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Assessing grammatical architectures through their 
quantitative signatures 

OVERVIEW 

1. Gradient phenomena in phonology 

• Types of phonology where we need numbers and probabilities: 

 Generating alternative surface forms, at varying frequencies, from the same 
underlying form (much of the research literature in sociolinguistics) 

 Frequency-matching the lexicon when generating novel forms (Zuraw 2000 et 
seq.).  E.g. Hungarian [CiːC] stems take about 7% Back harmony in both the 
lexicon and in wug-testing; Hayes et al. 2009. 

 Gradient well-formedness judgments; e.g. ✓[kɪp], ?[pɔɪk], *[bzɑɹʃk], which 
frequency-match the patterns of the ambient language (Hayes and Wilson 2008) 

 
2. Frameworks for analysis of gradience 

• MaxEnt grammars (Smolensky 1986, Goldwater and Johnson 2003) 
• Noisy Harmonic Grammar (Boersma and Pater 2016, Hayes 2016) 
• Stochastic Optimality Theory (Boersma 1998, Boersma and Hayes 2001) 

 These often behave similarly and are all currently “in contention” as frameworks. 
 

3. Strategy taken here 

• Think a little bit abstractly about these frameworks, in a particular way: 
• We want to find general predictions that will guide us in theory-evaluation. 

 These might  be called quantitative signatures 
• Here, I will do several, for each: 

 describe and explain the quantitative signature 
 cite real-world cases 
 say which frameworks possess these signatures 

 
DESCRIPTION OF MAXENT 

4. Basics 

• In linguistics, MaxEnt is a version of Optimality Theory (Prince and Smolensky 1993).  
We have:  
 inputs 
 candidate outputs 
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 constraints used to make the decision 
• The theory is probabilistic, so it assigns a probability to every member of GEN (most of 

them essentially zero). 
• With these assigned probabilities, we can assess the predictions of the analysis against 

quantitative data. 
 

5. MaxEnt and common sense 

• Suggestion: think of constraint violations as evidence that helps you decide which 
candidates should win or lose (better:  have high or low probability) 

• MaxEnt can be viewed as a mathematicization of how evidence is sensibly brought to 
bear on decisions. 

• I suggest that, as such, it is a mathematically close embodiment of common sense.  
 

6. The MaxEnt formula deriving probability of candidate x from its tableau 

Pr (x) = 
exp(−Σi wifi (x))

Z  , where Z = Σj  exp(−Σi wifi (xj)) 

• “The probability of candidate x is derived from the tableau information as …” 
• We will cover the whole formula one step at a time. 

7. Weights 

• Every constraint has a nonnegative number, its weight, which tells you how strong it is. 
 More specifically, how much it lowers the probability of candidates that violate it. 
 In (6), this is wi for each constraint i.  
 Weights are intuitive —we know that reasons differ in cogency. 

 
8. MaxEnt, Step 1 

• For each tableau cell, multiply the number of violations by the weight of the constraint. 
 In (6), this is wifi(x)  (x is candidate, f is number of violations) 
 This is intuitive, in the sense that ** is plausibly “twice the evidence” of *. 

 
9. MaxEnt, Step 2 

• Add result of Step 1 across tableau rows to get a single value. 
• This is an aggregate penalty score for a candidate, called the Harmony. 
• In formula (6), Harmony is represented by Σi wifi (x) 
• Harmony is intuitive: 

 When we make rational decisions, we appropriately weigh all the evidence. 
 Classical OT is bravely counterintuitive:  the decision between two rival 

candidates is made solely by the highest ranked constraint that distinguishes them. 
 The claim to be made here is:  yes, brave, but empirically wrong 
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10. MaxEnt, Step 3 

• Take every Harmony value and compute from it the corresponding eHarmony.1 
• Specifically, negate the Harmony, then take e  (about 2.7) to the result (graphed here). 

