets for
vowels, and underparsing (of consonants) to avoid codas (it is the lan
guage denoted L;:del in P&S section 6.2.2.2).

Exchanging the two FILL constraints in L[ gives the grammar L 2.

NCVC/-+
._.__.__.._~_. __t~)._._iV) .CY .C.9~ j-- --j. ~ .~ *
----------~~)- (V).CV.(C) '" '" I--
----------------~~~-~~~~~~-------~------.-t-----*--+-- --~------- ~------~------:-r__

Analysis of all rankings of the CVT constraints reveals a typology of
basic CV syllable structures that explains Jakobson's typological gener
alizations (Jakobson 1962, Clements and Keyser 1983): see P&S chapter
6. In this typology, licit syllables may have required or optional onsets,
and, independently, forbidden or optional codas.

FILLOn, PARSE FrLLNucNOCODAONSET

(2.13) Typology by reranking: Systematic crosslinguistic variation is
due entirely to variation in language-specific total rankings of the
universal constraints in Can. Analysis of the optimal forms arising
from all possible total rankings of Can gives the typology of possible
human languages. DO may impose restrictions on the possible
rankings of Can.

Now the tableau corresponding to table 2.1 becomes table 2.4; the
columns have been reordered to reflect the constraint reranking, and the
candidates have been reordered to reflect the new harmonic ordering.

Like L1> all syllables in L 2 are CV; NCVc/ gets syllabified differently,
however. In L 2 , underparsing (of vowels) is used to avoid onsetless syl
lables, and overparsing (of vowels) to avoid codas (L2 is P&S's language

L~.;[.ep).

The relation between L 1 and L 2 illustrates a principle of OT central to
learnability concerns.

CandidatesCandidates ONSET NOCODA FILLNuc
PARSE FILL

On
,

(2.10) Minimal violation: The grammatical candidate minimally
violates the constraints, relative to the constraint ranking.

The constraints of DO are violable: they are potentially violated in
well-formed structures. Such violation is minimal, however, in the sense
that the grammatical candidate D for an input I will best satisfy a con
straint C, unless each candidate that fares better than D on C also fares
worse than D on some constraint that is higher ranked than C.

Harmonic ordering can be illustrated with CVT by reexamining the
tableau in table 1.1 under the assumption that the universal constraints
are ranked by a particular grammar, L[, with the ranking given in

(2.11).

(2.11) Constraint hierarchy for L 1:

ONSET» NOCODA » FILLNllc » PARSE» FILLOns

The constraints (and their columns) are ordered in table 2.1 left to
right, reflecting the hierarchy in (2.11). The candidates in this tableau
have been listed in harmonic order, from highest to lowest Harmony; the
optimal candidate is marked manualll. Starting at the bo~tom of the
tableau, (a) < (c) can be verified as follows. The first step IS to can~el

common marks: here, there are none. The next step is to determine WhICh
candidate has the worst uncanceled mark-that is, most violates the most
highly ranked constraint: it is (a), which violates ONSET. Therefore (a) is
the less harmonic. In determining that (c) < (b), first cancel the common
mark *PARSE; (c) then earns the worst remaining mark of the t,:"o,
*FILLNllc . When comparing (b) to (d), one *PARSE mark cancels, leav1l1g
marks'(b) = \*PARSEJ and marks'(d) = \*FILLonsJ. The worst mark is the
uncanceled *PARSE incurred by (b), so (b) < (d).

L
1

is a language in which all syllables have the overt form .CV: onsets
are required, codas are forbidden. In case of problematic i~puts such as
NCVCI where a faithful parse into CV syllables is not possIble, thIS lan-

---------;~---(~~~;(~~)------------- -------------~-;---~--
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These principles may also be illustrated with the GSL theory. To begin,

Mark Cancelation is illustrated in table 2.5.
Harmonic ordering can be illustrated with GSL by reexamining the

tableau in table 2.3, reproduced here as table 2.6, under the assumption
that the universal constraints are ranked by a particular grammar of a
language L; with the ranking given in (2.14). (This is a language like
English with respect to the distribution of subjects.)

(2.14) Constraint hierarchy for (English-like) L;:
PARSE» Sum» FULL-INT» DROP-Top» AL-Foc

The constraints are ordered in table 2.6 left to right, reflecting the hier
archy in (2.14). The candidates in this tableau have been listed in har
monic order, from highest to lowest Harmony. Starting at the bottom of
the tableau, (a) < (c) can be verified as follows. The first step is to cancel
common marks: here, *SUBJ. Then (c) has an uncanceled *DROP-Top
mark, marks'(c) = I*DROP-Top}, while a has an uncanceled *PARSE mark,
marks'(a) = I*PARSE}; so (a) is less harmonic. Next we verify that (c) <
(d): the uncanceled mark of (c), *SUBJ, is assessed by a constraint that is
higher ranked in L 1 than that assessing the uncanceled mark of (d), FULL
INT. Finally, (d) < (b) holds because (d) has an uncanceled mark while

(b) does not.
As shown in the tableau in table 2.6, L 1 is a language in which unfo

cused topic-referring subjects are parsed into subject position (SpecIP).
This English-like behavior changes to Italian-like behavior when the
ranking of PARSE and Sum are lowered to their positions in the ranking

defining language L;.

