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Abstract In the past two decades, variation has received a lot of attention in main-
stream generative phonology, and several different models have been developed to ac-
count for variable phonological phenomena. However, all existing generative models
of phonological variation account for the overall rate at which some process applies
in a corpus, and therefore implicitly assume that all words are affected equally by a
variable process. In this paper, we show that this is not the case. Many variable phe-
nomena are more likely to apply to frequent than to infrequent words. A model that
accounts perfectly for the overall rate of application of some variable process there-
fore does not necessarily account very well for the actual application of the process
to individual words. We illustrate this with two examples, English t/d-deletion and
Japanese geminate devoicing. We then augment one existing generative model (noisy
Harmonic Grammar) to incorporate the contribution of usage frequency to the appli-
cation of variable processes. In this model, the influence of frequency is incorporated
by scaling the weights of faithfulness constraints up or down for words of different
frequencies. This augmented model accounts significantly better for variation than
existing generative models.
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Japanese geminate devoicing

Electronic supplementary material The online version of this article
(doi:10.1007/s11049-012-9179-z) contains supplementary material, which is available to authorized
users.

A.W. Coetzee (�)
Department of Linguistics, University of Michigan, 440 Lorch Hall, 611 Tappan Street, Ann Arbor,
MI 48109, USA
e-mail: coetzee@umich.edu

S. Kawahara
Department of Linguistics, Rutgers University, 18 Seminary Pl., New Brunswick, NJ 08901-1108,
USA
e-mail: kawahara@rci.rutgers.edu



48 A.W. Coetzee, S. Kawahara

1 Introduction

1.1 The changing prospects of variation

Although the existence of phonological variation has been acknowledged since the
early years of generative phonology (Postal 1966:185, 1968:14–15), variation re-
ceived relatively little attention in mainstream generative phonology during the first
25 years of the history of this field. To the extent that variation was acknowledged, it
was usually relegated to the late stages of phonology or to phonetic implementation,
and was hence not considered a part of the core of phonological grammar. In Lexical
Phonology, for instance, it was assumed that lexical rules apply obligatorily while
“postlexical rules can be optional and subject to variation” (Kaisse and Shaw 1985:6;
see also Kiparsky 1985:86).
This low valuation of variation in mainstream generative phonology contrasts with

how it was viewed in the Labovian variationist tradition. This research tradition,
spearheaded by Labov’s work in the late 1960’s (Labov 1966, 1969, etc.), devel-
oped concurrently with mainstream generative phonology, but had little impact on
this field. In this approach, variation is central to grammar rather than an accidental
property that applies only on the edges of grammar. In fact, Labov (2004:6) claims
that variation is “the central problem of linguistics”.
In the past 15 years, the prospects of variation in generative phonology have

changed dramatically. It now occupies a central place in the study of phonology,
and to some extent dictates the architecture of phonological grammar. A clear in-
dication of this change is how variation has been treated in handbooks of phono-
logical theory. The first edition of the Blackwell Handbook of Phonological Theory
(Goldsmith 1995), which reflects the situation in generative phonology at the begin-
ning of the 1990’s, does not even contain the word “variation” in its subject index.
In contrast, every handbook since contains a chapter dedicated to variation (Anttila
2002b, 2007; Coetzee 2012; Coetzee and Pater 2011; Guy 2011). Similarly, several
articles on variation have appeared in theoretical, generatively-oriented journals over
the past decade (Anttila 2002a, 2006; Anttila et al. 2008; Boersma and Hayes 2001;
Coetzee 2006; etc.).
This same period has seen the development of several versions of current gen-

erative phonological grammar intended to deal with variation. These models have
all been developed in some version of a constraint-based grammar, be that clas-
sic discrete Optimality Theory (OT) (Anttila 1997, 2002a, 2006, 2007; Anttila
et al. 2008; Bane 2011, to appear; Coetzee 2004, 2006, 2009c; Kiparsky 1993;
Reynolds 1994), stochastic OT (Boersma 1997; Boersma and Hayes 2001), or noisy
Harmonic Grammar (HG) (Coetzee 2009a; Coetzee and Pater 2011; Jesney 2007).1

In fact, variation has become so important that the ability of a grammatical model
to account for variation is now often used as one of the measures of the model’s
sufficiency. Anttila (2002b:211) claims that an adequate theory of phonology should
account for the “locus of variation” (where variation is observed and where it is not),

1Noisy HG was first implemented by Paul Boersma in Praat (Boersma and Weenink 2009) as early as
2006.
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and the “degrees of variation” (the frequency of different variants). Using these two
criteria as a measure of success, most of the models mentioned above have been very
successful. All of these models have formal mechanisms that can account for the
locus of variation. With the exception of Coetzee’s 2004/2006 model, these models
also predict the degrees of variation. In fact, they have all been shown to be relatively
successful in modeling the frequency with which different variants are observed for
a range of variable phenomena.
In spite of the obvious progress that has been made in accounting for phonological

variation, much work still remains. All of the existing generative models mentioned
above are purely grammatical models that do not incorporate the influence of non-
grammatical factors on variation. Decades of research in variationist sociolinguistics
and more recent investigations of large speech corpora, however, have shown that
variation is influenced by many factors in addition to grammar. In this paper, we
take the next logical step in accounting for phonological variation by developing an
extension of one of the existing generative models of phonological variation (noisy
HG) that allows both grammatical and non-grammatical factors to impact the pattern
of observed variation.

1.2 Non-grammatical influences on variation

One of the persistent results of the variationist research tradition is that variation is
influenced, in addition to grammatical factors, by many non-grammatical factors. In
fact, reviewing this tradition, Bayley (2002:118) identified “the principle of multiple
causes” as one of the four core principles of this tradition. These non-grammatical
factors include speech genre (word lists, informal conversations, read speech, etc.),
discourse situation, age, sex or educational background of the speaker, etc.
Although mainstream generative phonology has adopted the variationist tradi-

tion’s higher valuation of variation over the past decade, mainstream approaches have
focused nearly exclusively on the grammatical factors that impact variation. Exist-
ing generative models make no formal allowance for the influence of other factors.
Yet, the variationist tradition has established that phonological variation is influenced
by many factors in addition to grammar. The next step, then, is to augment genera-
tive models so that they can account for both the grammatical and non-grammatical
factors that influence variation. This idea is not original to us. Boersma and Hayes
(2001) mention this explicitly with regard to their stochastic OT model of variation,
and suggest a way in which their model could be augmented to incorporate some non-
grammatical aspects of variation. This paper follows up in more detail on their sug-
gestion (although we will develop our model in noisy HG rather than their stochastic
OT).

1.3 Usage frequency as a non-grammatical influence on variation

As mentioned above, many non-grammatical factors influence the application of vari-
able phonological processes. In this paper, we focus on usage frequency—i.e., the
observation that some variable processes apply at different rates to words that differ
in frequency. Our selection of usage frequency is one of convenience: since frequency
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is already quantitative, it is straightforward to incorporate it into a quantitative model
of variation. We also acknowledge that usage frequency would not be considered ex-
ternal to the grammar in all grammatical models. In fact, in several recent models of
grammar, grammar can be described as structured memory encoding of frequency—
see the usage-based and exemplar models of grammar, for instance (Bybee 2001,
2006, 2007; Gahl and Yu 2006, and papers therein; Pierrehumbert 2001; etc.). In
the generative tradition, however, usage frequency is not encoded in the grammar—
generative models do not treat two words differently merely because they differ in
their usage frequencies. In this paper, we subscribe to the standard generative as-
sumption, and we will hence treat usage frequency as external to the grammar. See
also Sect. 5.1 for further discussion.
Some variable phonological processes (typically reduction or simplification pro-

cesses, though see Sect. 5.2) are more likely to affect words with higher than lower
usage frequency. For example, Bybee reports that the schwa in frequent memory is
more likely to delete than the schwa in the nearly identical, but infrequent, mammary
(Hooper 1976; see also Bybee 2000:68).
This correlation between frequency and simplification processes is widespread

and has been reported for many different phonological processes. For instance, the
variable deletion of word-final t/d from consonant clusters in English is more likely
to apply to frequent than infrequent words—i.e., more deletion from frequent just
than infrequent jest (Bybee 2000:69–70, 2002; Coetzee 2009a:272–273, 2009c; La-
coste 2008:187–207). The same process also applies in Dutch, where the correlation
between frequency and the probability of deletion also holds (Goeman 1999:182;
Phillips 2006:65). (See Sect. 3 for a more detailed discussion of t/d-deletion.) A sim-
ilar correlation of usage frequency and variation has also been illustrated for flapping
in American English (Patterson and Connine 2001), word-medial t-deletion in En-
glish (Raymond et al. 2006), word-final s-lenition in Spanish (File-Muriel 2010),
l-vocalization in American English (Lin et al. 2011), and for geminate devoicing in
Japanese loans (on which there is more in Sect. 4; see Kawahara 2011a, 2011b). See
Phillips (2006) for a recent review of many more similar examples.
A model of variation that incorporates only grammatical influences on variation

cannot capture the influence of factors like usage frequency. As a concrete illustration,
we include Fig. 1, which represents the rate of t/d-deletion from word-final clusters
in English for a selection of words from the Buckeye Corpus (Pitt et al. 2007), plotted
against the log frequency of the words, as measured in CELEX (Baayen et al. 1995).2

(See Sect. 3.1 on the details of how these data were extracted from the Buckeye Cor-
pus.) The three panels show the rate of deletion before consonant-initial words (west
bank), vowel-initial words (west end), and before pause (west.). The broken hori-
zontal lines show the overall deletion rate in each context—i.e., deletion rate based
on token counts. In existing grammatical models of variation, these are the variation

2Throughout this paper, all logarithmic transformations use a base of 10. For instance, the word and has
a CELEX frequency of 514,946, and hence a log frequency of log10(514,946) = 5.71. In the Buckeye
Corpus, and appears in pre-vocalic context 3,273 times, and in 2,966 of these occurrences its final /d/ was
deleted. In this context, and therefore shows a deletion rate of 90.6 %. In the middle panel of Fig. 1, the
data point that appears in the upper right-hand corner of the graph therefore corresponds to and at a log
frequency of 5.71 on the x-axis, and at a deletion rate of 90.6 % on the y-axis.
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Fig. 1 Relation between deletion rate and frequency in the Buckeye Corpus

frequencies that are modeled. These rates capture the difference between the differ-
ent grammatical contexts (most deletion pre-consonantally, then pre-vocalically, and
least deletion pre-pausally). However the actual, observed rates deviate quite drasti-
cally from the overall rates, especially for words of lower frequency. To account not
only for the grammatical influences on variation, but also for the influence of usage
frequency, existing grammatical models would need to be augmented in some way. In
the rest of this paper, we augment one of the existing grammatical models of variation
(noisy HG). We add an extra parameter, incorporating usage frequency into the noisy
HG model of variation, and show that this augmented model accounts significantly
better for the deletion rates of words with different usage frequencies.
Although we treat frequency as if it is a standalone property of a word, it is actu-

ally only one subpart of the larger concept of predictability. A word’s predictability
depends on many factors in addition to its frequency, as has been documented by
many studies in speech processing and production. A word is, for instance, primed
by other words to which it is semantically (McNamara 2005; etc.) or phonologically
(Goldinger et al. 1992; etc.) related, or by repetition (Versace and Nevers 2003; etc.).
On the other hand, a word is inhibited (i.e., becomes less predictable) if it inhabits a
dense lexical neighborhood (Luce and Pisoni 1986; Vitevitch and Luce 1998, 1999;
etc.). Many studies have documented that factors such as these influence speech pro-
duction, with the general result being that less predictable words (words that are
inhibited or less strongly primed) tend to be produced more slowly, and with more
effort or clarity (Baese-Berk and Goldrick 2009; Bell et al. 2009; Gahl 2008; Ju-
rafsky et al. 2001; Scarborough 2004, 2010; etc.). Similar results have also been
reported in the literature on “Uniform Information Density” (Frank and Jaeger 2008;
Jaeger 2010; etc.), which shows that speakers have a tendency to spread out informa-
tion equally across an utterance. Since more predictable words carry less information,
speakers tend to reduce these words. Ultimately, it would be necessary to determine
an overall measure of the predictability of a word that includes contributions from all
of these aspects. Our focus on usage frequency is only an initial step.