 In formula (6), eHarmony is:  exp(−Σi wifi (x)). 
 Graphing eHarmony against Harmony: 

 
• eHarmony performs a sort of “squishing”:  If Harmony gets very big, eHarmony is 

already close to zero and gets only slightly smaller: 
• I claim that eHarmony is intuitive:   

 if we are at probability .5 for choosing a candidate, we welcome evidence to help 
decide and are seriously influenced by it (steep  

 But for a candidate already heavily penalized (e.g. .001), even a great deal of 
evidence may only move us to .0005. 

 Same for candidates close to one:  their rivals are already penalized by a lot of 
Harmony and increase will only move the top candidate e.g. .999 → .9995 

 The principle:  certainty is evidentially expensive. 
 This will matter below. 

 
11. MaxEnt, Last step 

• Sum the eHarmony for every candidate for this input, call the result Z. 
• In (6), this is:  Σj  exp(−Σi wifi (xj)). 
• The probability of a candidate is its eHarmony divided by Z; i.e. its share in Z  
• This is also intuitive:  a candidate is less likely if it has strong rivals. 
• Formula (6) is now explicated in full. 
 

TWO OTHER CONSTRAINT-BASED PROBABILISTIC FRAMEWORKS 

12. Noisy Harmonic Grammar (Boersma and Pater 2016) 

• Compute Harmony as in MaxEnt. 
• Imagine the grammar being used on a series of “evaluation times”. 
• At each evaluation time, let each weight be “perturbed” by a value taken from a Gaussian 

distribution (normal curve). 
• The winner for that evaluation time is the candidate with the lowest Harmony penalty. 

                                                 
1 Term comes from Wilson (2014), who was joking (eHarmony is a dating website), but I like the mnemonic. 
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• Over multiple evaluation times, we get a probability distribution, which we can check 
against data. 

 
13. Stochastic Optimality Theory (Boersma 1998, Boersma and Hayes 2001) 

• Instead of weights, “ranking values”. 
• Again, evaluation times:  perturb the ranking values with a Gaussian distribution. 
• Now, sort the constraints by ranking value and proceed just as in classical OT. 
• Do this over many evaluation times and you will get a probability distribution over 

candidates. 
 

A FIRST QUANTITATIVE SIGNATURE:  THE SIGMOID CURVE 

14. Step 1:  How a sigmoid curve emerges in MaxEnt 

• Imagine a setup with : 
 One single constraint, called ONOFF, conflicting with  
 A constraint, or set of constraints, defining a scale. 

• Some scales: 
 A family of assimilation triggers of varying strength — e.g. vowels, triggering 

vowel harmony 
 A series of nested levels (varying in “cohesion”) in Lexical Phonology 
 A set of phonology-triggering affixes that vary in their propensity-to-trigger 

• Imagine a theory that takes these ingredients and computes a probability for all possible 
outcomes along the scale. 

• Simplest case first:  the scale is defined by one single constraint, VARIABLE, with 
multiple violation levels. 

 
15. Concretizing a bit 

• Let VARIABLE have seven values, 1-7. 
• It is opposed by ONOFF. 
• As throughout this talk, each input has but two viable candidates:   

 One obeys VARIABLE, violates ONOFF 
 One obeys ONOFF, violates VARIABLE 

• We plot a probability function:   
 Horizontal axis:  value for VARIABLE 
 Vertical axis:  probability that the candidate that obeys ONOFF wins. 

• We will plot for all values, not just the integers 1-7, since the curve emerges more clearly 
that way. 
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16. Do this in MaxEnt — you get a sigmoid 

 
• The sigmoid asymptotes at its extremes to 1 and 0 —assuming that empirical cases exist 

covering enough of the horizontal axis. 
• It is symmetrical about the 50% probability mark. 
• For the equations that relate the shape of a maxent sigmoid to the constraint weights, see 

McPherson and Hayes (2016). 
 

SIGMOIDS ARE EVERYWHERE 

17. In phonology 

• Rate of three process of vowel harmony in Tommo So, for all seven levels of the lexical 
phonology (McPherson and Hayes 2016) 
 VARIABLE = AGREEMORPHOLOGICALLEVELn(vowel feature) 
 ONOFF = FAITHFULNESS(vowel feature) 

 
• Zuraw and Hayes (2017) point out multiple sigmoids (on which more below) for Tagalog 

Nasal Substitution, Hungarian Vowel Harmony, and French Liaison. 
 