(2.15) Constraint hierarchy for (Italian-like) L;:
FULL-INT» DROP-Top» PARSE» AL-Foc» SUBJ

As shown in the tableau of table 2.7, now an unfocused topic

referring subject is not parsed.
Analysis of all rankings of the GSL constraints derives a typology of

subject distribution relating the presence or absence of expletive sub
jects, the preverbal or postverbal positioning of focused subjects, and the
presence or absence of topic-referring subjects (see Grimshaw and
Samek-Lodovici 1995,1998; Samek-Lodovici 1996).

A final central principle of OT is given in (2.16).
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(2.16) Richness of the base: The set of possible inputs to the
grammars of all languages is the same. The grammatical inventories of
languages are defined as the forms appearing in the outputs that
emerge from the grammar when it is fed the universal set of all
possible inputs (P&S section 9.3).

Systematic differences in inventories arise from different constraint
rankings, not different inputs. The lexicon of a language is a sample from
the inventory of possible inputs; all systematic properties of the lexicon
arise indirectly from the grammar, that delimits the inventory from which
the lexicon is drawn. There are no morpheme structure constraints on
phonological inputs; no lexical parameter that determines whether a lan
guage has pro. In language LJ, all syllables have the form.CV. not because
the possible inputs are restricted ahead of time to consist only of forms
with strict CV alternation, but because the grammar so restricts the
outputs. Richness of the base extends this style of explanation to all
inventory phenomena. If any language lacks a particular structure, it is
because any input containing the structure will have, as its optimal can
didate, a structural description with an output that does not contain
that structure: the optimal candidate will always change it into some
thing else.

As our last issue concerning OT fundamentals, we return to the ques
tion of infinity. In the CVT, and quite typically in OT phonology, at least,
Gen(I) contains an infinite number of candidate structural descriptions
of each input 1. In the face of this infinity, is the theory well defined? Of
course, the overwhelming majority of formal systems in mathematics
involve an infinity of structures; the mere fact of infinity means only that
the most primitive conceivable method, listing all the possibilities and
checking each one, is infeasible. But even in finite cases, this method is
commonly infeasible anyway. For an OT grammar to be well defined, it
must be that for any input, which structure is optimal is formally deter
minate. The necessary formal definitions are provided in P&S chapter 5.
To show that a given structure is the optimal parse of I, we need to
provide a proof that none of the (infinitely many) other parses in Gen(I)
has higher Harmony. A general technique for such demonstration, the
Method of Mark Eliminability (P&S section 7.3), proceeds by showing
that any attempt to avoid the marks incurred by the putatively optimal
output leads to alternatives that incur worse marks.s

~us. the i.nfinite .candidate set has a perfectly well-defined optimum
(O! optIma, .If n~ultIpl~ outputs incur exactly the same, optimal, set of
marks) ..Yet It mIght stili be the case that the task of actually computing
the optimal candidate cannot be performed efficiently. But as Tesar
(1995, 1~96) has shown, computational feasibility is not a problem either,
~t least m the general cases studied to date. One reason is that the infin
Ity. of candidates derives fI:om the unbounded potential for empty struc
tme: But empty structure IS always penalized by constraints of the FILL
famIly: these militate against empty syllable positions in phonology
(FILLOns F NlIc) XO' .. ,ILL , empty pOSItions in syntax (OBLIGATORY-HEADS of
~nmsha~ 1993, 1997), uninterpretable elements (FULL-INT), and the
lIke. Optimal str~ctures may have empty structure, in violation of FILL,
onl~ when .that. IS necessary to avoid violation of higher-ranking con
stramts: ThIS WIll not be th~ c~se for unbounded quantities of empty
structm e. It follows that filUte mputs will only have a finite number of
stru~tural d.escriptions that are potentially optimal, under some con
~tramt rankmg. Thus a parser constructing an optimal parse of a given
1l1put I nee~ only ha,:,e access to a finite part of the infinite space Gen(I).

The. pars1l1.g algonthms developed by Tesar construct optimal parses
from 1l1creasmgly large portions of the input, requiring an amount of
~omputational time and storage space that grows with the size of the
mput only as ~ast as for parsers of conventional, rewrite-rule grammars
of correspondmg complexity. The structure in the space of candidates
al.lows fO,r effic~ent .computation of optimal parses, even though the
g~ammar s speCIficatIOn of well-formedness makes reference to an infi
lUte set of parses.

2.3 The Grammar Learning Problem

Having provided the necessary principles, we can now insert the crucial
gr~mmatica~ struc~ure of OT into the learning problem schematically
fO! mula ted m sectIOn 1.3.

(2.17) Our grammar learning problem (including relevant
grammatical structure).