2 Noisy Harmonic Grammar with weight scaling

We develop our model in a noisy version of Harmonic Grammar (Pater 2009;
Smolensky and Legendre 2006). HG is a constraint-based theory that is closely re-
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lated to OT (Prince and Smolensky 1993, 2004) and is, in fact, an historical prede-
cessor of OT (Goldsmith 1993; Legendre et al. 1990). The main difference between
HG and OT is that HG works with weighted rather than ranked constraints. Noisy
HG is a stochastic implementation of HG, similar to the noisy implementation of
OT, known as stochastic OT (Boersma 1997; Boersma and Hayes 2001). Noisy HG
and stochastic OT are closely related; we could have developed our model in this
paper just as successfully in stochastic OT rather than noisy HG (see Coetzee and
Pater 2011 for evidence that noisy HG and stochastic OT account for most variable
phenomena equally well). In the rest of this section, we first show how noisy HG
accounts for variation, and then how we will augment this model to incorporate the
influence of frequency on variation.

2.1 Noisy Harmonic Grammar

HG, like OT, is a constraint-based theory of grammar. The main difference between
HG and OT is that OT relies on constraint ranking, and HG on constraint weighting.
This difference is illustrated in the tableaux in (2) using the familiar OT constraints
in (1). These tableaux represent the grammar of a language that does not allow tau-
tosyllabic consonant clusters, and that repairs such clusters via deletion. In the HG
tableau, w(CON) stands for the weight of constraint CON.

(1) MAX Assign one violation mark for every segment in the input that
lacks a correspondent in the output (no deletion). (McCarthy
and Prince 1995:371)

DEP Assign one violation mark for every segment in the output
that lacks a correspondent in the input (no epenthesis). (Mc-
Carthy and Prince 1995:371)

*COMPLEX Assign one violation for every tautosyllabic consonant clus-
ter. (Prince and Smolensky 1993:96)

(2) a. Optimality Theory: DEP � *COMPLEX � MAX

b. Harmonic Grammar: w(DEP) > w(*COMPLEX) > w(MAX)
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In HG, each constraint is weighted, and these weights are indicated with Ara-
bic numerals above the constraint names in HG tableaux.3 Constraint violations are
marked with negative whole numbers rather than asterisks. A harmony score H is
calculated for every candidate, using the formula in (3)—i.e., by taking the product
of the weight of each constraint and the violation index of the candidate, and sum-
ming these products. These H-scores are indicated in the last column of the tableau.
The H-score of the first candidate in (2b), for instance, is calculated as follows: The
weight of DEP (= 5) is multiplied by the violation index of the candidate in terms
of DEP (zero, since this candidate does not violate DEP). The weight of *COMPLEX
(= 1.5) is then multiplied with the violation index of the candidate for *COMPLEX
(−1), giving −1.5. Similarly, the weight of MAX (= 1) is multiplied with the viola-
tion index of the candidate (zero again). Finally, these products are summed, giving
an H-score of−1.5 for this candidate. Since H-scores are negative, the candidate with
the H-score closest to zero wins.

(3) H(cand) =
n∑

i=1
wiCi(cand)

Where wi is the weight of constraint Ci , and Ci(cand) is the number of times
that candidate cand violates Ci , expressed as a negative integer.

The version of HG illustrated above is not noisy HG, and cannot generate
variation—given these constraints and weights, the grammar will always map /l�st/
onto [l�s]. However, HG has an implementation known as “noisy HG” that can gen-
erate variable outputs (Coetzee 2009a; Coetzee and Pater 2011; Jesney 2007). Noisy
HG is closely related to stochastic OT (Boersma 1997; Boersma and Hayes 2001). In
stochastic OT, constraint ranking is along a continuous scale, rather than a discrete
scale as in classic OT. Every time that the grammar is used, the ranking of each con-
straint is perturbed by a negative or positive noise value (randomly selected from a
normal distribution with a mean of zero). Because of this noisy evaluation, the relative
ranking between two constraints can differ from one occasion to the next, resulting in
variation. Noisy HG shares with stochastic OT this noisy evaluation procedure. The
only difference is that, in noisy HG, the weights of constraints rather than their rank-
ings are perturbed by random noise. If the weights of two conflicting constraints are
close enough, the noisy evaluation can result in their relative weights flipping around
between evaluation occasions, potentially causing variation.
In (4), the HG tableau from (2) is repeated, this time with noise. In these tableaux,

w stands for the weight of a constraint and nz for the noise added to a constraint at
the specific evaluation occasion. The effective weight of constraints (the sum of w
and nz) is given in parentheses after the constraint names. In the first tableau, the
weight of *COMPLEX is adjusted down by the addition of noise at −0.4, and the
weight of MAX is adjusted upward by a positive noise value of 0.2. The effect is that
violation of *COMPLEX is now less serious than the violation of MAX, so that the

3In noisy HG, the weights of the constraints are determined by a gradual learning algorithm, closely related
to the learning algorithm developed by Boersma and Hayes (2001) for their stochastic OT model. For more
on this, see Sect. 3.2.2.
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faithful candidate has the highest H-score, and is selected as the output. In the second
tableau, the weight of *COMPLEX is adjusted upward and that of MAX downward, so
that the deletion candidate has the highest H-score and is selected as the output. These
tableaux show how the same grammar (the same constraints with the same weights)
can select different outputs on different evaluation occasions because of the addition
of noise to the evaluation. An updated version of the formula used to calculate H-
scores that include noise is given in (5).

(4) a. Faithful candidate optimal

b. Deletion candidate optimal

(5) H(cand) =
n∑

i=1
(wi + nzi )Ci(cand)

Where wi is the weight of constraint Ci,nzi the noise associated with con-
straint Ci at this evaluation occasion, and Ci(cand) is the number of times
that cand violates Ci , expressed as a negative integer.

Several authors have shown have shown that this model of phonological variation
can account for a variety of variable phenomena (Coetzee 2009a; Coetzee and Pater
2011; Jesney 2007). Coetzee and Pater (2011), in particular, show that it performs at
least as well as stochastic OT. This model, however, still treats all words exactly the
same. There is no place in the formula in (5) where any factor such as usage frequency
can impact the H-score of a candidate. In the next section, we augment this model to
allow for factors such as usage frequency to impact the H-score of a candidate.

2.2 Weight scaling

We need a model that can account for the fact that more frequent words are more
likely to be treated unfaithfully. This correlation can be captured by scaling the weight
of faithfulness constraints down for frequent words and up for infrequent words. Vi-
olating a faithfulness constraint will then contribute less to the H-score of a frequent
word, resulting in unfaithfulness being more likely, while it will contribute more
to the H-score of an infrequent word, resulting in faithfulness being more likely.
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There are precedents for this idea in the literature. Van Oostendorp (1997) and Itô
and Mester (2001), for instance, suggested that the higher likelihood of faithfulness
in more formal speech registers can be captured by ranking faithfulness constraints
higher in formal speech situations—an idea that echoes the concept of “carefulness
weights” in Lindblom’s Hyper- and Hypoarticulation theory of speech production
(Lindblom 1990). Boersma and Hayes (2001: Appendix C) similarly suggest scal-
ing the ranking values of constraints to account for different rates of unfaithfulness
observed with different speech registers.
By adding such weight scaling to the model, two words that differ in usage fre-

quency may be evaluated differently in the same grammatical context. Continuing
with the example from the previous section, assume that /l�st/ and /n�st/ differ in
frequency such that /l�st/ is frequent and /n�st/ infrequent. For the sake of the illus-
tration, assume that /l�st/ will be associated with a weight scaling factor of −1, and
/n�st/ with a factor of +1. The weight of faithfulness constraints will be scaled down
by one unit in the evaluation of /l�st/, and up by one unit in the evaluation of /n�st/.
The tableaux in (6) show how this addition of scaling factors affects the evaluation
of these words. In these tableaux, the same grammatical settings (the same constraint
weights and noise values) are used. All that differs is the scaling factors associated
with the faithfulness constraints (marked by sf in the tableaux). The result is that fre-
quent /l�st/ is mapped onto its unfaithful candidate [l�s], while infrequent /n�st/ is
mapped onto its faithful candidate [n�st]. An updated version of the H-score formula
that incorporates the scaling factor is given in (7).

(6) a. Evaluating frequent /l�st/, with sf = −1

b. Evaluating infrequent /n�st/, with sf = +1

(7) H(cand) =
n∑

i=1
(wi + nzi )Mi(cand) +

m∑
j=1

(wj + nzj + sf )Fj (cand)

Where Mi is the i-th markedness constraint, wi the weight associated
with Mi , nzi the noise associated with Mi at this evaluation occasion, and
Mi(cand) the number of times that cand violatesMi (expressed as a negative
integer); and where Fj is the j -th faithfulness constraint, wj the weight asso-
ciated with Fj , nzj the noise associated with Fj at this evaluation occasion,
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and Fj (cand) the number of times that cand violates Fi (expressed as a neg-
ative integer); and where sf is the scaling factor associated with the specific
word being evaluated.

In this model, only faithfulness constraints have scaling factors. The same ef-
fect could also be achieved by scaling markedness weights, or even by scaling the
weights of both markedness and faithfulness constraints. In fact, Boersma and Hayes
(Boersma and Hayes 2001: Appendix C) propose scaling the ranking values of both
markedness and faithfulness constraints to incorporate style effects into their stochas-
tic OT model. Although there are subtle differences in the variation patterns predicted
by these different options, any of these options could have accounted equally well for
the data that we discuss in this paper. We return to this issue briefly in Sect. 5.2, but
leave the question of the difference between these options for future research.

2.3 A linking function between frequency and scaling factors

The final part of our model is a linking function between frequency and scaling fac-
tors: Given a word of some frequency, what is the scaling factor that should be used
in evaluating this word? This problem could be approached from two different di-
rections. One possibility is that the mapping between frequency and scaling factors
has to be learned on a language-by-language basis. The language learner will then
have to take note of how words that are equivalent in their phonological properties
but differ in frequency are treated differently by the grammar. From this information,
he/she will deduce a function that best maps from frequency to scaling factors. Since
the linking function is then determined on a language-particular basis, we would not
necessarily expect to see universal tendencies in how frequency maps to scaling fac-
tors. See Coetzee (2009a) for an implementation of this kind of approach.
A different possibility is that there is some universal linking function that applies

similarly to all languages. The expectation would then be that frequency has the same
basic influence in all languages. Given the large amount of evidence that frequency
has the same basic influence in all languages (More frequent words are more likely
to undergo reduction processes—see the references above in Sect. 1.3 and the dis-
cussion in Sect. 5.2 below.), we pursue the second option—that is, that the same
basic linking function applies in all languages. In this paper, we illustrate how such
a universal mechanism accounts well for two different variable phenomena in two
unrelated languages (t/d-deletion in English, and geminate devoicing in Japanese).
We propose that every word is associated with a distribution function, whose shape

is determined by the frequency of the word. These functions are modeled as instan-
tiations of the beta distribution (Gupta and Nadarajah 2004), and the scaling factor
associated with a word is read off its distribution function.4 The formula of the beta
distribution is given in (8). In addition to its argument x, the distribution has three
parameters. ρ specifies the range of the function as spanning from −ρ to ρ. α and β

are shape parameters that determine the skewness of the distribution. When α = β ,

4See later in this section on why we use the beta distribution rather than a more well-known distribution
such as the normal distribution.