18. In speech perception 

• Speech perception studies for decades have demonstrated sigmoid curves 
 Horizontal axis is a phonetic parameter, like Voice Onset Time. 
 Vertical axis probability of a percept, e.g. /p/ instead of /b/. 

• Boersma (1998) suggests that speech perception works like a “backward” stochastic 
grammar, obtaining probabilities for input phonemes from parameters of the signal. 
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• Experts in speech perception are already familiar with MaxEnt models and use them, 
though under a different name. 

 
19. In syntax — with a diachronic wrinkle 

• Sigmoids in language change 
 The classic paper is by Kroch (1989); many followups. 
 On the left is a sigmoid for increase in use of Portuguese definite article before 

possessive ((os) seus livros), ‘(the) his books’ 

 
 Kroch replots his data (on the right, edited) in what he calls the “logit domain” 

and what we will call Harmony:  constant rise, 1.0 units of Harmony per century. 
• Key point:   

 you can model this in maxent or NGH by supposing that the weight of constraint 
rises or falls at a constant rate over time  

 empirically, this produces a sigmoid in the domain of observable probabilities.2  
• This is an oversimplification — see more below. 
 

20. Sigmoids and quantitative signatures of the rival frameworks 

• Uninteresting case:  the horizontal axis is the result of a bundle of different constraints 
(like for different vowel harmony triggers). 
 Here, all of our theories (MaxEnt, Noisy Harmonic Grammar, Stochastic OT) can 

describe any pattern; nothing is at stake. 
• The interesting case is single gradient constraint (our VARIABLE), as in Tommo So. 
 

21. Noisy Harmonic Grammar 

• Basically the same as MaxEnt, but with a complication discussed below. 

22. Stochastic OT 

• Cannot generate sigmoids with a single gradient constraint. 
• Reason:  it is stochasticized Classical OT —  

 Per above, Classical OT discards evidence 
                                                 

2 This said, we still need a mechanism — presumably speakers perceive the synchronic pattern of variation in 
the Harmony domain, and mimic/exaggerate accordingly. 
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 Here, the evidence related to violation count (other than relative count). 
 E.g. * vs. ** is not distinct in classical OT than * vs. *******. 

• Full disclosure:  there is a possible, still little-explored way to get sigmoids in Stochastic 
OT ( “exploded” gradient constraints), proposed in Boersma (1998) and discussed in 
McPherson and Hayes (2016:fn. 21) (but not here). 

 
A MORE COMPLEX CASE:  THE WUG-SHAPED CURVE 

23. Scenario 

• Let us augment the primal case of (16); i.e., one constant constraint like ONOFF vs. one 
variable constraint (like VARIABLE) or family. 

• Now, double the input set, adding a new batch of inputs identical to the first except that 
they violate PERTURBER — a constraint defined on an independent dimension. 

• Example of a perturber (to be covered more below):  in Hungarian, stems take front 
harmony more often if they end in a sibilant; hence *BACK AFTER SIBILANT. 

 
24. Effect of perturbers in Maxent 

• You can perhaps already guess:  they create a second sigmoid, shifted over relative to the 
original sigmoid by a particular amount, namely the weight of PERTURBER. 

 

 
• To some, these sigmoids evoke the adorable Emblematic Animal of Linguistics, and so 

have been called the wug-shaped curve.3 

 
• Skinny wugs, fat wugs:  the wug-shaped curve is fatter when the weight of PERTURBER is 

bigger. 
 

25. Multiple perturbers? 

• Nothing is stopping us, and indeed there are empirical cases (below). 

                                                 
3 Thanks to Dustin Bowers for noticing this and coining the name. 
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• PERTURBER1, PERTURBER2, PERTURBER3, etc. each define a separate sigmoid, according 
to their weights. 

