Assessing grammatical architectures through their quantitative signatures

OVERVIEW

1. Gradient phenomena in phonology
 - Types of phonology where we need numbers and probabilities:
 - Generating **alternative surface forms**, at varying frequencies, from the same underlying form (much of the research literature in sociolinguistics)
 - **Frequency-matching the lexicon** when generating novel forms (Zuraw 2000 et seq.). E.g. Hungarian [CiC] stems take about 7% Back harmony in both the lexicon and in wug-testing; Hayes et al. 2009.
 - **Gradient well-formedness judgments**; e.g. ✓[kip], ?[pɔɪk], *[bzɑɹʃk], which frequency-match the patterns of the ambient language (Hayes and Wilson 2008)

2. Frameworks for analysis of gradience
 - **MaxEnt grammars** (Smolensky 1986, Goldwater and Johnson 2003)
 - **Noisy Harmonic Grammar** (Boersma and Pater 2016, Hayes 2016)
 - **Stochastic Optimality Theory** (Boersma 1998, Boersma and Hayes 2001)
 - These often behave similarly and are all currently “in contention” as frameworks.

3. Strategy taken here
 - Think a little bit abstractly about these frameworks, in a particular way:
 - We want to find general predictions that will guide us in theory-evaluation.
 - These might be called **quantitative signatures**
 - Here, I will do several, for each:
 - describe and explain the quantitative signature
 - cite real-world cases
 - say which frameworks possess these signatures

DESCRIPTION OF MAXENT

4. Basics
 - In linguistics, MaxEnt is a version of Optimality Theory (Prince and Smolensky 1993). We have:
 - inputs
 - candidate outputs
constraints used to make the decision

- The theory is probabilistic, so it assigns a probability to every member of GEN (most of them essentially zero).
- With these assigned probabilities, we can assess the predictions of the analysis against quantitative data.

5. MaxEnt and common sense

- Suggestion: think of constraint violations as evidence that helps you decide which candidates should win or lose (better: have high or low probability)
- MaxEnt can be viewed as a mathematicization of how evidence is sensibly brought to bear on decisions.
- I suggest that, as such, it is a mathematically close embodiment of common sense.

6. The MaxEnt formula deriving probability of candidate \(x \) from its tableau

\[
\Pr(x) = \frac{\exp(-\sum_i w_i f_i(x))}{Z}, \text{ where } Z = \sum_j \exp(-\sum_i w_i f_i(x_j))
\]

- “The probability of candidate \(x \) is derived from the tableau information as …”
- We will cover the whole formula one step at a time.

7. Weights

- Every constraint has a nonnegative number, its weight, which tells you how strong it is.
 - More specifically, how much it lowers the probability of candidates that violate it.
 - In (6), this is \(w_i \) for each constraint \(i \).
 - Weights are intuitive — we know that reasons differ in cogency.

8. MaxEnt, Step 1

- For each tableau cell, multiply the number of violations by the weight of the constraint.
 - In (6), this is \(w_if_i(x) \) (\(x \) is candidate, \(f \) is number of violations)
 - This is intuitive, in the sense that ** is plausibly “twice the evidence” of *.

9. MaxEnt, Step 2

- Add result of Step 1 across tableau rows to get a single value.
- This is an aggregate penalty score for a candidate, called the Harmony.
- In formula (6), Harmony is represented by \(\sum_i w_if_i(x) \)
- Harmony is intuitive:
 - When we make rational decisions, we appropriately weigh all the evidence.
 - Classical OT is bravely counterintuitive: the decision between two rival candidates is made solely by the highest ranked constraint that distinguishes them.
 - The claim to be made here is: yes, brave, but empirically wrong
10. **MaxEnt, Step 3**

- Take every Harmony value and compute from it the corresponding eHarmony.\(^1\)
- Specifically, negate the Harmony, then take \(e\) (about 2.7) to the result (graphed here).
 - In formula (6), eHarmony is: \(\exp(-\sum_i w_i f_i(x))\).
 - Graphing eHarmony against Harmony:

![Graph of eHarmony vs. Harmony]

- eHarmony performs a sort of “squishing”: If Harmony gets very big, eHarmony is already close to zero and gets only slightly smaller.
- I claim that eHarmony is *intuitive*:
 - if we are at probability .5 for choosing a candidate, we welcome evidence to help decide and are seriously influenced by it (steep)
 - But for a candidate already heavily penalized (e.g. .001), even a great deal of evidence may only move us to .0005.
 - Same for candidates close to one: their rivals are already penalized by a lot of Harmony and increase will only move the top candidate e.g. .999 → .9995
 - The principle: *certainty is evidentially expensive.*
 - This will matter below.

11. **MaxEnt, Last step**

- Sum the eHarmony for every candidate for this input, call the result \(Z\).
- In (6), this is: \(\sum_j \exp(-\sum_i w_i f_i(x_j))\).
- The *probability* of a candidate is its eHarmony divided by \(Z\); i.e. its share in \(Z\)
- This is also intuitive: a candidate is less likely if it has strong rivals.
- Formula (6) is now explicated in full.

TWO OTHER CONSTRAINT-BASED PROBABILISTIC FRAMEWORKS

12. **Noisy Harmonic Grammar (Boersma and Pater 2016)**

- Compute Harmony as in MaxEnt.
- Imagine the grammar being used on a series of “evaluation times”.
- At each evaluation time, let each weight be “perturbed” by a value taken from a Gaussian distribution (normal curve).
- The winner for that evaluation time is the candidate with the lowest Harmony penalty.

\(^1\) Term comes from Wilson (2014), who was joking (eHarmony is a dating website), but I like the mnemonic.
• Over multiple evaluation times, we get a probability distribution, which we can check against data.

• Instead of weights, “ranking values”.
• Again, evaluation times: perturb the ranking values with a Gaussian distribution.
• Now, sort the constraints by ranking value and proceed just as in classical OT.
• Do this over many evaluation times and you will get a probability distribution over candidates.

A FIRST QUANTITATIVE SIGNATURE: THE SIGMOID CURVE

14. Step 1: How a sigmoid curve emerges in MaxEnt

• Imagine a setup with:
 ➢ One single constraint, called ONOFF, conflicting with
 ➢ A constraint, or set of constraints, defining a scale.
• Some scales:
 ➢ A family of assimilation triggers of varying strength — e.g. vowels, triggering vowel harmony
 ➢ A series of nested levels (varying in “cohesion”) in Lexical Phonology
 ➢ A set of phonology-triggering affixes that vary in their propensity-to-trigger
• Imagine a theory that takes these ingredients and computes a probability for all possible outcomes along the scale.
• Simplest case first: the scale is defined by one single constraint, VARIABLE, with multiple violation levels.

15. Concretizing a bit

• Let VARIABLE have seven values, 1-7.
• It is opposed by ONOFF.
• As throughout this talk, each input has but two viable candidates:
 ➢ One obeys VARIABLE, violates ONOFF
 ➢ One obeys ONOFF, violates VARIABLE
• We plot a probability function:
 ➢ Horizontal axis: value for VARIABLE
 ➢ Vertical axis: probability that the candidate that obeys ONOFF wins.
• We will plot for all values, not just the integers 1-7, since the curve emerges more clearly that way.
16. **Do this in MaxEnt — you get a sigmoid**

- The sigmoid asymptotes at its extremes to 1 and 0 — assuming that empirical cases exist covering enough of the horizontal axis.
- It is symmetrical about the 50% probability mark.
- For the equations that relate the shape of a maxent sigmoid to the constraint weights, see McPherson and Hayes (2016).