Frequency biases in phonological variation 57

the distribution is symmetric around zero. When α > β , it is left-skewed, and when
α < β , it is right-skewed. Additionally, the larger the difference between α and β , the
more severe the skewness of the distribution is.

(8) f (x,α,β,ρ) = ρ
xα−1(1− x)β−1∫ 1
0 xα−1(1− x)dx

Frequent words must have a negative, and infrequent words a positive scaling
factor. But what counts as “frequent” or “infrequent”? A reference frequency has
to be established such that words that appear more frequently than this reference
frequency will be treated as frequent, and words that appear less frequently will be
treated as infrequent. There are several ways in which such a reference point can be
established. The average or median frequency of all the words in the lexicon could be
used, for instance. We explored several different options, and settled on the one that
resulted in the best fit of our model to the data. Specifically, the reference frequency
is set in such a way that (at least) half of the tokens in the corpus are being treated as
frequent, and (at most) half as infrequent. The exact way in which we determine the
reference frequency is stated in (9).

(9) Let N be the total number of tokens in the corpus.

i. Order the words in the corpus in terms of frequency.
ii. Determine the point on this ordering such that at least N/2 of all the

tokens are above this point.
iii. Determine the log frequency of the word just above this point, and the

word just below this point.
iv. Let the reference frequency be halfway between these two log frequen-

cies.

We illustrate how this algorithm works with an example. In Sect. 3, we work with a
corpus of t/d-deletion examples, extracted from the Buckeye Corpus (Pitt et al. 2007).
The corpus contains 16,460 tokens. Ordering the tokens according to their CELEX
frequencies (Baayen et al. 1995), the word and occupies the topmost position. It also
accounts for more than half of the tokens in the corpus (and appears 8,827 times in
our corpus). The reference point is halfway between the log CELEX frequency of and
and the log CELEX frequency of just, the next most frequent word in our corpus. For
reasons that we explain in Sect. 3, we grouped words together into larger log groups.
Just was placed into the 4.4 log frequency group, while and went into the 5.8 log
frequency group. The midpoint between these two is 5.1, and this value serves as the
reference point in our modeling of the data in our t/d-deletion corpus.
Having established the reference frequency, the values of the shape parameters

(α and β) of the beta distribution associated with each word, as well as the scaling
factor associated with each word, can now be determined. Specifically, we propose
that α is set equal to the log reference frequency, and β to the log frequency of the
specific word. The α-parameter therefore represents the reference frequency (i.e., nei-
ther frequent nor infrequent). The β-parameter represents the frequency of a specific
word. For a word that appears less often than the reference frequency (so that α > β),
the distribution will be left-skewed and hence have a positive mode—see the distribu-
tion for interrupt in Fig. 2. We propose that the mode is used as the frequency scaling
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factor associated with a specific word. For a word that appears less frequently than
the reference frequency, the scaling factor will therefore be positive. The weight of
faithfulness constraints will be scaled up in the evaluation of such a word, so that the
word will resist an unfaithful mapping more strongly. On the other hand, for a word
that appears more often than the reference frequency (so that α < β), the distribution
will be right-skewed, and the mode thus negative—see the function for and in Fig. 2.
The scaling factor of such a frequent word (the mode of the beta distribution) will
be negative, diminishing the contribution of faithfulness constraints in evaluating the
word, resulting in a higher likelihood of an unfaithful mapping. The table in (10)
summarizes the effect of the values of α and β on the skewness of the beta distri-
bution, and the effect that this has on the mode of the distribution (and the scaling
factors in the model that we propose here).

(10) Determining the values of α,β , and the scaling factor associated with each
word

The last parameter to set is the range parameter ρ. ρ does not influence the shape
of the beta distribution, but only its range. In particular, it specifies the minimum and
maximum value of the function on the x-axis: The higher the value of ρ, the higher
the absolute value of the mode. The higher ρ is, the higher the scaling factors will
be. And the higher the scaling factors, the more influence the frequency of words can
have on their evaluation. ρ therefore determines how much frequency is allowed to
influence how the grammar functions. We propose that the value of ρ be fit to the
data—i.e., for every corpus, the value of ρ that results in the best fit between the
model and the data is used.5

In (11), we give examples of the parameter values and the modes for three words
from our t/d-deletion corpus. And is used as an example of a frequent word. And’s
distribution function is right-skewed, so that the mode of this function, and hence
and’s scaling factor, is negative. Interrupt and weekend both appear less frequently
than the reference frequency, and both serve as examples of infrequent words. Their
distributions are left-skewed, so that their modes are positive, and the scaling factors
associated with these two words are also positive. Although both interrupt and week-
end are infrequent, they differ in frequency. Interrupt has a CELEX log frequency of

5We also leave open the possibility that the value of ρ can vary across different speech styles. A larger
value for ρ results in a larger range for the beta distribution, and hence in modes that deviate more from
zero. Since the mode of the beta distribution is used as the scaling factor in the evaluation of some word,
a larger ρ (and hence more extreme mode and scaling factor) will increase the influence that frequency can
have on the determination of H-scores. It is therefore possible that the value of ρ may fluctuate to account
for speech situations in which frequency has a bigger or smaller impact. We do not explore this possibility
further in this paper, however.
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Fig. 2 Beta distributions for words from (11) with ρ = 5. Vertical broken lines mark the modes for the
distributions, and hence the scaling factors associated with these words

1.98 and weekend has one of 2.76. In the distribution function associated with inter-
rupt, the difference between the values of α and β is hence larger than in weekend
(α = 5.1, β = 1.98 vs. α = 5.1, β = 2.76). We include both of these words to show
that the larger the difference between α and β , the more skewed the distribution, and
hence the more extreme the mode of the distribution. The more the frequency of a
word (represented by β) differs from the reference frequency (represented by α), the
more its scaling factor will differ from zero. Faithfulness will hence be scaled down
more for more frequent words, and up more for less frequent words. The table also
gives the modes for these distributions at three different values of ρ. Note how a
change in ρ influences only the absolute value of the modes, and not their signs. In
Fig. 2 we show the shape of the distribution functions for these tokens when ρ = 5
(the value that we use for ρ in Sect. 3).6

(11) Examples of scaling factors in the t/d-deletion corpus (see Sect. 3.3)

In principle, scaling factors could be deduced from amore well-known distribution
such as the normal distribution. Our selection of the beta rather than the normal dis-
tribution is motivated by the fact that the beta distribution has a finite range (specified
by ρ), while the normal distribution has an infinite range. The finite range of the beta
distribution places an absolute limit on the influence that non-grammatical factors
such as frequency can have via weight scaling. If scaling factors were taken from the

6An Excel file for the calculation of the beta distribution’s mode under different settings of the three
parameters is available from http://www.quantitativeskills.com/sisa/rojo/distribs.htm. In this file, the range
parameter ρ is represented by A and B , with A = −ρ and B = ρ. The shape parameter α is represented
by p, and β by q .
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normal distribution with its infinite range, there would be no principled limit on the
extent to which non-grammatical factors could influence the application of variation.
See Sect. 5.1 for more detailed discussion.

3 English t/d-deletion

Word-final t/d variably deletes from consonant clusters in English, so that a word like
west can be pronounced as [w�st] or [w�s]. This deletion process has been described
in detail for countless dialects of English (see Coetzee 2004: Chap. 5 for a review),
and even for languages other than English (on Dutch, see Goeman 1999; Goeman
and van Reenen 1985; Schouten 1982, 1984). Since this process has been studied
so extensively, the factors (both grammatical and non-grammatical) that influence its
application are reasonably well understood. We begin this section by first reviewing
some of the grammatical and non-grammatical factors that are known to influence
this process, focusing on those aspects for which we will provide an account. We
then develop a purely grammatical account in the noisy HG framework. Once the
grammatical account has been established, we augment it to account for the influence
of usage frequency according to the method described above in Sects. 2.2 and 2.3.

3.1 Grammatical and non-grammatical influences

We first review evidence that this process is influenced by the same kinds of gram-
matical considerations as those that influence “ordinary” non-variable phonological
rules. Echoing an idea that has been present throughout the variationist research tra-
dition for nearly four decades, Anttila (1997:44) takes this fact to be a motivation
for expecting phonological grammar to account for at least part of variation: “. . . if
variation preferences are based on phonological variables, then it seems reasonable
to expect phonology to make sense of them.”
In a summary of the grammatical factors that influence t/d-deletion, Labov (1989)

includes the following: (i) Stress: t/d is more likely to delete from an unstressed
syllable (cúbist) than a stressed syllable (insíst); (ii) Cluster size: Deletion is more
likely from tri-consonantal (tanked [tæ�kt]) than from bi-consonantal clusters (tacked
[tækt]); (iii) Similarity to preceding segment: Deletion is more likely after consonants
that share more features with t/d than consonants that share fewer features—there
is more deletion from kissed, where [s] shares place (coronal) and sonorancy (non-
sonorant) with the following [t] than from seemed, where [m] shares no major features
with the following [d]; (iv) Morphology: t/d that functions as the past tense suffix of
a regular past tense verb (missed) is less likely to delete than t/d that functions as the
past tense suffix in a semi-weak verb (kept), which is less likely to delete than t/d that
is part of a morphological root (mist).
Another grammatical factor that influences t/d-deletion is the context that follows

the word-final t/d. We use this factor as an example of a grammatical factor in the
rest of this section, and will therefore discuss it in more detail. In every dialect of
English for which t/d-deletion has been studied, it has been found that deletion is
most likely if the next word begins with a consonant (west bank). Dialects diverge on
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whether a following vowel-initial word (west end) or a pause (west.) results in more
deletion. The table in (12) contains a sample of the data available on the influence
of the following context.7 The data on all but Columbus English are taken from the
literature, with references given in footnote 8.