• The result, if you can bear this level of cuteness, might be called the Stripey Wug: 
 

 
 
 

STRIPEY WUGS IN REAL LIFE 

26. Zuraw and Hayes (2017) 

• They put forth three cases. 
• Tagalog Nasal Substitution (e.g. /ŋ+p/ → [m], /ŋ+t/ → [n], etc.) 

 base constraint set:  features of stem-initial consonants 
 perturber constraint set:  each prefix has own propensity to induce mutation, 

formalized with its own perturber constraint. 

 
• French Liaison 

 base constraint set: lexical degree of h-aspiré-ité (tendency to behave as if 
beginning with a silent consonant) 

 perturber constraint set:  lexical propensity to respect h-aspiré preference of the 
following word 

 
 
• Hungarian Vowel Harmony 

 Base constraint set:  phonological environments with differing harmony 
probabilities 

 Perturber constraint set:  stem-final consonant environments (Hayes et al. 2009) 
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27. Wug-shaped curves and stripey wugs in speech perception 

• Ubiquitous; the standard way to assess the strength of some perturbing effect. 

28. Wug-shaped curves and stripey wugs in historical change4 

• We’ve already covered Kroch’s “constant rate” hypothesis. 
• As he notes, the deeper and more meaningful aspect of the hypothesis is its application 

when the same basic change occurs in a set of different contexts. 
• Kroch’s theory says that the change is constant rate when measured as Harmony. 
• So the data, plotted as probability, forms a stripey wug. 
 

29. Richard Zimmermann’s (2017) stripey wug  

• English has gradually changed by shifting possessive have from Aux toward main verb. 
• Zimmermann explored this in four contexts: 

 Negation (I haven’t any, I don’t have any.) 
 Inversion (Have you a penny? Do you have a penny?) 
 Ellipsis (You have a flair, you really have/do.) 
 Adverbs (He has already the approval of the nation/ … already has 

• Each may plausibly be assumed to be affiliated with additional constraints acting as 
Perturbers. 

• The diachronically-shifting constraint governs whether possessive have can be used as an 
Aux. 

• Here is Zimmermann’s stripey wug in stripped-down form: 

 
• From left to right, the sigmoids are for adverbs, negation, inversion, ellipsis 
                                                 

4 Thanks to Tony Kroch and Beatrice Santorini for help with this section; they obviously not responsible for 
misuse or misunderstanding of their suggestions on my part. 
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30. Excursus:  What are the prospects for synchronic MaxEnt syntax? 

• Some very nice work has already been done:  Velldal and Oepen (2005), Bresnan et al. 
(2007), Bresnan and Hay (2008), Irvine and Dredze (2017)   

• The experimental program of Featherston (2005, 2019) makes a sensational claim:   
 We can measure Harmony directly. 
 We just need to use Harmony-based syntax,5 and gather the judgments using 

Magnitude Estimation (Bard et al. 2006). 
 I.e. each syntactic violation substract a characteristic, consistent amount on the 

scale, consistent with Harmonic Grammar. 
 See work of Keller (2000, 2006) for similar results. 

 
31. What about Stochastic OT:  Can it derive wug-shaped curves? 

• In the general case, Stochastic OT does not provide analyses that match wug-shaped 
curve data. 

• For example, here is a wug-shaped curve done in MaxEnt, with 13 discrete data points 
(done for convenience, to ease the Stochastic OT comparison). 
 Instead of wug-format, I used two separate curves on two graphs. 

 
 Fit is almost perfect, so that the black “predicted” curves actually cover up the 

gray “to be modeled” curves. 

                                                 
5 … under another name; Featherston calls it the Decathlon Model. 
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• Now, the same data modeled in Stochastic OT.  
 The curves emerge as attenuated and ill-fitted. 