Given: Learning data in the form of full grammatical structural
descriptions.

The universal components of any OT grammar:
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· The set of possible inputs
· The function Gen generating the candidate outputs for any
possible input
· The constraints Con on well-formedness

Find: a language-particular OT grammar, consisting of a ranking
(or set of rankings) of the constraints in Con, consistent with
all the given data.

The initial data for the learning problem are well-formed candidate
structural descriptions; each consists of an input together with the output
declared optimal by the target grammar. For example, the learner of the
CV language L 1 might have as an initial datum nVCV(C), candidate
(d) of table 2.1, the parse assigned to the input 1= /VCVC/; the learner
of the Italian-like language L; might have as an initial datum the input
1= (sing(x), x = topic, x = he; T = pres perf) together with its grammati
cal parse,p = [IP has [sung]] of table 2.7(a).

3.1 The Principle of Constraint Demotion

Optimality Theory is inherently comparative; the grammaticality of a
structural description is determined not in isolation, but with respect to
competing candidates. Therefore, the learner is not informed about the
correct ranking by positive data in isolation; the role of the competing
candidates must be addressed. This fact is not a liability, but an advan
tage: a comparative theory gives comparative structure to be exploited.
Each piece of positive evidence, a grammatical structural description,
brings with it a body of implicit negative evidence in the form of the
competing descriptions. Given access to Gen (which is universal) and
the underlying form (contained in the given structural description), the
learner has access to these competitors. Any competing candidate, along
with the grammatical structure, determines a data pair related to the
correct ranking: the correct ranking must make the grammatical struc
ture more harmonic than the ungrammatical competitor.

This can be stated more concretely in the context of Basic CV Sylla
ble Theory. Suppose the learner receives a piece of explicit positive evi
dence like p = nVCV(C). Now consider any other parse of p's input
1= /VCVC/; e.g., p' = .VCVc. In the general case, there are two possi
bilities. Either an alternative parse p' has exactly the same marks as
p, in which case p' has the same Harmony as p (no matter what the
unknown ranking) and must be tied for optimality: p' too then is a gram
matical parse of 1. This case is unusual, but possible. In the typical case,
a competitor p' and p will not have identical marks. In this case the
harmonic ordering of forms determined by the unknown ranking will
declare one more harmonic than the other; it must be p that is the more
harmonic, since it is given as well-formed learning data and is thus
optimal.

For each well-formed example p a learner receives, therefore, every
other parse p' of the same input must be suboptimal-that is, ill formed
unless p' happens to have exactly the same marks as p. Thus a single pos
itive example, a parse p of an input I, conveys a body of implicit negative
evidence: all the other parses p' in Gen(I)-with the exception of those
parses that the learner can recognize as tied for optimality with p in
virtue of having the same marks.

In our CV example, a learner given the positive datum p = nVCV(C)
knows that, with respect to the unknown constraint hierarchy of the
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language being learned, the alternative parse of the same input, p' =

.Y.CVc., is less harmonic:

(3.1) .Y.CVc. < .oY.CY.(C)

Furthermore, corresponding harmonic comparisons must hold for every
other parse p" in Gen(IVCVC/).

The implicit negative evidence provided by the structure of OT can
also be illustrated with the GSL theory. Suppose the learner receives
apiece of explicit positive evidence such as the form: p = (sing(x), x =

topic, x = he; T = pres perf); [IP has [sung]]. (Recall that in OT, full
structural descriptions consist of an "input", an "output", and a corre
spondence between their elements. This example informs the learner
that an unfocused, topic-referring subject is not overtly realized in the
target language.) Now consider any other parse p' of p's input I =
(sing(x), x = topic, x = he; T = pres perf); e.g., the parse p' with output
[IP he; has [t; sung]]. Having received the positive datum p, the learner
knows that, with respect to the unknown constraint hierarchy of the
language being learned, the alternative parse of the same input,p', is less
harmonic:

(3.2) for I = (sing(x), x = topic, x = he; T = pres perf), [IP he; has
[tj sung]] < [IP has [sung]].

Thus each single piece of positive initial data conveys a large amount
of inferred comparative data of the form outlined in (3.3).

(3.3) [suboptimal parse of input I, "loser"] < [optimal parse of input
I, "winner"]

Such pairs are what feed our learning algorithm. Each pair carries the
information that the constraints violated by the suboptimal parse loser
must outrank those violated by the optimal parse winner. That is, in some
sense, we must have marks(loser) » marks(winner).

(3.4) The key: loser-marks» winner-marks

The learning procedure we now develop is nothing but a way of
making this observation precise and deducing its consequences. The chal
lenge faced by the learner is: given a suitable set of such losedwinner
pairs, to find a ranking such that each winner is more harmonic than
its corresponding loser. Constraint Demotion solves this challenge, by

demoting the constraints violated by the winner down in the hierarchy
so that they are dominated by the constraints violated by the loser.