SIGMOIDS ARE EVERYWHERE

17. **In phonology**

- Rate of three processes of vowel harmony in Tommo So, for all seven levels of the lexical phonology (McPherson and Hayes 2016)
 - \(\text{VARIABLE} = \text{AGREE}_{\text{MORPHOLOGICAL LEVEL}}(\text{vowel feature}) \)
 - \(\text{ONOFF} = \text{FAITHFULNESS}(\text{vowel feature}) \)

- Zuraw and Hayes (2017) point out multiple sigmoids (on which more below) for Tagalog Nasal Substitution, Hungarian Vowel Harmony, and French Liaison.

18. **In speech perception**

- Speech perception studies for decades have demonstrated sigmoid curves
 - Horizontal axis is a phonetic parameter, like Voice Onset Time.
 - Vertical axis probability of a percept, e.g. /p/ instead of /b/.
- Boersma (1998) suggests that speech perception works like a “backward” stochastic grammar, obtaining probabilities for input phonemes from parameters of the signal.
• Experts in speech perception are already familiar with MaxEnt models and use them, though under a different name.

19. In syntax — with a diachronic wrinkle

• Sigmoids in language change
 ➢ The classic paper is by Kroch (1989); many followups.
 ➢ On the left is a sigmoid for increase in use of Portuguese definite article before possessive ((os) seus livros), ‘(the) his books’

 ➢ Kroch replots his data (on the right, edited) in what he calls the “logit domain” and what we will call Harmony: constant rise, 1.0 units of Harmony per century.

• Key point:
 ➢ you can model this in maxent or NGH by supposing that the weight of constraint rises or falls at a constant rate over time
 ➢ empirically, this produces a sigmoid in the domain of observable probabilities.²

• This is an oversimplification — see more below.

20. Sigmoids and quantitative signatures of the rival frameworks

• Uninteresting case: the horizontal axis is the result of a bundle of different constraints (like for different vowel harmony triggers).
 ➢ Here, all of our theories (MaxEnt, Noisy Harmonic Grammar, Stochastic OT) can describe any pattern; nothing is at stake.
• The interesting case is single gradient constraint (our VARIABLE), as in Tommo So.

21. Noisy Harmonic Grammar

• Basically the same as MaxEnt, but with a complication discussed below.

22. Stochastic OT

• Cannot generate sigmoids with a single gradient constraint.
• Reason: it is stochasticized Classical OT —
 ➢ Per above, Classical OT discards evidence

² This said, we still need a mechanism — presumably speakers perceive the synchronic pattern of variation in the Harmony domain, and mimic/exaggerate accordingly.
Here, the evidence related to violation count (other than relative count).

E.g. * vs. ** is not distinct in classical OT than * vs. *******.

- Full disclosure: there is a possible, still little-explored way to get sigmoids in Stochastic OT ("exploded" gradient constraints), proposed in Boersma (1998) and discussed in McPherson and Hayes (2016:fn. 21) (but not here).

A MORE COMPLEX CASE: THE WUG-SHAPED CURVE

23. Scenario

- Let us augment the primal case of (16); i.e., one constant constraint like OnOff vs. one variable constraint (like VARIABLE) or family.
- Now, double the input set, adding a new batch of inputs identical to the first except that they violate PERTURBER — a constraint defined on an independent dimension.
- Example of a perturber (to be covered more below): in Hungarian, stems take front harmony more often if they end in a sibilant; hence *BACK AFTER SIBILANT.

24. Effect of perturbers in Maxent

- You can perhaps already guess: they create a second sigmoid, shifted over relative to the original sigmoid by a particular amount, namely the weight of PERTURBER.

- To some, these sigmoids evoke the adorable Emblematic Animal of Linguistics, and so have been called the **wug-shaped curve**.3

- Skinny wugs, fat wugs: the wug-shaped curve is fatter when the weight of PERTURBER is bigger.

25. Multiple perturbers?

- Nothing is stopping us, and indeed there are empirical cases (below).

3 Thanks to Dustin Bowers for noticing this and coining the name.
• PERTURBER1, PERTURBER2, PERTURBER3, etc. each define a separate sigmoid, according to their weights.