 
• Why?  Intuitively, PERTURBER cannot be in two places at once; it can only struggle to 

model the separate sigmoids. 
• This can be traced to OT’s assumption that decisions are made only by the highest-

ranking constraint that cares — the key assumption called into question by Zuraw and 
Hayes’s paper (“Intersecting constraint families:  An argument for Harmonic Grammar”) 

 
32. Stochastic OT and empirical instance of stripey wugs 

• Unsurprisingly, Stochastic OT proves to be a poor tool for analyzing the effects of 
intersecting constraint families. 6  E.g., here is the outcome for French (compare (26) 
above with MaxEnt): 

 

 
33. What about Noisy Harmonic Grammar? 

• There is at least one cloud on the horizon:  the sigmoids it generates, in its classical 
version, are asymmetrical: 

 
 

                                                 
6 The full problem for Stochastic OT is even worse than (32) implies:  a Divergence Theorem proven by 

Giorgio Magri and reported in Zuraw and Hayes (2017:529-530) designates a broad range of cases in which 
Stochastic OT cannot generate anything like a wug-shaped curve. 
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• McPherson and Hayes (2016) show this can be pernicious; it yields slightly inferior fits to 

the Tommo So data. 
• Yet, there are many different versions of NHG (Hayes 2016), and some of them generate 

perfectly good sigmoids (and wug-shaped curves, and stripey wugs, Zuraw and Hayes 
2016). 

 
WHERE ARE WE IN THE CHOICE OF FRAMEWORKS? 

34. Stochastic OT strikes me as being in trouble 

• It generates 
 Sigmoids only by fiat (hence not when one constraint embodies a scale) 
 Wug-shaped curves and stripey wugs only under special, lucky, conditions (see 

Zuraw and Hayes (2017) for discussion) 
 

35. Maxent is doing fine by the data given here 

• … but is under attack on other grounds, specifically overgeneration (Magri and Anttila 
2019) 

• Linguists will differ on the strength of overgeneration arguments; which, empirically, are 
the argument from silence (how well have the world’s languages been checked?) 

 
36. Noisy Harmonic Grammar is also in the running 

• … particularly if we use a variant (Hayes 2016) that doesn’t suffer from the 
asymmetrical-sigmoid issue. 

• However, NHG cannot replace MaxEnt as a model of well-formedness (see 
✓[kɪp]/?[pɔɪk]/*[bzɑɹʃk] in (1) above), at least if we use the probabilities-to-GEN 
strategy of Hayes and Wilson (2008). 

 
EPILOGUE:  THE BANANA-SHAPED CURVE 

37. This is really the same math as the wug-shaped curve, but visualized differently 

• Take a wug-shaped curve and replot it, as in the following example. 
 For clarity, we start with a skinny wug: 
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• The lower curve represents probabilities as affected by PERTURBER constraint. 
• We select all “vertical pairs” as shown (they share baseline value), and replot as 

scattergram, obtaining a probability-against probability curve. 
 I.e. comparable pairs, differing in whether PERTURBER is violated. 

 In the replotting, I include the diagonal line (y = x), so we are comparing the two patterns 
with each other, one with aviolation of PERTURBER, one without. 

 Here is the result, a banana-shaped curve: 
 

 
 
• Diagonal line:  non-perturbed cases, given as comparison. 
• Sagging line:  perturbed cases 
• It could equally well have been an upward rather than downward bulge, depending on 

which candidates are penalized by PERTURBER. 
 

38. Intuitive implication of the banana-shaped curve 

• See (10) above, on evidential expensiveness of certainty or near-certainty 
• PERTURBER has its main effects in the medial region, where baseline harmony level isn’t 

already forcing the probability close to zero or one. 
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39. The banana-shaped curve in real life:  Moore-Cantwell’s and Kush’s (2019) English 
stress study 

• This was a “blick” test assessing people’s intuitions about stress placement in English. 
• Should a CVCVCV nonce word receive penultimate or antepenultimate stress? 
• Experimental method (from Guion et al. 2003):  blend together three nonsense syllables. 

 

 
 
• A startling result the authors got:   

 The subjects disagree with each other enormously in whether they should prefer 
antepenultimate or penultimate stress in general. 

• Nevertheless, they show there is considerable order in their data! 
 

