
Manual for Maxent Grammar Tool

Bruce Hayes
UCLA

July 2009

1. Introduction: what’s it for?

This software computes weights for constraint-based maxent grammars. It is meant to be
a useful tool for linguists.

The key idea is that you make up a grammar consisting of constraints, then train it, using the

program to match a corpus of data. The goal might be to model real-life language learning, or it
might simply to make a grammar that’s more accurate than one you could produce by hand.

To accomplish this, you need a mathematical expression of the grammar that (a) lets it make

quantitative predictions; (b) reliably (provably) yields the optimum grammar compatible with the
data.1 Maxent is, as far as I know, currently the only mathematical grammar framework for
constraint-based theories that satisfy these two criteria.

2. What it does

Using an input file, you feed the program:

 Underlying representations
 Rival surface representations for each underlying representation
 Specification of winners — if multiple winners, their frequencies
 A list of constraints
 The number of violations of each constraint for each candidate.

The program computes, and writes to an output file:

 a set of maxent weights for a maxent grammar
 the predicted probabilities that the grammar, when using these weights, assigns to each

candidate

3. Where to learn about maxent

 Goldwater, Sharon and Mark Johnson (2003) Learning OT constraint rankings using a
Maximum Entropy model. Proceedings of the Workshop on Variation within Optimality

1 By “optimum” is meant: assigns the maximum possible predicted probability to the observed data, within

the limits imposed by the constraint system. This is a standard criterion in computer science.

Hayes Manual for Maxent Grammar Tool p. 2

Theory, Stockholm University, 2003. Download from
http://homepages.inf.ed.ac.uk/sgwater/papers/OTvar03.pdf.

An explanation for the layman on how the weights get found:

 Hayes, Bruce and Colin Wilson (2008) “A maximum entropy model of phonotactics and

phonotactic learning,” Linguistic Inquiry 39: 379-440. Download from
http://www.linguistics.ucla.edu/people/hayes/Phonotactics/HayesWilsonMaximumEntrop
yPhonotacticsAugust2007.pdf

Further explanation, with a nice application of the method in linguistics:

 Wilson, Colin (2006) Learning phonology with substantive bias: an experimental and

computational study of velar palatalization. Cognitive Science 30.5:945-982. Download
from http://web.jhu.edu/cogsci/people/faculty/Wilson/papers/VelarPalCogSciWilson.pdf

4. How to run the program

4.1 Java

You need Java on your computer. Download from
http://www.java.com/en/download/manual.jsp and install.

Java works on various operating systems. For the case of the Macintosh system, you are

advised to consult the following page for advice.

http://www.metaphoriclabs.com/articles/installing-java-6-on-mac-os-x/

4.2 Input files

Make a file in the required format, which is the same format as in the “OTSoft” constraint-
ranking package (http://www.linguistics.ucla.edu/people/hayes/otsoft/). You can find a template
in SampleDataFile.txt, included in this software package. The format is ordinary text, tab-
delimited. It looks like this:

http://www.linguistics.ucla.edu/people/hayes/Phonotactics/index.htm
http://www.linguistics.ucla.edu/people/hayes/Phonotactics/index.htm
http://www.linguistics.ucla.edu/people/hayes/Phonotactics/HayesWilsonMaximumEntropyPhonotacticsAugust2007.pdf
http://www.linguistics.ucla.edu/people/hayes/Phonotactics/HayesWilsonMaximumEntropyPhonotacticsAugust2007.pdf
http://web.jhu.edu/cogsci/people/faculty/Wilson/papers/VelarPalCogSciWilson.pdf
http://www.java.com/en/download/manual.jsp
http://www.metaphoriclabs.com/articles/installing-java-6-on-mac-os-x/
http://www.metaphoriclabs.com/articles/installing-java-6-on-mac-os-x/

Hayes Manual for Maxent Grammar Tool p. 3

 Constraint1 Constraint2
 C1 C2
Input1 Output1-1 1 1
 Output1-2 1 1
Input2 Output2-1 1
 Output2-2 0 1

constraint
full names

constraint
abbreviations

Number of times the candidate
violates the constraint.
Blank = 0.