• The result, if you can bear this level of cuteness, might be called the Stripey Wug:

![Graph showing sigmoids](image)

STRIPEY WUGS IN REAL LIFE

• They put forth three cases.

• Tagalog Nasal Substitution (e.g. /ŋ+p/ → [m], /ŋ+t/ → [n], etc.)
 - base constraint set: features of stem-initial consonants
 - perturber constraint set: each prefix has own propensity to induce mutation, formalized with its own perturber constraint.

![Graph showing affricate mutation rates](image)

• French Liaison
 - base constraint set: lexical degree of *h*-aspiré-ité (tendency to behave as if beginning with a silent consonant)
 - perturber constraint set: lexical propensity to respect *h*-aspiré preference of the following word

![Graph showing liaison rates](image)

• Hungarian Vowel Harmony
 - Base constraint set: phonological environments with differing harmony probabilities
 - Perturber constraint set: stem-final consonant environments (Hayes et al. 2009)
27. Wug-shaped curves and stripey wugs in speech perception

- Ubiquitous; the standard way to assess the strength of some perturbing effect.

28. Wug-shaped curves and stripey wugs in historical change

- We’ve already covered Kroch’s “constant rate” hypothesis.
- As he notes, the deeper and more meaningful aspect of the hypothesis is its application when the same basic change occurs in a set of different contexts.
- Kroch’s theory says that the change is constant rate when measured as Harmony.
- So the data, plotted as probability, forms a stripey wug.

29. Richard Zimmermann’s (2017) stripey wug

- English has gradually changed by shifting possessive have from Aux toward main verb.
- Zimmermann explored this in four contexts:
 - Negation (I haven’t any, I don’t have any.)
 - Inversion (Have you a penny? Do you have a penny?)
 - Ellipsis (You have a flair, you really have/do.)
 - Adverbs (He has already the approval of the nation/ … already has)
- Each may plausibly be assumed to be affiliated with additional constraints acting as Perturbers.
- The diachronically-shifting constraint governs whether possessive have can be used as an Aux.
- Here is Zimmermann’s stripey wug in stripped-down form:

- From left to right, the sigmoids are for adverbs, negation, inversion, ellipsis

4 Thanks to Tony Kroch and Beatrice Santorini for help with this section; they obviously not responsible for misuse or misunderstanding of their suggestions on my part.
30. **Excursus: What are the prospects for synchronic MaxEnt syntax?**

- Some very nice work has already been done: Velldal and Oepen (2005), Bresnan et al. (2007), Bresnan and Hay (2008), Irvine and Dredze (2017)
- The experimental program of Featherston (2005, 2019) makes a sensational claim:
 - We can measure Harmony directly.
 - We just need to use Harmony-based syntax,\(^5\) and gather the judgments using Magnitude Estimation (Bard et al. 2006).
 - I.e. each syntactic violation subtract a characteristic, consistent amount on the scale, consistent with Harmonic Grammar.
 - See work of Keller (2000, 2006) for similar results.

31. **What about Stochastic OT: Can it derive wug-shaped curves?**

- In the general case, Stochastic OT *does not provide analyses* that match wug-shaped curve data.
- For example, here is a wug-shaped curve done in MaxEnt, with 13 discrete data points (done for convenience, to ease the Stochastic OT comparison).
 - Instead of wug-format, I used two separate curves on two graphs.

\[\text{Fit is almost perfect, so that the black “predicted” curves actually cover up the gray “to be modeled” curves.}\]

\(^5\) … under another name; Featherston calls it the Decathlon Model.
• Now, the same data modeled in Stochastic OT.
 ➢ The curves emerge as attenuated and ill-fitted.