40. The Perturber:  Moore-Cantwell’s (2016) “Final [i]” stress constraint 

• Trisyllabic words ending in [i] should have antepenultimate stress. 
 Cf. words like ˈburgundy, ˈcavalry, ˈdynasty, ˈgalaxy, ˈmajesty, which on other 

grounds (Chomsky and Halle 1968 et seq.) “ought to” have penultimate stress. 
 Compare schwa-final words like aˈgenda, aˈlumna, boˈnanza, caˈnasta, laˈsagna 

• How to formalize this?  Nontrivial, but Moore-Cantwell has done it; see her work (2016) 
for a full account. 

• For present purposes, we can use the deadpan constraint “Have antepenultimate stress if 
[i]-final.” 

 
41. But what is the baseline in Moore-Cantwell and Kush’s experiment? 

• I.e., why are the participants so amazingly variegated in their baseline preference for 
antepenultimate stress??   

• Here is a conjecture. 
 

42. Vocabulary strata in English stress 

• English stress has major effects of vocabulary stratum (cf. SPE, Ito and Mester 1995). 
• Words perceived as [+foreign] (i.e. truly “exotic”, not just Latinate) tend to obey the 

following, perhaps Spanish-derived, stress pattern: 
 Stress the penult if the final is CV;  
 Else stress the final (i.e. if CVC). 
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• Foreign words often obey this rule in the speech of Anglophones, even when the result 
both violates the native-English stress norm and produces the wrong answer in the source 
language! (Janda et al. 1994) 
 Final CVC:  Hebrew *Shiˈmon *Peˈres, Menachem *Beˈgin7, *Raˈbin; Yiddish 

*Manˈdel, Aklan *Akˈlan, Spanish *Chaˈvez (all final in many people’s English, 
penultimate in source) 

 Final CVCV:  Spanish Sepulˈveda, Japanese Oˈsaka, Italian Cristoˈfori, Hungarian 
paˈprika (penultimate in many people’s English, antepenultimate in source) 

• Moore-Cantwell and Kush left it up to the participants whether to regard the experimental 
words as foreign or native, and this perhaps was the source of the massive variation. 
 We might learn more by manipulating frame sentences.8 

 
43. The banana-shaped curve in Moore-Cantwell and Kush (2019) 

• The diagonal set of points simply encodes the cases where one or more participants 
assigned the probability (on either axis) of antepenultimate stress to the [ə]-final stimuli. 

• Aligned above this point:  the mean value (same subset of participants) assigned to the [i] 
final stimuli. 

 
 
• The bulge is upward, since in this case Perturber constraint favors antepenultimate stress. 
• For rigor, you can check the maxent math:  take logs of probabilities, then see if the 

regression equation y = x + b fits ok; r = .981. 
 
 

                                                 
7 The public got this right in the end; Janda et al. report the earlier stages of hyperforeignization. 
8 “We sang the fine old English folk song [ˈmæʃəbi/məˈʃæbi]”; “Hyman served up delightful steaming plates 

of [ˈdɛləsə/dəˈlɛsə]”. 
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SUMMING UP 

44. Theme 

• We contrive to use a little bit of math fill the gap between abstract principles and 
empirical work. 

• The math gives us general quantitative signatures — visible to the eye when plotted. 
• We can use the presence of signature-like data as a way to evaluate the theories. 
 

45. Who is winning? 

• Especially if we consider the Zuraw/Hayes cases:  the winner is either form of stochastic 
Harmonic Grammar (MaxEnt, NHG). 
 They match the wug, stripey wug, and diagonal banana signatures. 

• Stochastic OT (historically, a great way to lead phonology into the domain of quantitative 
modeling) seems not to be holding up under this kind of scrutiny. 

 
46. Further work 

• Sorting these issues out … 
• I am astonished by Featherston’s claim that Harmony can be directly measured, and 

would love to see this checked in the domain of phonology. 
• I would also love to see work extending the Krochian diachronic-syntax tradition — itself 

essentially founded in MaxEnt — to synchronic syntax.  The way is open: 
 existing MaxEnt syntax work by Bresnan et al. (2007) and others 
 the Featherstonian research paradigm, if valid, as a way of finding good data 
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