(12) Percent t/d-deletion in different English dialects in pre-consonantal, pre-
vocalic, and pre-pausal contexts.8

The data on Columbus English were extracted from the Buckeye Corpus (Pitt et al.
2007). This is a corpus of conversational speech collected from 40 lifelong residents
of Columbus, Ohio. All of the speech was both orthographically and phonetically
transcribed. In order to compile a list of words from the corpus to which t/d-deletion
could apply, we extracted all words that end orthographically in -Ct or -Cd (where
C stands for any consonant). Since t/d that corresponds to the past tense suffix is
consistently treated differently (see discussion above), and since our focus is on the
influence of the phonological context, we excluded words with this suffix. The prin-
ciple by which we selected tokens from the corpus already excluded past tense forms
that end orthographically in -ed. We manually removed the semi-weak past tense
forms, such as kept. We also removed a few other classes of words. First, due to the
difficulty of determining whether word-final t/d has been realized before a word that
starts with [t] or [d], we removed all such tokens from the list. Secondly, we removed
words that end orthographically in -rt/-rd or -lt/-ld. These tokens showed unexpect-
edly low deletion rates in the corpus. In these tokens, r and l were often phonetically
realized as coloring on the preceding vowel rather than as a separate consonant, so
that -rt/-rd and -lt/-ld words often do not actually end in consonant clusters phonolog-
ically (Guy and Boberg 1997). Lastly, we removed words such as thought and could,
that end orthographically but not phonologically in -Ct/-Cd. This whole procedure
left a list of 16,460 tokens, representing 459 different words. The phonetic transcrip-
tion in the corpus for each of the token words was then consulted, and each token
was coded as either “t/d deleted” or “t/d retained”.9 Each token was also classified as

7These data are simplified with regard to the pre-consonantal context. Labov (1989) and Guy (1991),
among others, show that t/d-deletion rates are different before consonants of different types. We follow the
practice in the vast majority of the t/d-deletion literature of lumping all of the consonants together.
8Sources: AAVE (Fasold 1972), Jamaican (Patrick 1992), Tejano (Bayley 1995), Trinidad (Kang 1994),
Chicano (Santa Ana 1991).
9A token was coded as “t/d deleted” if no segment was transcribed for the underlying t/d. In the Buckeye
Corpus, underlying t/d was transcribed with several different surface realizations, including faithful real-
izations [t] or [d], glottalized realizations [t�] or [d�], flap [�], etc. All tokens transcribed with one of these
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pre-consonantal, pre-vocalic, or pre-pausal based on the context in which the token
appeared in the corpus.10,11

Several non-grammatical factors that influence the application of t/d-deletion have
also been documented in the variationist literature. For example, biographical factors,
such as the age, sex, or ethnicity of the speaker, have been shown to influence appli-
cation of the process. Additionally, speech register also influences the deletion rate,
with less formal registers associated with higher deletion rates. Browman and Gold-
stein (1990), for instance, found little evidence of t/d-deletion in the reading of a
word list, but they did find evidence for the process in a more casual conversational
speech style. Mitterer and Ernestus (2006) studied the analogous process in Dutch in
two speech corpora. One corpus consisted of read speech (literally, novels read on
tape for the blind)—i.e., a rather formal speech register. The other corpus consisted
of recordings of casual speech. They found evidence of deletion in both corpora, but
at very different rates (8 % for the read speech vs. 45 % for the casual speech).
The non-grammatical factor on which we focus is usage frequency, and we there-

fore report on it in more detail. As we already showed in Sect. 1.3, phonologi-
cal processes such as t/d-deletion usually apply at higher rates to words of higher
frequency—i.e., there is more deletion from frequent just than from phonologically
similar but infrequent jest. Bybee (2000:69–70), for instance, analyzes Santa Ana’s
1991 corpus of Chicano English, and finds a deletion rate of 54.4 % in high frequency
words compared to 34.4 % for low frequency words.12 Phillips (2006:65) shows that
frequency has the same influence in the analogous process in Dutch.
In order to investigate the influence of frequency on t/d-deletion in the Buckeye

Corpus, we determined the frequency of each of the words that we selected from
this corpus in CELEX (Baayen et al. 1995), and then transformed these counts by

realizations were coded as “t/d retained”. Since the corpus contains no articulatory data, deletion is defined
here as the absence of any acoustic evidence of t/d. An actually articulated t/d might not have any acoustic
realization when it is articulated before a labial consonant. If the labial closure of the following conso-
nant is made before the release of the t/d, the potential acoustic effect of the coronal release is masked by
the labial closure, and hence becomes inaudible (Browman and Goldstein 1990). The actual articulatory
t/d-deletion rate before consonants may therefore be somewhat lower than the acoustic rate reported here.
As a check of the potential influence that this acoustic masking could have on our data, we counted the
number of tokens in our pre-consonantal category followed by labial and non-labial consonants. We found
that more than 80 % of the pre-consonantal tokens appear before non-labial consonants.
10The coding conventions in the Buckeye Corpus do not actually include a category for pauses. We coded
as pre-pausal the following tokens: (i) tokens where the corpus indicates that silence followed an utterance;
(ii) tokens where the corpus indicates that an utterance was followed by the interviewer speaking, and
where it was clear from the context that the interviewer did not interrupt the interviewee mid-utterance;
(iii) utterances followed by some kind of non-speech vocalization noise, and where the context made it
clear that this vocalization noise did not occur mid-utterance.
11The corpus of t/d-words that we used is available as “supplementary material” on the Springer link for
this article, or from the first author upon request.
12Bybee (2001) and Jurafsky et al. (2001:252–255) show that mere lexical usage frequency does not cap-
ture the full influence of frequency. Just as important, and in some instances maybe even more important,
is frequency of use within a specific syntagmatic context. That is, the [t] in best may delete more often
from a more frequent phrase such as best friend than from a less frequent phrase such as best fruit. Al-
though an adequate account of phonological variation will ultimately have to incorporate all relevant types
of frequency influences (and all other relevant influences), we will focus only on lexical usage frequency
in this article.
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taking their logarithms (with base 10).13,14 Because the Buckeye Corpus is relatively
small, words with a low CELEX frequency count appear infrequently in the corpus.
(In fact, several words appear only once.) It is consequently not possible to calcu-
late reliable deletion rates for individual words, and we therefore divided the words
into frequency bins before calculating deletion rates (cf. also Bybee 2000:69–70;
Lacoste 2008:188–189). Most of the frequency bins spanned 0.1 intervals on the log-
transformed frequency values. If some bin contained fewer than 50 tokens, we com-
bined it with one of its adjacent bins so that a few bins spanned a wider range than
0.1. In total, 23 frequency bins were created ranging in log-transformed frequency
from (0 to 2.0) up to (5.7 to 5.8).15 The deletion rate in each of the three contexts
(pre-vowel, pre-consonant, pre-pause) was then calculated for each frequency bin.
This procedure gives a data set where deletion rates in each of the contexts can be
plotted against frequency to look for a correlation, as in Fig. 3. This figure shows a
positive correlation between frequency and deletion rate in all three contexts. In fact,
the correlation is significant in all three contexts (Pre-C: r2 = 0.46, p < 0.01; Pre-V:
r2 = 0.39, p < 0.01; Pre-Pause: r2 = 0.43, p < 0.01).16

In the next section, we first develop an account for the influence of the following
phonological context on t/d-deletion in Columbus English, as given in (12). In doing
this, we will abstract away from the influence of usage frequency, shown in Fig. 3.

13Since log of zero is undefined, a constant of one was added to all frequencies before they were log-
transformed.
14One could raise some concerns about using CELEX to measure usage frequency. First, CELEX is a
British corpus, and usage frequency may differ between CELEX and the American speakers included in the
Buckeye Corpus. Second, although CELEX includes some spoken sources, the majority of the frequency
counts in CELEX come from written texts. Usage frequency may be different between spoken and written
language.
A possibly more accurate measure of the usage frequency of words for the speakers who contributed

to the Buckeye Corpus would be the Buckeye Corpus itself—i.e., just counting the frequency with which
each token appears in the corpus. However, since the Buckeye Corpus is comparatively small, it does not
differentiate well between words with low usage frequencies—many words appear only once in the corpus.
Facing the same problem with regard to the Buckeye Corpus and CELEX, Raymond et al. (2006) showed
that CELEX and Buckeye frequencies are highly correlated (r = 0.82). In fact, using CELEX for frequency
counts, even when dealing with American English, is standard practice in the field (Albright 2009; Coetzee
2005, 2008). We therefore follow the standard practice, using CELEX for frequency counts in our study.
15The decision to use 23 frequency bins is to some extent arbitrary. A finer-grained division into more bins
could potentially give a more detailed picture of how usage frequency interacts with deletion. However,
relying on more bins also results in some bins containing too few data points to reliably calculate deletion
rates. There is a trade-off between the reliability of the deletion rate for each frequency bin and the fine-
grainedness with which the frequency range is sampled. We decided to use bins that contain at least 50
tokens each, resulting in the 23 bins used here.
16On each of the three graphs, there is one data point with an extremely high log frequency, just below 6.
This data point corresponds to the word and, which accounts for more than half of all the tokens in our
corpus. If this data point is removed, the positive correlation between frequency and deletion rate remains,
even if it is less strong (Pre-C: r2 = 0.21, p < 0.05; Pre-V: r2 = 0.22, p < 0.05; Pre-Pause: r2 = 0.14,
p < 0.11). Due to the fact that extremely high frequency words such as and show much higher deletion
rates, these words are often excluded from the data sets used in variationist sociolinguistic studies of t/d-
deletion (Patrick 1992:172). By including frequency as a factor in our model, we do not have to exclude
frequent words. Their seemingly anomalous behavior is no longer anomalous, but rather expected given
the model that we develop.
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Fig. 3 The relation between frequency and deletion rate in Columbus English in Pre-C, Pre-V and Pre–
Pause contexts. The x-axis represents log-transformed CELEX frequencies. Deletion rate is plotted on the
y-axis

Once this grammatical account is in place, we will augment it to incorporate the
influence of frequency.

3.2 A grammatical account

In this section we develop a noisy HG account for the overall deletion rates observed
in Columbus English, as shown in the table in (12). For similar accounts of the other
data from this table, see Coetzee and Pater (2011).

3.2.1 Constraints

The constraints that we use are given in (13). The two contextual faithfulness con-
straints are in the spirit of Steriade’s “licensing by cue” constraints—i.e., they protect
segments from deletion in contexts where the cues for their perception are saliently
licensed (Steriade 1999, 2001; Côté 2004).

(13) *CT]Word Assign one violation mark for every word that ends in
the sequence [-Ct] or [-Cd].17

MAX Assign one violation mark for every input segment lack-
ing an output correspondent (no deletion). (McCarthy
and Prince 1995:371)

MAX-PRE-V Assign one violation mark for each segment that appears
in pre-vocalic context in the input, and that does not
have a correspondent in the output (no deletion before
a vowel). (Côté 2004:22)

17This constraint is a special version of the more general *COMPLEX, which applies only to a subclass of
consonant clusters, and only when these clusters appear in word-final position. As it stands, the constraint
is too specific. For instance, deletion of [p] from words like ramp, wisp, etc., and deletion of [k] from words
like whisk, task, etc. are also observed. To account for these deletions, the constraint should probably be
generalized so that it penalizes all [. . . C+stop] sequences. However, the literature contains virtually no
information on the deletion of [p] and [k], probably because there are so few [. . . Cp] and [. . . Ck] words in
English. For this reason, we assume the more specific constraint here. See Coetzee (2004: Chap. 5) for an
exploration of a more general constraint.
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MAX-PRE-PAUSE Assign one violation mark for each segment that ap-
pears in pre-pausal context in the input, and that does
not have a correspondent in the output (no deletion be-
fore a pause).