3.1.1 The Basic Idea

In our CV language LI> the winner for input IVCVCI is .oY.CY.(C). Table
2.1 gave the marks incurred by the winner (labeled (d)) and by three
competing losers. These may be used to form three losedwinner pairs, as
shown in table 3.1. A mark-data pair is the paired lists of constraint vio
lation marks for a loser/winner pair.

To make contact with more familiar OT constraint tableaux, the
information in table 3.1 will also be displayed in the format of table 3.2.

At this point, the constraints are unranked; the dotted vertical lines
separating constraints in table 3.2 convey that no relative ranking of
adjacent constraints is intended. The winner is indicated with a./; 1& will
denote the structure that is optimal according to the current grammar,
which may not be the same as the winner (the structure that is gram
matical in the target language). The constraint violations of the winner,

Table 3.1
Mark-data pairs (L,)

loser -< willner lI1arks(loser) lI1arks(willller)

(a) -< (d) .V.CVc. -< .oV.CV.(C) *ONSET *NOCODA *pARSE *FILLOn,

(b) -< (d) (V).CV.(C) -< .oV.CV.(C) *pARSE *pARSE *PARSE *FILLOn,

(c) -< (d) : (V).CV.CD. -< .oV.CV.(C) *PARSE *FILLNuc *pARSE *FILLOn,

Table 3.2
Initial data

lIol-vel-rQllked II
I loseJ!willller pairs FrLLNuc FiLLOn, ! PARSE ONSET NOCODA II

(d) .-" .oV.CV.(C) ® i ®

(a) .V.CVc. * *

(d) .-" .oV.CV.(C) ® ~
(b) (V).CV.(C) IX *

(d) .-" .oV.CV.(C) ® ~
(V).CV.C O. * 1><-:(c) . . .. .
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Table 3.3

Mark-data pairs after cancelation (Lil

Chapter 3 Constraint Demotion

immediately below the highest-ranked constraint assessing an
uncanceled loser mark.

37

loser/willller pairs ilia rks '( loser) lIIarks'(willller)

(a) -< Cd) .Y.Cye. -< .DY.CY.(C) *ONSET *NOCODA *pARSE *PILLOn;

(b) -< (d) (Y).CY.(C) -< .DYCY.(C) 1I¥ARsE *'pARSE 1I¥ARsE *FILLOn,

(c) -< (d) (V).CY.CD. -< .DY.Cv.(C) 1I¥ARsE *FILLNuc 1I¥ARsE *FILLOn,

marks(winner), are distinguished by the symbol @. Mark cancelation is
denoted by diagonal crossing, as in table 2.3.

In order that each loser be less harmonic than the winner, the marks
incurred by the former, marks(loser), must collectively be worse than
marks(winner).According to (2.9), what this means more precisely is that
loser must incur the worst uncanceled mark, compared to winner. This
requires that uncanceled marks be identified, so the first step is to cancel
the common marks in table 3.1, as shown in table 3.3.

The canceled marks have been otrl:lsl( Ol:lt. Note that the cancelation
operation that transforms marks to marks' is defined only on pairs of sets
of marks-for example, *PARSE is canceled in the pairs (b) < (d) and (c)
< (d), but not in the pair (a) < (d). Note also that cancelation of marks
is done token by token: in the row (b) < (d), one but not the other mark
*PARSE in marks(b) is canc.eled.

The mark-data after cancelation are the data on which Constraint
Demotion operates. The representation in tableau form, given in table
3.2, reveals what successful learning must accomplish: the ranking of the
constraints must be adjusted so that, for each pair, all the uncanceled
winner marks@ are dominated by at least one loser mark *. Using the
standard tableau convention of positioning the highest-ranked con
straints to the left, the columns containing uncanceled @ (winner marks)
need to be moved far enough to the right (down in the hierarchy)
so that, for each pair, there is a column (constraint) containing an
uncanceled * (loser mark) further to the left (dominant in the hierarchy)
than all the columns containing uncanceled @ (winner marks).

The algorithm to accomplish this is based on the principle in (3.5).

(3.5) Principle of Constraint Demotion: For any constraint C
assessing an uncanceled winner mark, if C is not dominated by a
constraint assessing an uncanceled loser mark, demote C to

Constraint Demotion works by demoting the constraints with un
canceled winner marks down far enough in the hierarchy so that they
are dominated by a constraint with an uncanceled loser mark, ensuring
that each winner is more harmonic than its competing losers.

Notice that it is not necessary for all uncanceled loser marks to dom
inate all uncanceled winner marks: one will suffice. However, given more
than one uncanceled loser mark, it is often not immediately apparent
which one needs to dominate the uncanceled winner marks (the pair (a)
< (d) above is such a case). This is the challenge successfully overcome
by Constraint Demotion.

3.1.2 Stratified Domination Hierarchies

OT grammars are defined by rankings in which the domination rela
tion between any two constraints is specified. The learning algorithm,
however, works with a larger space of hypotheses, the space of stratified
hierarchies. A stratified domination hierarchy has the form in (3.6).