Frequency of the
candidates

Underlying forms Candidates

The text material can be anything you like, though I suggest avoiding exotic characters. The
frequencies can be any non-negative number, and the violation counts can be any non-negative
whole number. You can use a spreadsheet program to make the file, picking the “Save as tabbed
text” option.

4.3 Launching

Click on MEGrammarTool.jar. If your Java is working ok, it should launch and give you
this interface:

 Click on open tableaux. A “find file” interface will pop up. Navigate through your

folders until you reach your input file. Double click.
 Ignore open constraints for now (see section 6 below for what this is).

Hayes Manual for Maxent Grammar Tool p. 4

 Click on select output file and navigate to the folder where you want your output file.
Type in a file name here and then Save.

 This will bring you back to the main interface. Click on learn and report.
 If the program is working properly, the learn and report button will darken. Otherwise,

there’s an error; you should check your input file for proper formatting.
 When the program tells you “learning results written successfully”, it’s done.

4.4 Reading your output file

It’s probably easiest to read the output file (plain text format, tab-delimited) using a
spreadsheet program such as Excel. Here is a the output file from the input above, which I have
prettied up with colors and boxes for clarity.

Hayes Manual for Maxent Grammar Tool p. 5

Input: Input1 C1 C2
Output1-1 1 1 0
Output1-2 1 0 1

Input: Input2 C1 C2
Output2-1 1 0 0
Output2-2 0 0 1

|weights| after
optimization:

Constraint1
(mu=0.0,
sigma^2=100000.0)

8.041368461

Constraint2
(mu=0.0,
sigma^2=100000.0)

8.041690116

Input: Candidate: Observed: Predicted:
Input1 Output1-1 1 0.500080414
Input1 Output1-2 1 0.499919586
Input2 Output2-1 1 0.999678339
Input2 Output2-2 0 3.22E-04

Part 1: repeats your original input file.
Part 2: the constraints with their calculated weights
Part 3: matchup: how well did the grammar match the original training data? In this case,

you can see, it matches the input proportions within about four decimal places.

5. Testing new forms

You can test new forms by including them in the file with all-zero frequencies. So for
instance look at the following input file.

Input: Input1 C1 C2
Output1-1 1 1 0
Output1-2 1 0 1

Input: Input2 C1 C2
Output2-1 2 0 0
Output2-2 1 0 1

Input: Input3 C1 C2
Output3-1 0 2 0
Output3-2 0 0 1

This file will cause the system to train the weights based on the first two inputs, then make
predictions for the third. The output file tells us this:

Hayes Manual for Maxent Grammar Tool p. 6

Input: Candidate: Observed: Predicted:
Input1 Output1-1 1.0 0.50001
Input1 Output1-2 1.0 0.49999
Input2 Output2-1 2.0 0.66665
Input2 Output2-2 1.0 0.33334
Input3 Output3-1 0.0 0.33335
Input3 Output3-2 0.0 0.66664

6. Gaussian prior (advanced)

You can set a Gaussian prior (see references above) on the learning of the weights,
specifying mu and sigma for each constraint. Intuitively, mu is the “preferred” value of the
constraint, sigma, when small, tends to force the constraint to be close to mu. Sample file format
(tab delimited):

C1 0 10000000
C2 0 10000000

where the first number is mu and second is sigma.

7. Tech support

This is no tech support for this program. However, you might conceivably be able to get
help by emailing Bruce Hayes at bhayes@humnet.ucla.edu. I would also like to hear if there are
bugs.

8. Source code

Please contact Bruce Hayes at bhayes@humnet.ucla.edu to request the source code.

9. Credits

Maxent Grammar Tool originated in software prepared by Colin Wilson for purposes of
writing Wilson (2006), cited above. The interface and user-friendliness improvements was
carried out by Ben George under a grant from the UCLA Academic Senate Council on Research
to Bruce Hayes.

mailto:bhayes@humnet.ucla.edu
mailto:bhayes@humnet.ucla.edu

	1. Introduction: what’s it for?
	2. What it does
	3. Where to learn about maxent
	4. How to run the program
	4.1 Java
	4.2 Input files
	4.3 Launching
	4.4 Reading your output file

	5. Testing new forms
	6. Gaussian prior (advanced)
	7. Tech support
	8. Source code
	9. Credits