Steriade proposes that a segment is protected by special faithfulness constraints
in contexts where its perceptual cues are robustly licensed. The consonant release
burst can cue both place (Lahiri et al. 1984; Stevens and Blumstein 1978) and
manner information (Stevens and Keyser 1989). The formant transitions into a fol-
lowing vowel also carry information about both place (Martínez-Celdrán and Vil-
lalba 1995; Eek and Meister 1995; Fowler 1994; Fruchter and Sussman 1997;
Kewley-Port 1983; Kewley-Port et al. 1983; Nearey and Shammas 1987; Stevens
and Blumstein 1978; Sussman et al. 1991; etc.) and manner (Diehl and Walsh 1989;
Walsh and Diehl 1991). To motivate the existence of the positional versions of MAX,
it is therefore necessary to show that release bursts and formant transitions are more
robustly licensed in pre-vocalic and pre-pausal position than in pre-consonantal po-
sition.
In pre-consonantal position, the likelihood of a consonantal release being realized

is relatively small. Zsiga (2000:78) reports a release rate of as low as 18 % in this con-
text for English (see also Browman and Goldstein 1990). Except when the following
consonant is a sonorant, there is also no opportunity for the realization of formant
transitions, and even into a following sonorant, robust transitions are less likely than
into a following vowel. Pre-consonantal position is hence the context in which t/d is
least well cued, so that there is no special faithfulness constraint that protects against
deletion specifically in this context.
In pre-pausal position, formant transitions into a following segment cannot be re-

alized. However, it is possible to release stops in this position—Byrd found that 57 %
of alveolar stops were released in the TIMIT corpus (Byrd 1992:37). There is also
evidence that utterance-final released consonants are perceived more accurately than
unreleased consonants (Malécot 1958). In pre-vocalic position, both formant transi-
tions and releases can be realized. Only one of the cues can therefore be realized
pre-pausally while both cues can be realized pre-vocalically. On the other hand, the
pre-vocalic cues can only be realized across a word boundary. The crossing of the
word boundary may result in a penalty for cue robustness in pre-vocalic position.
The listener may, for instance, incorrectly perceive the t/d as the first segment of the
following word rather than the last segment of the preceding word. As such, the ad-
ditional acoustic cue available in this context would not necessarily result in easier
perception and lexical access for the listener. A question is whether there is a uni-
versal difference in cue robustness between pre-pausal and pre-vocalic contexts. In
Steriade’s “licensing by cue” model of faithfulness, constraints protecting inherently
more robust sponsoring contexts universally rank higher than constraints protecting
less robust sponsoring contexts. If there is an inherent robustness difference between
pre-vocalic and pre-pausal contexts, the two positional versions of MAX will there-
fore be in a universally fixed ranking.
Exactly how the ranking between cue-licensing constraints is established is still

an unresolved topic. These rankings could be hard-wired into Universal Grammar or
they could emerge during acquisition, influenced by misperception on the side of the
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language learner (Boersma 2008). In English dialects where pre-pausal t/d is seldom
released, the child acquiring the grammar will more often not perceive t/d in this posi-
tion, even if his/her parents actually produced t/d in this context. Such a learning situ-
ation might lead to the lower ranking of the constraint MAX-PRE-PAUSE in the gram-
mar of such a child. On the other hand, a child acquiring a dialect where pre-pausal
stops are more often released may actually perceive t/d more often in this context, re-
sulting in a higher ranking of MAX-PRE-PAUSE in the grammar of such a child. The
rankings could therefore result from the concrete experience of the language learner
as a listener. This is also in agreement with Kawahara’s claims that rankings between
cue-based faithfulness constraints are based on the actual perceptibility of contrasts
in different contexts (Kawahara 2006). On the other hand, Moreton (2008, 2010) has
shown that some typological tendencies may result from hard-coding of rankings into
UG rather than from experience with actual perceptibility.
Given that this issue is still unresolved, we will not take a stance here on how

exactly the ranking between cue-based faithfulness constraints comes about. We do
note that, given the data reported in (12), it is necessary to allow MAX-PRE-PAUSE
and MAX-PRE-V to rank differently in the grammars of different dialects/languages
in order to account for the difference between dialects that show more deletion in
pre-pausal position and those that show more deletion in pre-vocalic position.

3.2.2 The learning simulation and results

The constraint weights for Columbus English were determined by running a learning
simulation with Praat’s noisy HG learning algorithm (Boersma and Weenink 2009).
For details on this learning algorithm, see Boersma and Pater (2008) and Coetzee and
Pater (2008). In creating an input file for the algorithm, we assumed that each of the
contexts (pre-consonantal, pre-vocalic, pre-pausal) appears 100 times. Deletion was
represented in the 100 tokens in each context proportional to the overall deletion rates
from (12)—i.e., in pre-consonantal context, 80 tokens were coded as pronounced with
deletion and 20 with a final t/d, in pre-pausal context 63 with deletion and 37 with
retention, and in pre-vocalic context 76 with deletion and 24 with retention.18 We
based the learning input file on the overall deletion rate, following the tradition in
the literature. The account that we develop here will therefore not take into account
the contribution of the usage frequency of individual words. In the next section, we
will augment our account by implementing weight scaling. In running the learning
simulation, we set the “decision strategy” to “Linear OT” (Praat’s implementation of
the noisy HG learning algorithm). All other settings were kept at Praat’s defaults.19

18The Praat input file is available as “supplementary material” on the Springer link for this article, or from
the first author upon request.
19In particular, the following settings were used: (i) The initial weights of all constraints were set to 100.
Changing the initial weights may influence the speed of learning, but as long as sufficient learning time is
allowed, it will not influence the final grammar that is learned; (ii) An evaluation noise of 2.0 was used.
Changing the evaluation noise may influence the absolute difference in weight between constraints, but
will not influence the eventual performance of the grammar; (iii) The initial plasticity was set to 1.0, with
4 decrements of 0.1 in plasticity at every 100,000 replications. As explained by Boersma and Hayes (2001)
with regard to their GLA for stochastic OT, starting out with a higher initial plasticity results in faster initial
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Once the grammar had been learned, Praat’s “To output Distributions” function was
used to test the predicted output of the grammar.20

The constraint weights that were learned are given in (14). Before this grammar
is used to evaluate output candidates, noise is added to the constraint weights. In the
noisy HG implementation in Praat, this noise is randomly selected from a normal dis-
tribution with a mean of zero. Under the default Praat setting, the standard deviation
of the distribution is 2.21

(14) *CT]Word 101.16
Max 98.84
MAX-PRE-V −1.51
MAX-PRE-PAUSE 0.96

In (15), we show the output patterns generated by a grammar with the weights
in (14). As expected, there is a close match between the observed deletion rates (on
which the learning input file was based), and the deletion rates predicted by the gram-
mar. As has been shown before, noisy HG can replicate variation rates extremely well
(Coetzee 2009a; Coetzee and Pater 2011; Jesney 2007). However, as we had shown
earlier, words of different frequencies are subject to deletion at very different rates.
Since high frequency words contribute more to the overall deletion rate, the deletion
rate predicted by the grammar learned in this section, based on the overall deletion
rate in the corpus, is relatively close to the deletion rates observed for high frequency
words. Low frequency words, on the other hand, show deletion rates that are con-
siderably lower than this overall deletion rate. In the next section, we augment this
grammar to take into account the difference between words of different frequencies.

(15)

3.3 Incorporating the frequency bias through weight scaling

In order to apply weight scaling, the scaling factors for words of different frequencies
need to be determined, and to do that, the values of the parameters (α, β , and ρ) of

learning. Decreasing plasticity later in learning results in more accurate frequency matching of the learning
input. An equally good grammar could be learned by starting out with a small plasticity, but more learning
time might be required.
20For this production-oriented simulation, we also used Praat’s default settings: (i) An evaluation noise of
2.0 was used—the same value used during the learning simulation; (ii) Each input type (pre-consonantal,
pre-vocalic and pre-pausal) was submitted to the grammar 100,000 times, and the frequency with which
each output candidate (deletion or retention) was selected was tallied.
21If the sum of a constraint’s weight and the noise added to this weight at a particular evaluation occasion
is less than zero, Praat resets it to zero during evaluation. This adjustment prevents a candidate from being
rewarded in its H-score for violating a constraint—a negative constraint weight multiplied by the negative
integer used to mark constraint violation would have increased the H-score.
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the beta distribution associated with words of different frequencies need to be deter-
mined. We start by showing how the values of α and β are determined. As explained
in Sect. 2.3, the value of α is set to the logarithm of the reference frequency—i.e.,
that frequency that divides the words into the frequent and infrequent sets. Following
the procedure illustrated in (9) in Sect. 2.3, the log reference frequency, α, for our
Columbus English t/d-deletion corpus was determined to be 5.1. For all words, the
value of α is hence set to 5.1. The value of β is set to the log frequency of the bin to
which the word belongs. For the word and, for instance, α is set to 5.1, and β to the
log bin to which and belongs, namely 5.8.
As shown in Sect. 2.3, ρ only influences the size of the scaling factors and not

their signs. Its role is to determine how much influence usage frequency (via weight
scaling) can have on the functioning of the grammar. We propose that the value of ρ is
determined by fitting the model to the data. This value therefore has to be determined
separately for each language (represented by some corpus). To determine the value
of ρ that results in the best fit to our data, we ran multiple simulations, keeping the
values of α and β constant while increasing the value of ρ by whole number steps
from 1 upwards. We then compared the weight scaled models with the baseline model
without weight scaling in terms of their mean square errors relative to the observed
deletion rates. The improvement of the weight scaled grammars at different integer
values of ρ could then be compared, and the value of ρ could be selected where the
improvement reaches its maximum.22

(16) Scaling factors for words of different frequencies, at different values of ρ

In (16), we give the scaling factors associated with words belonging to different
frequency bins in our corpus at different values of ρ. As the frequency increases (top
to bottom), the scaling factors decrease, corresponding to the fact that faithfulness
constraints play a less important role in the evaluation of more frequent words. For
the most frequent frequency bin (5.8), the scaling factor is negative, since for words
in this bin α (the reference value, 5.1) is smaller than β (the log frequency of the
bin, 5.8), resulting in a right-skewed beta distribution with a negative mode. As the
value of ρ increases (from left to right), the absolute values of all the scaling fac-
tors increase, even though their signs do not change. This correlation corresponds to
the fact that frequency has a larger influence (via the scaling factors) at larger val-

22Using whole number increments for ρ is motivated by practical considerations. If smaller increments
were used, it is possible that a slightly better fit could be achieved.
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ues for ρ. The “baseline” column represents the basic grammar without frequency
scaling.
Once the scaling factors for words of different frequencies at different values of ρ

have been determined, weight scaling can be implemented formally. We use the sce-
nario with ρ = 5 as an example. The same procedure is followed for all other values
of ρ. The scaling factors listed in (16) represent the amount with which the weight
of each faithfulness constraint has to be increased or decreased in the evaluation of
words with a specific usage frequency. For instance, when evaluating a word with a
usage frequency of 2.0 the weight of all faithfulness constraints has to be increased by
3.04. When evaluating a word with a frequency of 5.8, the weight of all faithfulness
constraints has to be decreased by 0.40, etc. In (17), we show the weight scaled gram-
mars for different frequency bins when ρ = 5. To get these grammars we added the
scaling factors from (16) to the faithfulness constraint weights of the baseline model
from (14). Once these weight scaled grammars were determined, we manually edited
the Praat grammar file for the baseline model that was learned in Sect. 4.2 above.
Specifically, we created separate grammar files for each of the different frequency
bins by changing the weights of the faithfulness constraints according to the scaling
factor for each of the frequency bins, as reflected in (17). Once different grammar
files for each frequency bin have been created, we again used Praat’s “To output Dis-
tributions” function to determine the deletion frequency predicted by each of these
frequency scaled grammars.

(17) Frequency scaled grammars at ρ = 5

In (18) we show the deletion rates in pre-consonantal position predicted for a se-
lection of frequency bins, at the different values of ρ from (16). Since frequency has
no influence in the baseline grammar, the same deletion rate is expected for all fre-
quency bins. For all of the other values of ρ, deletion rates increase as frequency in-
creases (top to bottom), given that the scaling factors decrease as frequency increases.
Lower scaling factors imply lower effective weights for faithfulness constraints, and
hence higher rates of unfaithfulness. For all but frequency bin 5.8, deletion rates de-
crease as the value of ρ increases (left to right). These frequency bins represent words
that appear less often than the reference frequency, and as shown in (16), these bins
are therefore associated with positive scaling factors. Also shown in (16) is that the
values of the scaling factors increase with ρ. At higher values of ρ, the faithful-
ness constraints will hence have higher effective weights, and therefore exert more
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influence on the selection of the output, with the resulting higher rates of faithful-
ness. Frequency bin 5.8 is the only bin with a frequency higher than the reference
frequency of 5.1. As shown in (16), the scaling factors associated with this bin are
hence negative, and decrease as ρ increases. As a result, for this frequency bin, dele-
tion rates increase as ρ increases. The contribution of ρ to the model should now
be clear. Higher values of ρ result in an increased contribution of frequency to the
selection of the output. If a word is frequent and therefore has a higher than overall
deletion rate, its deletion rate will be even higher at higher values of ρ. On the other
hand, if a word is infrequent and therefore has a lower than overall deletion rate, its
deletion rate will be even lower at higher values of ρ.