(3.6) Stratified domination hierarchy
{CI , C 2 ,···, C 3}» {C4 , C s,·.·, C 6}».·· »{C7 , C B, ••• , C g }

The constraints C l , C 2 , ... , C 3 comprise the first stratum in the hier
archy: they are not ranked with respect to one another, but they each
dominate all the remaining constraints. Similarly, the constraints C 4 , C s,
... , C 6 comprise the second stratum: they are not ranked with respect
to one another, but they each dominate all the constraints in the lower
strata. In tableaux, strata will be separated from each other by solid ver
tical lines, while constraints within the same stratum will be separated by
dotted lines, with no relative ranking implied.

The original notion of constraint ranking, in which a domination rela
tion is specified for every pair of candidates, can now be seen as a special
case of the stratified hierarchy, where each stratum contains exactly one
constraint. That special case will be labeled here a total ranking. Hence
forth, "hierarchy" will mean stratified hierarchy; when appropriate, hier
archies will be explicitly qualified as "totally ranked".

The definition of harmonic ordering (2.9) needs to be elaborated
slightly for stratified hierarchies. When C j and C 2 are in the same
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Table 3.4
Harmonic ordering with a stratified hierarchy: C, » (C" C 3 } » C4

I~
~*! *

~ :I:

~I---t--*-!~'I-' -*-!-t---

stratum, two marks *(;1 and *(;z are equally weighted in the computa
tion of Harmony. In effect, all constraints in a single stratum are col
lapsed together, and treated as though they were a single constraint, for
the purposes of determining the relative Harmony of candidates.
Minimal violation with respect to a stratum is determined by the candi
date incurring the smallest sum of violations assessed by all constraints
in the stratum. The tableau in table 3.4 gives a simple illustration.

Here, all candidates are compared to the optimal one, P3' In this illus
tration, parses pz and P3 violate different constraints, which are in the
same stratum of the hierarchy. Therefore, these marks cannot decide
between the candidates, and it is left to the lower-ranked constraint to
decide in favor of P3' Notice that candidate P4 is still eliminated by the
middle stratum because it incurs more than the minimal number of
marks to constraints in the middle stratum. (The symbol *! indicates a
mark fatal in comparison with the optimal parse.)

With respect to the comparison of candidates, marks assessed by dif
ferent constraints in the same stratum can be thought of as "canceling",
because they do not decide between the candidates. It is crucial, though,
that the marks not be canceled for the purposes of learning. The term
Mark Cancelation, as used in the rest of this book, should be understood
to only cancel marks assessed by the same constraint to competing
candidates; this is valid independent of the target constraint hierarchy,
which, during learning, is unknown.

3.1.3 An Example: Basic CV Syllable Theory

Constraint Demotion (abbreviated CD) will now be illustrated using
CVT-specifically, with the target language L] of table 2.1 and (2.11).
The initial stratified hierarchy is set to

(3.7) jC = jCo = IFILLNuC, FILLOns, PARSE, ONSET, NOCODAJ

Suppose that the first loser/winner pair is (b) < (d) of table 3.1. Mark
Cancelation is applied to the corresponding pair of mark lists, resulting
in the mark-data pair shown in table 3.5.

Now CD can be applied. The highest ranked (in JC) uncanceled loser
mark-the only one-is *PARSE. The marks'(winner) are checked to see
if they are domina ted by *PARSE. The only winner mark is *FILLOns, which
is not so dominated. CD therefore calls for demoting FILLOns to the
stratum immediately below PARSE. Since no such stratum currently exists,
it is created. The resulting hierarchy is (3.8).

(3.8) JC = IFILLNuC, PARSE, ONSET, NOCODAJ » IFILLOnsJ

This demotion is shown in tableau form in table 3.6; recall that strata
are separated by solid vertical lines, whereas dotted vertical lines sepa
rate constraints in the same stratum. The uncanceled winner mark ® is
demoted to a (new) stratum immediately below the stratum containing
the highest uncanceled winner mark *, which now becomes a fatal vio
lation *! rendering irrelevant the dominated violation (which is there
fore grayed out).

Now another loser/winner pair is selected. Suppose this is (a) < (d) of
table 3.1, as shown in table 3.7.

Table 3.5
Mark-data pair, step 1 (L,)

loser -< winner morks'(loser) morks'(willner)

(V),CV.(C) -< .DV.CV.(C) ~ *PARSE "'P-AA5EFILLOns

Table 3.6
First demotion

losel/winner air FILLNuc
: FILLONS PARSE ONSET NOCODA FILLOns

~(~d)";;';';./;';;I&~.D;';';'V';;';.,.JC;;';;V;;';'.(C~)+;";;;;;~-' @ "'t¥:~*+::;;;;"~;;';';;:~"""'';;';'';;='::::':':''+~@=~

(b) (V).CV. (C) --'------ IX: *!
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Table 3.7
Mark-data pair for CD, step 2 (L I )