(18) Predicted deletion rates (%) in pre-consonantal context at different values
of ρ

The table in (19) compares the performance of the model at different values for ρ
in terms of mean square errors.23 For each value of ρ, we also give the percentage
of improvement of the model relative to the baseline model. The performance of the
model steadily increases up to a value of 5 for ρ, after which it starts declining again.
Based on this, we set the value of ρ for the Columbus English t/d-deletion corpus at 5.
Figure 4 shows the performance of the baseline model relative to a frequency scaled
model with ρ = 5. The broken line represents the baseline model, and the solid line
the frequency scaled model. The scaled model predicts a higher than overall deletion
rate for words in frequency bin 5.8, and lower than overall deletion rates for other
frequency bins. This figure also shows that the frequency scaled model fits the data
better than the baseline model. In fact, as shown in (19), it improves on the baseline
by nearly 80 %.

23Mean square error is calculated according to the formula
∑n

i=1(Pi − Oi)
2, where Pi is the value pre-

dicted for observation i, and Oi the observed value for observation i. This value is an overall index of the
deviation between the model prediction and the actually observed data. Improvement relative to the base-
line model is calculated by first determining the difference in mean square error between the baseline and
the model being evaluated—this difference represents the improvement of the new model relative to the
baseline in terms of mean square error. This difference is then converted into an improvement percentage.
For instance, to determine the improvement of a model with ρ = 5 relative to the baseline in (19), we first
determine the difference in mean square error between the two models (i.e., 1009.7− 208.2= 801.5). We
then convert this to a percentage (i.e. 801.5/1009.7× 100= 79.4 %).
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Fig. 4 Observed and predicted t/d-deletion rates in Columbus English. The broken line indicates the pre-
dictions based on the baseline, unscaled HG. The solid line shows the predictions based on the frequency
weighted HG with a ρ-value of 5

(19) Mean square errors and percentage of improvement relative to the baseline,
unscaled grammar at different values of ρ

The fact that the scaled model fits the data better is not surprising—the scaled
model incorporates one more parameter (frequency) than the baseline model, and
given that frequency significantly impacts application of t/d-deletion, it is to be ex-
pected that a model with this additional parameter will fit the data better. To determine
whether this improvement of 80 % is sufficient to warrant the additional complexity
we used the Akaike Information Criterion (AIC; Akaike 1973, 1983). Roughly speak-
ing, AIC is an estimate of the amount of information lost when using a specific model
relative to the true model. A smaller AIC value associated with a model therefore in-
dicates that the model more closely approximates the true model. To calculate the
AIC for the baseline and scaled models, we use the partial AIC derivation (Burnham
and Anderson 2004:268–269). The formula used is given in (20) where MSE is the
mean square error associated with a model and k is the number of parameters used
in the model. A model that fits the data better will have a smallerMSE and hence, all
else being equal, a smaller (or better) AIC. On the other hand, the larger the number
of parameters included in a model, the larger k will be. All else being equal, a model
with more parameters will therefore have a higher (or less good) AIC than a model
with fewer parameters. AIC therefore rewards a model for a better fit with the data
(lowerMSE), but penalizes a model for including more parameters (higher k), so that
AIC gives a measure of the tradeoff between model complexity and model fit. The
value of n is the number of observations in the dataset being modeled.

(20) AIC= n loge(MSE) + 2k
In calculating AIC for the baseline and frequency scaled models, we assume that

each of the constraints in our HG grammar counts as one parameter. The baseline
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model therefore has 4 parameters. The frequency scaled model has one additional
parameter (i.e., 5) due to the addition of the frequency scaling factor to this model.
Using theMSEs for the respective models reported in (19) above, the formula in (20),
and setting n = 65 (since there are 65 total data points in the corpus), the AICs for the
two models can be calculated: AICBaseline = 457.6, AICScaled = 357.0. As Burnham
and Anderson (2004:271) note, a model with an AIC that is more than 10 units larger
than the best model has “essentially no support”. Given that the frequency scaled
model has an AIC that is 100 units smaller than the baseline model, we can hence
conclude that the additional complexity of the scaled model is well warranted by the
better fit that this model achieves relative to the baseline model.

4 Geminate devoicing in borrowings in Japanese

4.1 The data

In this section, we present another case study to show the generality of the model that
we developed above. Although Japanese native phonology does not tolerate voiced
geminates, these sounds have been introduced into Japanese via borrowings. Due to
Japanese coda restrictions (Itô 1988), closed syllables are frequently borrowed with
an epenthetic vowel. Additionally, when the coda consonant in a borrowed word is
preceded by a lax vowel, the consonant is often geminated (Katayama 1998). When
the coda consonant is also a voiced obstruent, the combination of these processes re-
sults in a voiced geminate. In words that contain another voiced obstruent, the gem-
inate optionally devoices, as in the examples in (21) (all examples from Kawahara
2006:538).

(21) guddo ∼ gutto ‘good’
beddo ∼ betto ‘bed’
deibiddo ∼ deibitto ‘David’
doggu ∼ dokku ‘dog’
baggu ∼ bakku ‘bag’
doraggu ∼ dorakku ‘drug’
biggu ∼ bikku ‘big’

This optional devoicing in loanwords has received a lot of attention in recent years
so that the factors that condition its application are now well understood. We re-
fer the reader to the literature for a discussion of these factors (Crawford 2009;
Kaneko and Iverson 2009; Kawahara 2005, 2006, 2008, 2011a, 2011b; Nishimura
2003, 2006; Tanaka 2009 and references cited there). Our focus here will be on how
this process is influenced by usage frequency. In two recent studies, Kawahara has
found a strong positive correlation between geminate devoicing and word frequency
(Kawahara 2011a, 2011b). We will develop an account of the results of Kawahara
(2011a) here. We summarize the most important aspects of his results below, and
refer the reader to the original paper for more details on the design of the experiment.
Kawahara presented 52 native Japanese speakers with 28 loanwords like those

in (21) with the task of rating the naturalness of a pronunciation in which the voiced
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geminate has been devoiced. Participants indicated their responses on a 5-point scale,
with [5] corresponding to “very natural”, and [1] to “very unnatural”. The raw usage
frequency of each loan word token was taken from the Amano and Kondo Japanese
lexical corpus (Amano and Kondo 2000), and log-transformed. Figure 5 plots the
average naturalness rating that each token received against its log-transformed fre-
quency. Performing a linear regression on these data confirms that log frequency and
naturalness are positively correlated (r2 = 0.43, p < 0.01).
The best way to collect data on devoicing rates in actual speech production would

be to investigate the prevalence of devoicing in a large, phonetically transcribed
corpus of spoken Japanese—similar to how we investigated the prevalence of t/d-
deletion in the Buckeye Corpus above. Unfortunately, no such corpus exists for
Japanese that is large enough to contain enough examples of loanwords. A second
option would be to conduct a production experiment, designed to collect data on loan-
words. Participants in such experiments usually use a rather formal speech style in
which optional processes, such as geminate devoicing, are often inhibited. We there-
fore work under the assumption that naturalness ratings such as those in Kawahara
(2011a) originate in the same grammar that governs speech production, and that these
naturalness ratings therefore also reflect the frequency with which devoicing will ap-
ply to the loanwords in actual speech. Even if this is accepted, it is still necessary
to convert the 5-point naturalness scale to devoicing rate in some manner. Little is
known about how naturalness ratings are related to production patterns (though see
Kempen and Harbusch 2008 for some ideas involving syntactic data), and we there-
fore explored several different options for transforming the naturalness ratings of
Kawahara (2011a) to devoicing rates. In all of the transformations that we explored,
the positive correlation between frequency and rate of devoicing was preserved. We
report here on only one of these transformations, a simple linear transformation.24

This is the transformation on which our model had the best performance.
In order to transform the natural ratings to devoicing rates, we made the assump-

tion that a rating of [5] corresponds to a token that is always produced with devoicing,
a rating of [4] to a token that is produced with devoicing four-fifths of the time (i.e.,
with 80 % devoicing), etc. The formula used to transform the naturalness ratings is
given in (22). Figure 6 plots the deletion rate under this transformation against the
log frequency of the tokens. As this figure shows, the correlation between frequency
and devoicing is preserved under this transformation (r2 = 0.43, p < 0.01).

24Specifically, in addition to the linear transformation defined in (22), we also used an exponential and
sigmoid transformation. The formulas used in these two transformations are given below. Under both of
these transformations, the positive correlation between frequency of devoicing and usage frequency is
preserved: exponential: r2 = 0.34, p < 0.01; sigmoid: r2 = 0.41, p < 0.01.
Let r be the average naturalness rating that some token t received, and devoice(t) the rate of devoicing

in token t . Let normr be the standardized value of r . Then:

Exponential transformation devoice(t) =
(

er

e5

)
(100)

Sigmoid transformation devoice(t) =
(

1

1+ r−normr

)
(100)
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Fig. 5 The relation between
frequency and devoicing in
Kawahara (2011a). The x-axis
represents log-transformed
frequencies from Amano and
Kondo (2000). The naturalness
rating of devoicing is plotted on
the y-axis. The line indicates the
best-fit linear regression line

Fig. 6 The relationship
between frequency and rate of
geminate devoicing under a
simple linear transformation of
the natural ratings from
Kawahara (2011a). The solid
line represents the result of a
linear regression. The broken
line represents the overall
devoicing rate

(22) Let r be the average naturalness rating that some token t received, and
devoice(t) the rate of devoicing in token t . Then:

devoice(t) =
(

r

5

)
(100)

To determine the overall devoicing rate under this transformation, we created a
corpus assuming that each loanword appears in the corpus with its frequency in
Amano and Kondo (2000). The loanword /budda/ ‘Buddha’, for instance, has a fre-
quency of 99 in Amano and Kondo, and /budda/ was hence represented 99 times in
our corpus. Each token was represented with devoicing according to the transforma-
tion given in (22). Devoicing in /budda/ received an average rating of 4.39. Perform-
ing the transformation on this score results in a devoicing rate of 87.8 %, and this
percentage of the 99 occurrences of /budda/ in the corpus was hence represented with
devoicing (i.e., 87 tokens with and 12 without devoicing). The same was done for
all loanwords in the corpus. The overall devoicing rate in the corpus was then calcu-
lated to be 82.4 %. This overall rate is marked with a broken line in Fig. 6. As with
the overall rate of t/d-deletion in the Buckeye Corpus (see Fig. 1), the overall rate of
devoicing is closer to the rate observed for the more frequent words.
In the rest of this section, we develop an account for this transformed corpus. As

with t/d-deletion, we first develop a purely grammatical model based on the over-
all devoicing rate in the corpus. We then augment this model with weight scaling
according to the method described above in Sects. 2.2 and 2.3.
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4.2 A grammatical account

We rely on the three constraints in (23)—see Nishimura (2003), Kawahara (2006) and
Pater (2009) for analyses using slightly different constraints. As with t/d-deletion, we
used the noisy HG learning algorithm in Praat to learn the weights associated with
these constraints. The learning input file contained 100 tokens, with the proportion
of tokens represented with devoicing determined by the overall rate of devoicing
in the corpus (i.e., 82 out of the 100 tokens).25 The learning file was submitted to
Praat’s learning algorithm, using all of the default settings in Praat. The constraint
weights that were learned are given in (24). Once the grammar had been learned,
the “To output Distributions” function in Praat was used to determine the predicted
rate of devoicing for the learned grammar. This returned an expected devoicing of
82.2 %, which very closely matches the observed deletion rate of 82.4 % in our
corpus. However, as before, this grammar produces devoicing at the overall devoicing
rate in the corpus, and treats all words of all frequencies the same. In the next section,
we augment this account to incorporate the contribution of usage frequency to the
rate of devoicing.