Table 3.10
Mark-data pair for CD, step 4 (L I )

loser -<

.Y.CYC. -<

willner

.DY.CY.(C)

marks'(loser)

*ONSET *NOCODA

marks'(willner)

*pARSE *FILLOns

loser -<

(YC) -<

winner

.DY.(C)

marks'(lose r)

"I2ARsE *PARSE

marks'(winner)

Table 3.8
Second demotion

l~'1ble 3.11
TI1ird demotion

~
FILLOns ; PARSE I FILLOns

_c::.®_~ *! II_~®":....--e..:
FILLNnc ONSET NOCODA

(VC)

./1& .DV.(C)

losedwinner pair
® ®

~
FU"LOns : PARSE

~
losedwillner air FILLNlIc

: PARSE : ONSET NOCODA~';';;;;;~~;;;;;~=l=~~~~~

(d) ./1& .oV.CV.(C) ®

(a) .V.CVe. *! *!

There are no common marks to cancel. CD calls for finding the
highest-ranked of the marks'(loser). Since ONSET and NOCODA are both
top ranked, either will do; choose, say, ONSET. Next, each constraint with
a mark in marks'(winner) is checked to see if it is dominated by ONSET.
FILLOilS is so dominated. PARSE is not, however, so it is demoted to the
stratum immediately below that of ONSET.

(3.9) j( = {FILLall" ONSET, NOCODAJ » {FILLall" PARSEJ

In tableau form, this demotion is shown in table 3.8. (Both the ONSET
and NOCODA violations are marked as fatal, *!, because both are highest
ranking violations of the loser: they belong to the same stratum.)

Suppose now that the next loser/winner pair is as shown in table 3.9.
Since the uncanceled loser mark, *FILLNuc

, already dominates the
uncanceled winner mark, *FILLall" no demotion results, and j( is un-
changed. This is an example of an uninformative pair, given its location
in the sequence of training pairs: no demotions result.

Table 3.9
Mark-data pair for CD, step 3 (L I )

loser -< winner

(Y).CV.CD. -< .DV.CY.(C)

marks'(loser) marks'(wiIUler)

'42AR&E *FILLOns

Suppose the next loser/winner pair results from a new input, /VC/, with
a new optimal parse, nv'(C), as shown in table 3.10.

Since the winner mark * FILLOns is not dominated by the loser mark
*PARSE, it must be demoted to the stratum immediately below PARSE,
resulting in the hierarchy in (3.10).

(3.10) j{ = {FILLNuc
, ONSET, NOCODAJ » {PARSEJ » (FILLOnsJ

This demotion is shown in table 3.11.
This stratified hierarchy generates precisely L], using the interpreta

tion of stratified hierarchies described above. For any further lased
winner pairs that could be considered, loser is guaranteed to have at least
one uncanceled mark assessed by a constraint dominating all the con
straints assessing uncanceled marks to winner. Thus, no further data will
be informative: L) has been learned.

A parallel example could be developed using the GSL theory. An
example of a demotion step resulting from the loser/winner pair of (27)
is shown in table 3.12. Prior to demotion, all constraints are unranked.
With respect to this stratified hierarchy, the loser (b) is more harmonic
than the desired winner (a), an error. The two uncanceled winner marks
(assessed by SUBJ and PARSE) must be demoted to a stratum just below
that of the sole loser mark, *DROP-Top. This requires creation of such a
stratum; after demotion, the learner's stratified hierarchy has two strata
(separated by the heavy vertical line).
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Table 3.12
Constraint Demotion for (Italian-like) L'2

Table 3.13
TIle disjunction problem

[osellwinner pair FILLOn, ONSET FILL
Nuc NOCODA PARSE

(a) Y.CYC. * *
(d) ~ .DY.CY.(C) ® ®

3.1.4 Why Not Constraint Promotion?

Constraint Demotion is defined entirely in terms of demotion; all
movement of constraints is downward in the hierarchy. One could
reasonably ask if this is an arbitrary choice; couldn't the learner just as
easily promote constraints toward the correct hierarchy? The answer
is no, and understanding why reveals the logic behind Constraint

Demotion.
Consider the tableau shown in table 3.13, with (d) the winner and (a)

the loser. The ranking depicted in the tableau makes the loser, (a), more
harmonic than the winner, (d), so the learner needs to change the hier
archy to achieve the desired result, (a) < (d).

There are no marks in common, so no marks are canceled. For the
winner to be more harmonic than the loser, at least one of the loser's
marks must dominate all the winner's marks. This relation is expressed

in (3.11).

(3.11) (ONSET or NOCODA) » (FILLOns and PARSE)

Demotion moves the constraints corresponding to the winner's marks.
They are contained in a conjunction (and); thus, once the highest-ranked
loser mark is identified, all the winner marks need to be dominated
by it, so all constraints with winner marks are demoted if not already so

dominated. A hypothetical promotion operation would move the con
straints corresponding to the loser's marks up in the hierarchy. But notice
that the Joser's marks are contained in a disjunction (or). It is not clear
which of the loser's violations should be promoted; perhaps all of them,
or perhaps just one. Other data might require one of the constraints vio
lated by the loser to be dominated by one of the constraints violated by
the winner. This loser/winner pair gives no basis for choosing.

Disjunctions are notoriously problematic in general computational
learning theory. Constraint Demotion solves the problem of disentan
gling the disjunctions by demoting the constrailHs violated by the winner;
there is no choice to be made among them-all must be dominated. The
choice between the constraints violated by the loser is made by picking
the one highest ranked in the current hierarchy (in table 3.13, that is
ONSET). Thus, if other data have already determined that ONSET »
NOCODA, that relationship is preserved. The constraints violated by the
winner are only demoted as far as necessary.

3.2 Analysis of Constraint Demotion

3.2.1 Learnability Results: Convergence and Efficiency

The illustration of Constraint Demotion given in section 3.1.3 started
with initial hierarchy :leo, given in (3.7), having all the constraints in one
stratum. Using this initial hierarchy is convenient for demonstrating
some formal properties. By starting with all constraints at the top, CD
can be understood to demote constraints down toward their correct posi
tion. Because CD only demotes constraints as far as necessary, a con
straint never gets demoted below its target position, and will not be
demoted further once reaching its target position. The formal analysis
that assumes :l(o as the initial hierarchy proves the following results.

(3.12) ThEOREM Correctness of Constraint Demotion (initial hierar
chy:l(o)
Starting with all constraints in Con ranked in the top stratum, and apply
ing Constraint Demotion to informative positive evidence as long as such
exists, the process converges on a stratified hierarchy such that all totally
ranked refinements of that hierarchy correctly account for the learning
data.
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(3.13) THEOREM Data complexity of Constraint Demotion (initial hier

archy:J(o)
Starting with all constraints in Can ranked in the top stratum, the
number of informative data pairs required for learning is at most N(N 

1)/2, where N is the number of constraints in Can.

The data complexity of a learning algorithm is the amount of data that
needs to be supplied to the algorithm to ensure that it learns th~ correct
grammar. For Constraint Demotion, each informative data palr res~lts

in a demotion, and the convergence results ensure that each demotIOn
brings the hypothesized grammar ever closer to the, cO~Tect grammar.
Therefore, it is convenient to measure data compleXity 111 terms of the
maximum number of informative data pairs needed before the correct

grammar is reached. .
In Constraint Demotion, an informative pair can result 111 the demo

tion of one or several constraints, each being demoted down one or more
strata. The minimum amount of progress resulting from a single error is
the demotion of one constraint down one stratum. The worst-case data
complexity thus amounts to the maximum distance between a possible
starting hierarchy and a possible target hierarchy to b~ learned, where
the distance between the two hierarchies is measured 111 terms of one
stratum demotions of constraints. The maximum possible distance
between the initial hierarchy :J(o and a target hierarchy is N(N - 1)/2,
where N is the number of constraints in the grammar; this then is the
maximum number of informative data pairs needed to learn the correct

hierarchy. .
The significance of this result is perhaps best illustrated by companng

it to the number of possible grammars. Given that any target grammar
is consistent with at least one total ranking of the constraints, the number
of possible grammars is potentially as large as the number of possible
total rankings, Nt. This number grows very quickly as a functiOn of the
number of constraints N, and if the amount of data required for learn
ing scaled with the number of possible total rankings, it wo~ld be cause
for concern indeed. Fortunately, the data complexity of CD is qUite rea
sonable in its scaling. In fact, it does not take many universal constraints
to give a drastic difference between the data complexity of CD an~ the
number of total rankings: when N = 10, the CD data compleXity is 45,
while the number of total rankings is over 3.6 million. With 20 con
straints, the CD data complexity is 190, while the number of total rank-

ings is over 2 billion billion (2.43 x 1018). This reveals the restrictiveness
of the structure imposed by OT on the space of grammars: a learner can
efficiently home in on any target grammar, managing an explosively sized
grammar space with quite modest data requirements by fully exploiting
the inherent structure provided by strict domination.

TIle power provided by strict domination for learning can be further
underscored by considering that CD uses as its working hypothesis space
not the space of total rankings, but the space of all stratified hierarchies,
which is much larger and contains all total rankings as a subset. TIle dis
parity between the size of the working hypothesis space and the actual
data requirements is that much greater.

As argued in chapter 1, the number of grammars made available by a
grammatical framework is a rather crude measure of its explanatory
power. A more significant measure is the degree to which the structure
of UG allows rich grammars to be learned with realistically few positive
examples. TIle crude number-of-grammars measure may be the best one
can do given a theory of UG that does not enable the better learnabil
ity measure to be determined. In OT, however, we do have a quantita
tive and formally justified measure of learnability available in our N(N
- 1)/2 limit on the number of informative examples needed to solve our
grammar learning problem. And we can see precisely how large the dis
crepancy can be between the number of grammars made available by a
UG and the efficiency of learning that its structure enables.