(23) *GEMINATE Assign one violation mark for every consonant linked to
two timing slots.

*VOICEDOBS Assign one violation mark for every voiced obstruent.
IDENT[voice] Assign one violation mark for every output segment that

has a different specification for the feature [voice] than its
input correspondent.

(24) *GEMINATE 100.0
*VOICEDOBS 101.3
IDENT[voice] 98.7

4.3 Incorporating the frequency bias through weight scaling

We incorporate the contribution of usage frequency into the model developed in the
previous section in the same way as we did for t/d-deletion in Sect. 3.3. What is
required is to scale the weight of the faithfulness constraint IDENT[voice] up for in-
frequent words so that they are more likely to be treated faithfully, and conversely
to scale the weight of IDENT[voice] down for frequent words. First, we determined
the reference point between frequent and infrequent words according to the method
described in (9). In total, our corpus contains 11,000 tokens. The two most frequent
words account for over half of the 11,000 tokens (/bagudaddo/ ‘Baghdad’, frequency:
3951;26 /baggu/ ‘bag’, frequency: 2103). The reference point is hence halfway be-
tween the log frequency of /baggu/ (3.32) and the log frequency of the next most

25The learning input file is available as “supplementary material” on the Springer link for this article, or
from the first author upon request.
26The high frequency of /bagudaddo/ in Amano and Kondo (2000) is a result of their frequency counts
being taken from a corpus of newspapers including the time after the American invasion of Iraq. Although
it is not clear that /bagudaddo/ will still have such a high frequency for the average Japanese speaker,
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Fig. 7 Observed and predicted
devoicing rates. The broken line
indicates the prediction based on
the basic, unscaled HG. The
solid line shows the predictions
based on the frequency weighted
HG

frequent word, /bajji/ ‘badge’ (3.05),27 or 3.19. With this reference value in hand, the
beta distribution associated with each word can now be determined. For all words,
the value of α is the reference log frequency of 3.19, and the value of β is the log
frequency of the specific word. The value of the range parameter ρ is set to maximize
the fit of the model’s predictions with the data being modeled exactly as it was done
for t/d-deletion above in Sect. 3.3. For the corpus with which we are working here,
this value for ρ was found to be 1.
Once the value of ρ for a corpus has been determined, the scaling factor associated

with each word can be determined. The weight of the faithfulness constraint can then
be scaled according to this scaling factor for each word, and the predicted rate of
devoicing can be determined for individual words using the “To output Distributions”
function in Praat. Figure 7 shows how the baseline, unscaled HG model compares
with the frequency scaled model. The broken line plots the prediction of the baseline
model, and the solid line the prediction of the scaled model. This figure clearly shows
that the scaled model fits the data better. This is confirmed by the mean square errors
(MSE) of each of the models. The MSE of the baseline model is 52.7, and that of the
scaled model 24.5, so that the scaled model represents a 53.5 % improvement over
the baseline model.28 As with the t/d-deletion account above, this improved fit is to
be expected, given that the scaled model contains an extra parameter (frequency) that
is known to be relevant. In order to determine whether the additional complexity of
the scaled model is warranted by the increase in fit, we calculated AIC values for the
baseline and scaled models, as we did above for t/d-deletion. The AIC value for the
baseline model was found to be 109.1, and that for the scaled model was found to be
91.2. Since the scaled model has an AIC that is more than 10 units smaller than the
baseline model, we conclude with confidence that there is sufficient support for the
additional complexity of the scaled model.

we opted not to adjust its frequency for the purposes of this paper. The participants in Kawahara’s exper-
iment were mostly university students who were probably familiar with this event, so that /bagudaddo/
would have had a high frequency for them. The fact that /bagudaddo/ pronounced with devoicing, i.e., as
[bagudatto], received a high naturalness rating in Kawahara (2011a) suggests that this might be correct.
27Following standard conventions in the literature on Japanese phonology, we use /j/ here for the affricate
/d�/.
28As explained in footnote 24, we also explored an exponential and sigmoid transformation of the natu-
ralness ratings. Frequency scaled models for corpora based on these transformations also performed better
than baseline models, although the improvement was slightly less good than what we found for the linear
transformation reported in the text. Improvement of the frequency scaled model over the baseline model
was as follows: exponential transformation = 49.0 %; sigmoid transformation = 42.1 %.
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5 Discussion

The model of phonological variation that we developed above incorporates the effects
of usage frequency into a generative phonological grammar. Two case studies have
shown that this model performs better than a model based on grammar alone. In
this section, we discuss some general properties of our model, as well as some still
unresolved and underexplored issues.

5.1 Grammar dominance

Although the model that we propose in this paper allows non-grammatical factors
such as usage frequency to influence phonological variation, it is a grammar dominant
model. Grammar sets the limits of what patterns of variation are possible, and all that
the frequency can do is to determine how variation is realized within these limits. The
dominance of grammar realizes itself in both universal terms and in the grammars of
individual languages.
First consider the universal aspects of grammar dominance. In HG (as in OT), Uni-

versal Grammar is represented in the constraint set. Classic OT (Prince and Smolen-
sky 1993, 2004) assumes that the constraint set is universal, so that the grammar
of every language contains exactly the same constraints. From this assumption it fol-
lows that there are certain logically possible grammatical constraints that do not exist,
and if some constraint does not exist then some logically possible grammatical pat-
terns cannot be expressed. For example, in our analysis of t/d-deletion, we proposed
positional MAX constraints for pre-vocalic and pre-pausal position, but argued that
no such positional constraint exists for pre-consonantal position. If this is a true re-
striction on the constraint set, deletion in pre-consonantal context will always violate
only a subset (MAX) of the faithfulness constraints violated by deletion in pre-vocalic
(MAX, MAX-PRE-V) or pre-pausal (MAX, MAX-PRE-PAUSE) position. In (25), we
show the consequences that this stringency relationship has for the H-score of dele-
tion candidates in the different contexts. The H-score of deletion in pre-consonantal
position will always be higher than that of deletion in the other two contexts. This
effect cannot be overridden by weight scaling in our model, since we assume that
all faithfulness constraints are scaled by the same factor (i.e., the scaling factor is
not indexed to a particular faithfulness constraint). In any language, for a word of
any frequency, deletion will always be most likely in pre-consonantal position. All
that frequency can do is to increase or decrease the likelihood of deletion in all three
contexts, but it will do so to the same extent in all three contexts.29

29Since a process cannot apply at a rate of higher than 100 %, this statement has to be qualified. Imagine a
grammar where pre-consonantal context has a base deletion rate of 80 % and pre-pausal context of 50 %.
Deletion in pre-consonantal position can be increased by at most 20 % by the contribution of scaling
factors. The same holds for scaling factors that reduce the application of a simplification process and the
floor of application, 0 %.
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(25)

A similar point can be made with regard to geminate devoicing in Japanese. In our
analysis, we assumed a markedness constraint that penalizes voiced obstruents, but
no constraint that penalizes voiceless obstruents. If no constraint against voiceless
obstruents exists, a language that has context-free voicing of obstruents (whether as a
categorical or variable process) is impossible. It does not matter how frequent a word
is: Since this process is ruled out by the grammar, it is predicted never to be observed.
Grammar also takes precedence over usage frequency at the level of individual

languages. In the grammar developed for Columbus English above, the weight of
MAX-PRE-V (−1.51) is lower than that of MAX-PRE-PAUSE (0.96), correspond-
ing to the fact that this dialect of English shows more deletion in pre-vocalic than
pre-pausal position. Since the weights of all faithfulness constraints are scaled by
the same amount, the relative difference in the effective weights of MAX-PRE-V
and MAX-PRE-PAUSE will be preserved under all scaling conditions. No matter how
frequent a specific word is, on average a pre-vocalic deletion candidate will have a
higher H-score than a pre-pausal deletion candidate. The grammar of Columbus En-
glish dictates that deletion is more likely in pre-vocalic context, and frequency cannot
override this.
This dominance of grammar depends on the assumption that at a given instance of

using the grammar (evaluation of a specific word, at a specific instance) the weights
of all faithfulness constraints are scaled by the same amount. If weight scaling could
variably affect different faithfulness constraints, the dominance of grammar could be
lost. In this regard, our proposal diverges from the related proposal made by Boersma
and Hayes (2001: Appendix C). Their model is developed in stochastic OT, and they
therefore assume constraint ranking rather than weighting. They propose that the
ranking values of some constraints can be changed in different speech situations.
But crucially, they propose that some constraints can be ranked higher, others lower,
and that constraint rankings do not have to be changed by the same amount. As a
consequence, their model does not have the property of grammar dominance.
The dominance of grammar is also not a property of other models of phonological

variation. In some implementations of usage-based models (Bybee 2001, 2006, 2007;
etc.), or exemplar models (Gahl and Yu 2006 and papers therein; Pierrehumbert 2001;
etc.), no formal distinction is made between grammatical and non-grammatical fac-
tors. In fact, in describing usage-based grammar, Bybee first defines the usage-based
conceptualization of grammar as “the cognitive organization of one’s experience with
language” (Bybee 2006:711). Later on the same page she describes how this organi-
zation is done as follows: “. . . the general cognitive capabilities of the human brain,
which allow it to categorize and sort for identity, similarity, and difference, go to
work on the language events a person encounters, categorizing and entering in mem-
ory these experiences.” Grammar is the result of cognitive organization achieved with
general cognitive abilities, not with grammar or language specific abilities. Exactly



Frequency biases in phonological variation 79

the same cognitive abilities that organize our experience with social interactions and
with our physical environment organize our experience with language. No formal
distinction is made between how language and other aspects of our experience are
processed or stored in the mind. If a child acquiring a language were to be exposed
to a set of experiences where deletion happens to be observed more often in pre-
vocalic than pre-consonantal context, the general abilities of the mind to classify
would notice this pattern, and codify this as the grammar. This view of grammar is
fundamentally different from the type of approach that we advocate above. Under
our approach, there are language specific cognitive capacities (Universal Grammar
represented in the constraint set, as well as the principles for how constraints interact
via their weights). Language is processed according to these principles and not with
general cognitive capabilities. This places a limit on the types of grammars that can
be learned. As we showed above, the assumptions about Universal Grammar under
which we operate imply that no grammar that produces more deletion in pre-vocalic
than pre-consonantal context is possible.
More research is necessary to determine to what extent certain types of grammars

are truly impossible. A long tradition of typological research has established strong
universal patterns across languages, a result that could be interpreted as favoring a
system that includes a strong Universal Grammar. Recent research in artificial gram-
mar learning has also shown that linguistic patterns that counter such universal trends
are either unlearnable or at least not easily learnable (Carpenter 2006, 2010; Coet-
zee 2009b; Moreton 2008; Pater and Tessier 2006). On the other hand, there are also
unambiguous examples of languages with grammars that counter universal trends
(Coetzee and Pretorius 2010; Hyman 2001), showing that it should be possible for
language learners to acquire grammars that do not fit neatly into the limits of Uni-
versal Grammar. Along similar lines, Bybee (2002:275) shows that in one dialect of
English some words, under some circumstances, show more word-final t/d-deletion
in pre-vocalic than pre-consonantal context. With conflicting data from the current
literature it is impossible to choose definitively between a model with grammar dom-
inance and a model in which grammar is afforded no special place. However, given
that the evidence for strong universal tendencies is currently more copious than ev-
idence for linguistic systems that counter these tendencies, we opt for the more re-
strictive model where Universal Grammar places limits on possible languages.