TIlis dramatic difference between the size of the OT grammar space
and the number of informative examples needed to learn a grammar is
due to the well-structured character of the space of fully ranked con
straint hierarchies. It is useful to consider a set of parameters in the
grammar space that suffice to specify the N! grammars: these parame
ters state, for each pair of different constraints C i and C j , which is dom
inant-that is, whether C j » Cj or Cj » C j • TIlere are in fact N(N - 1)/2
such dominance parameters,1 and this is the maximum number of
informative examples needed to learn a correct hierarchy when start
ing from the :J(o initial hierarchy.2 Efficient learning via Constraint
Demotion is possible because the enlarged hypothesis space allows these
dominance parameters to be unspecified (in the initial state, they are
all unspecified), and because evidence for adjusting these dominance
parameters can be assessed independently (via the key idea (3.4): loser
marks» winner-Inarks). A single adjustment may not irrevocably set a
correct value for any dominance parameter, each adjustment brings the
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hierarchy closer to the target, and eventually the adjustments are guar
anteed to produce a correct set of parameter values. Note that what is
independently adjustable here is not the substantive content of individ
ual grammatical principles: it is the interaction of the principles, as deter
mined by their relative rankings.

3.2.2 Arbitrary Initial Hierarchies

While the use of initial hierarchy J(o is convenient for purposes of
illustration, it is by no means necessary for the success of Constraint
Demotion. The formal proof of the correctness of Constraint Demotion
can be extended to arbitrary initial constraint hierarchies, without any
change whatsoever to the algorithm itself. Further, no significant change
in the data complexity occurs: it is still a quadratic function of the number
of constraints.

(3.14) THEOREM Correctness of Constraint Demotion
Starting with an arbitrary constraint hierarchy, and applying Constraint
Demotion to informative positive evidence as long as such exists, the
process converges on a stratified hierarchy such that all totally ranked
refinements of that hierarchy correctly account for the learning data.

(3.15) THEOREM Data complexity of Constraint Demotion
Starting with an arbitrary constraint hierarchy, the number of informa
tive data pairs required for learning is no more than N(N - 1), where N
is the number of constraints in Can.

In fact, this upper bound is a significant overestimate, even morc so than
the one given for the special case with initial hierarchy J(o.

With arbitrary initial hierarchies, CD can lead to empty strata; this can
be seen as follows. Because the data observed must all be consistent with
some total ranking, there is at least one constraint never assessing an
uncanceled winner mark: the constraint top ranked in the total ranking.
It is possible to have more than one such constraint (there are three for
L 1); there will always be at least one. These constraints will never .be
demoted for any loser/winner pair, because only constraints assessl11g
uncanceled winner marks for some loser/winner pair get demoted.
TIlerefore, these constraints will stay put, no matter where they are in
the initial hierarchy. If J(o is used, these constraints start at the top and
stay there. For other initial hierarchies, these constraints stay put, and the

other constraints eventually get demoted below them. This may leave
some empty strata at the top, but that is of no consequence; all that
matters is the relative position of the strata containing constraints.

Another learnability result now easily follows as well. In QT, a stan
dard treatment of markedness scales is to posit in UG that certain con
straints are universally ranked in a particular subhierarchy. For example,
in P&S chapter 9, the markedness scale of place of articulation, accord
ing to which Coronal is less marked than, for example, Labial, is achieved
via the UG requirement that the constraints violated by Cor(onal) and
Lab(ial) PLace are universally ranked as in (3.16).

(3.16) Coronal unmarkedness universal subhierarchy
*PLlLab » *PLlCor

In syntax, Legendre and others (Legendre et al. 1995; Legendre,
Smolensky, and Wilson 1998) have proposed a universal hierarchy
MINLINK, which realizes the "Shortest Link" principle. We now see that
having such UG rankings in the initial state does not jeopardize learn
ability. TIle Constraint Demotion algorithm is easily adapted so that
whenever a constraint that is part of a universal markedness subhierar
chy is demot~d, the constraints below it in the hierarchy are also
demoted if n~cessary to preserve the universal subhierarchy.

,/

3.2.3 Learnability and Total Ranking

In this' subsection we take up some rather subtle issues concerning the
roles of fully ranked and stratified constraint hierarchies in these learn
ing algorithms.

// TIle discussion here assumes that the learning data are generated by
( a UG-allowed grammar, which, by (2.13), is a totally ranked hierarchy.

When learning is successful, the learned stratified hierarchy, even if
not totally ranked, is completely consistent with at least one total
ranking. The empirical basis for (2.13) is the broad finding that correct
typologies of adult languages do not seem to result when constraints are
permitted to form stratified hierarchies. Generally speaking, allowing
constraints to have equal ranking produces empirically problematic con
straint interactions.

From the learnability perspective, the formal results given for Con
straint Demotion depend critically on the assumption that the target lan
guage is given by a totally ranked hierarchy. This is a consequence of a