5.2 What processes are influenced by frequency?

In the model that we developed above, only the weights of faithfulness constraints
are affected by frequency. From this restriction it follows that all and only those
phonological processes that violate some faithfulness constraint will be affected
by frequency scaling. In this paper, we have focused on two such processes—
consonant cluster simplification and geminate devoicing. In both of these pro-
cesses, it is the relative weight of some faithfulness constraint(s) (MAX/MAX-PRE-
V/MAX-PRE-PAUSE or IDENT[voice]) and somemarkedness constraint(s) (*CT]Word
or *VOICEDOBS/*GEMINATE) that determines whether the process applies. Since
weight scaling affects the weights of the faithfulness constraints, it affects the rela-
tive weights of faithfulness and markedness constraints, and hence the likelihood that
these processes will apply.
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The processes on which we focused in this paper are both examples of simplifica-
tion or reductive processes—i.e., the form that has undergone the process is in some
sense articulatorily simpler or more reduced than the input. There is ample evidence
from the literature that such reductive processes are indeed subject to the influence
of frequency as predicted by the model that we developed above. In Sect. 1.3, we
provided references for word-final obstruent deletion, unstressed vowel deletion, ob-
struent devoicing, and l-vocalization as examples.
However, the application of augmentation processes also depends on the relative

weights of markedness and faithfulness constraints. In a language that avoids tauto-
syllabic consonant clusters via epenthesis, for instance, the application of epenthesis
(arguably not a reductive process) depends on the relative weights of the anti-cluster
markedness constraint *COMPLEX and the anti-epenthesis faithfulness constraint
DEP. In a language in which such a process applies variably, the model developed
above would predict that epenthesis will be observed more often in more frequent
words than in less frequent words. Although there are examples in the literature that
discuss such variable augmentation processes (see Auger 2001 on variable epenthesis
in Vimeu Picard; Nevins 2007 on variable epenthesis in Brazilian Portuguese), we do
not know of any example where the application of these processes is discussed in
relation to usage frequency. If indeed variable augmentation processes are affected
by frequency in the same way as variable reductive processes, it would be additional
evidence for the model that we developed above. On the other hand, if augmentation
processes are not affected by frequency in the same manner, the model would need to
be revised in some way in order to differentiate between augmentation and reduction
processes.
Given that only the weights of faithfulness constraints are affected by frequency

scaling in the model developed above, variable phonological phenomena that do not
depend on faithfulness constraints should not be affected by frequency in the same
way. Under the assumption that there are no faithfulness constraints for prosodic
structures (McCarthy 2003: Sect. 6), variable prosodification is not expected to be
sensitive to frequency. As an example, consider Hammond’s analysis of variable
stress placement in Walmatjari (Hammond 1994; see also Anttila 2002b). In Wal-
matjari, tri-syllabic words are either stressed on the initial or the second syllable so
that the underlying form /ka�ani/ ‘carried’ can be realized as [ká�ani] or [ka�áni].
Neither surface form violates any faithfulness constraints. The selection between the
candidates is hence done by markedness constraints alone—in Anttila’s account, by
the constraints TROCHEE, FTBIN and *LAPSE (Anttila 2002b). Since only faithful-
ness constraints are sensitive to weight scaling, and since faithfulness constraints are
irrelevant in the choice between these two variants, this choice cannot be influenced
by frequency in the model developed above. We do not know of any literature that
discusses such variable phenomena in relation to usage frequency, and we therefore
cannot determine whether this prediction is borne out by actual data. If, in fact, pro-
cesses such as these are also sensitive to frequency, the model developed above will
need to be augmented in some way to account for this.
There is another set of variable phenomena that are known to be sensitive to usage

frequency, but that are not accounted for in the model that we developed above. Mor-
phological regularization (analogical leveling) is less likely to apply to more frequent
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words. As an example, Bybee (1985:119–120; also Hooper 1976) shows that regu-
larization of the English past tense is more likely to apply to infrequent words than
to frequent words—a regular past tense form for infrequent weep (weeped instead of
wept) is more likely than for frequent keep (keeped instead of kept). See also Phillips
(1984, 2001) for more similar examples. Processes such as these are governed by the
relations between morphologically related words, and hence by output-output corre-
spondence constraints (Benua 2000) rather than by regular faithfulness constraints.
Although our model cannot account for the role of frequency in these types of phe-
nomena, the model could be extended in a straightforward manner to do so. An infre-
quent word (such as weep) is more likely to have a uniform paradigm. This implies
that the OO-correspondence constraints that are responsible for enforcing paradigm
uniformity should have higher weights in the evaluation of infrequent words than in
the evaluation of frequent words. In the same way that we scale the weight of faith-
fulness constraints up for infrequent words, the weights of OO-correspondence con-
straints can be scaled up for infrequent words. However, we leave full development
of this option for future research.

5.3 Modeling acquisition

In Sects. 3.2 and 4.2, we illustrated how a variable grammar can be learned using the
noisy HG learning algorithm implemented in Praat. We also showed how this model
can be augmented to account for the influence of usage frequency on variation. Two
more questions need to be considered in this regard: (i) What predictions does this
approach make with regard to the acquisition of variable phonological processes,
and (ii) do these predictions correlate with how variable processes are acquired in
reality? Although both of these questions are worth considering, we also want to
make explicit that our goal in this paper is not to model the actual acquisition process
of variable phenomena, but rather to show what a grammatical model would look
like that can account for the variation observed in speech, and to show that such a
grammatical model is in principle learnable. The goal of learnability theory is not to
model how language is actually acquired, but to show whether a specific grammar
is learnable from a given set of data (Pullum 2003:432.) Although we consider the
possible implications of our model for acquisition, we do not believe that the value
of our model crucially depends on how well it models actual acquisition processes.
We first want to set aside two simplifying assumptions that we made, and that do

not constitute claims about actual acquisition. We assume that the learner has access
to the correct underlying form of the words encountered. In the English t/d-deletion
case, for instance, upon hearing an utterance like [w�s bæ�k] for ‘west bank’, we
assume that the learner knows that the underlying form of the first word in the utter-
ance is really /w�st/. This assumption is part of all of the main learning algorithms
used in phonology (Boersma and Hayes 2001:51; Tesar and Smolensky 1998:237).
The learning discussed here is hence learning at a later stage of acquisition, after un-
derlying forms have already been acquired. For a development of the formal mecha-
nisms involved in learning underlying forms in a constraint-based grammar, see Tesar
and Smolensky (1996:40–44) and especially Merchant and Tesar (2005) and Tesar
(2006).
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The second simplifying assumption has to do with the role of usage frequency
during grammar learning. We modeled the grammar learning stage above as if usage
frequency of individual words plays no role during grammar learning, since we aug-
mented the grammar with weight scaling only after the grammar has been learned
(see also Hayes and Londe 2006 for a similar two-stage approach to learning). An-
other option that should be explored is one where usage frequency is incorporated
into the grammar learning stage itself.
The noisy HG learning algorithm implemented in Praat is an error-driven learn-

ing algorithm. The basic steps in the learning process are: (i) The learner receives a
learning input (a surface form produced by an adult); (ii) the learner determines the
underlying form of the learning input, and submits this underlying form to his/her cur-
rent grammar; and (iii) the learner compares the output generated by his/her current
grammar to the learning input. If these two forms differ (i.e., if the learner’s gram-
mar generates an error), the learner adjusts his/her grammar to increase the likelihood
that the grammar will generate an output identical to the learning input. In step (ii)
of the learning cycle, the grammar is used to generate an output. In our modeling of
learning above, this step did not include weight scaling. An alternative model of ac-
quisition could incorporate weight scaling during this stage of grammar learning. The
final state of the grammar that will be learned if weight scaling is incorporated during
learning will be comparable to the final weight scaled grammars that we developed
above. The most important difference between these two approaches is expected to be
in the path of acquisition—i.e., how the grammar changes slowly during the learning
period.
Although we did not incorporate frequency scaling during learning in our model,

we can speculate about what would be expected from a model in which this is done.
We use t/d-deletion as an example, but we expect the same basic pattern to be ob-
served also in the acquisition of other variable processes. During the earlier stages
of learning, when the learner has not yet built up a large corpus of learning inputs,
chances are that the learner would have encountered mostly more frequent words.
A child learning English, for instance, is more likely to hear a frequent word like
‘want’ (CELEX log frequency = 4.1) than an infrequent word like ‘gourd’ (CELEX
log frequency = 0.9). Since more frequent words have higher deletion rates over-
all, and since the child is expected to hear mostly more frequent words, the corpus
of learning inputs to which the child is exposed will have a higher t/d-deletion rate
than the actual, complete adult production corpus. If the child aims to replicate the
deletion rate in the learning corpus that he/she is exposed to, we would expect the
child to show a higher overall deletion rate than what adults actually produce overall.
This prediction agrees with the fact that child speech is often characterized by more
reduction and simplification than adult speech.
Additionally, since during early acquisition the child will mostly be exposed to

words from the higher end of the frequency spectrum, the range of the frequency dis-
tribution in the child’s learning corpus is expected to be smaller than that in the actual
adult speech corpus. (The range between the highest and lowest frequency words in
the child’s corpus is expected to be smaller than that in an adult’s speech corpus.) In
the model that we developed above, weight scaling is done based on how much the
usage frequency of a specific word differs from the reference frequency in the cor-
pus. In the child’s early learning corpus, the usage frequencies are expected to differ
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less than in the adult corpus. The expectation is hence that usage frequency will have
less of an influence during the early stages of acquisition than in an adult grammar.
During early acquisition, all words are expected to be treated more or less the same.
Only during the later stage of acquisition will the difference between how frequent
and infrequent words are treated emerge more clearly. To the best of our knowledge,
there is no study that specifically investigates how usage frequency interacts with first
language acquisition of variation. There is, however, suggestive evidence from sec-
ond language acquisition that learners make less fine distinctions in terms of usage
frequency than native speakers. Lacoste (2008) studies the acquisition of standard
Jamaican English by Jamaican primary school children, with a focus on words that
end in -Ct/-Cd clusters (i.e., exactly the words to which t/d-deletion could apply).
She shows that the teachers make at least a three-level distinction in terms of usage
frequency (2008:198), while children in the early stages of acquisition make only a
two-level frequency distinction (2008:190).
Ultimately, more research is necessary to probe in detail how children acquire vari-

ation and to track specifically how the production of individual words changes during
the course of acquisition. Similarly, the learning algorithm needs to be augmented
to include weight scaling. Only once both of these things have been done will it be
possible to go beyond speculation with regard to how variation is acquired, and with
regard to how well the predictions of the model developed above matches the actual
acquisition trajectory.

5.4 Final remark: integrating generative and usage-based grammars

In this paper, we developed a model of phonological variation that incorporates influ-
ences from both grammatical and non-grammatical factors. Our model retains some
of the core characteristics of a classic generative grammar, while also embracing in-
sights from usage-based and exemplar models of grammar. In the phonological liter-
ature, the generative approach and the usage-based/exemplar approaches have often
been presented as opposites and as incompatible with each other. We believe this to
be a false dichotomy. Not only is it possible to integrate these approaches, but such an
integration also enables phonological theory to account better for many phenomena
than what either of the two approaches could do in isolation. If such an integration
is indeed the correct route to go, then future research will have to focus on two is-
sues. First, the proper way to integrate the contributions from the two types of models
needs to be determined. This paper contains one proposal, and the success of this pro-
posal leads us to believe that it has merit. But other ways of integration are possible,
and more research is necessary to determine all of the viable options, and to evaluate
their success. Secondly, more targeted data collection would need to be performed.
The data on phonological variation that are currently available are usually not suited
to address the questions raised by an integrated model such as that proposed in this
paper. We hope that the line of research reported in this paper will stimulate research
into these issues.
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