• Why? Intuitively, PERTURBER cannot be in two places at once; it can only struggle to model the separate sigmoids.
• This can be traced to OT’s assumption that decisions are made only by the highest-ranking constraint that cares — the key assumption called into question by Zuraw and Hayes’s paper (“Intersecting constraint families: An argument for Harmonic Grammar”)

32. Stochastic OT and empirical instance of stripey wugs

• Unsurprisingly, Stochastic OT proves to be a poor tool for analyzing the effects of intersecting constraint families. E.g., here is the outcome for French (compare (26) above with MaxEnt):

33. What about Noisy Harmonic Grammar?

• There is at least one cloud on the horizon: the sigmoids it generates, in its classical version, are asymmetrical:

6 The full problem for Stochastic OT is even worse than (32) implies: a Divergence Theorem proven by Giorgio Magri and reported in Zuraw and Hayes (2017:529-530) designates a broad range of cases in which Stochastic OT cannot generate anything like a wug-shaped curve.
• McPherson and Hayes (2016) show this can be pernicious; it yields slightly inferior fits to the Tommo So data.
• Yet, there are many different versions of NHG (Hayes 2016), and some of them generate perfectly good sigmoids (and wug-shaped curves, and stripey wugs, Zuraw and Hayes 2016).

WHERE ARE WE IN THE CHOICE OF FRAMEWORKS?

34. Stochastic OT strikes me as being in trouble
• It generates
 ➢ Sigmoids only by fiat (hence not when one constraint embodies a scale)
 ➢ Wug-shaped curves and stripey wugs only under special, lucky, conditions (see Zuraw and Hayes (2017) for discussion)

35. Maxent is doing fine by the data given here
• … but is under attack on other grounds, specifically overgeneration (Magri and Anttila 2019)
• Linguists will differ on the strength of overgeneration arguments; which, empirically, are the argument from silence (how well have the world’s languages been checked?)

36. Noisy Harmonic Grammar is also in the running
• … particularly if we use a variant (Hayes 2016) that doesn’t suffer from the asymmetrical-sigmoid issue.
• However, NHG cannot replace MaxEnt as a model of well-formedness (see ✓[kɪp]/?[pɔɪk]/*[bzəʃk] in (1) above), at least if we use the probabilities-to-GEN strategy of Hayes and Wilson (2008).

EPILOGUE: THE BANANA-SHAPED CURVE

37. This is really the same math as the wug-shaped curve, but visualized differently
• Take a wug-shaped curve and replot it, as in the following example.
 ➢ For clarity, we start with a skinny wug:
• The lower curve represents probabilities as affected by PERTURBER constraint.
• We select all “vertical pairs” as shown (they share baseline value), and replot as scattergram, obtaining a probability-against probability curve.
 ➢ I.e. comparable pairs, differing in whether PERTURBER is violated.
 ➢ In the replotting, I include the diagonal line \(y = x \), so we are comparing the two patterns with each other, one with aviolation of PERTURBER, one without.
 ➢ Here is the result, a **banana-shaped curve**:

![Banana-shaped curve](image)

• Diagonal line: non-perturbed cases, given as comparison.
• Sagging line: perturbed cases
• It could equally well have been an upward rather than downward bulge, depending on which candidates are penalized by PERTURBER.

38. **Intuitive implication of the banana-shaped curve**

• See (10) above, on evidential expensiveness of certainty or near-certainty
• PERTURBER has its main effects in the *medial region*, where baseline harmony level isn’t already forcing the probability close to zero or one.

- This was a “blick” test assessing people’s intuitions about stress placement in English.
- Should a CVCVCV nonce word receive penultimate or antepenultimate stress?
- Experimental method (from Guion et al. 2003): blend together three nonsense syllables.

- A startling result the authors got:
 - The subjects disagree with each other enormously in whether they should prefer antepenultimate or penultimate stress in general.
- Nevertheless, they show there is considerable order in their data!

40. The Perturber: Moore-Cantwell’s (2016) “Final [i]” stress constraint

- Trisyllabic words ending in [i] should have antepenultimate stress.
 - Compare schwa-final words like aˈgenda, aˈlumna, boˈnanza, caˈnasta, laˈsagna
- How to formalize this? Nontrivial, but Moore-Cantwell has done it; see her work (2016) for a full account.
- For present purposes, we can use the deadpan constraint “Have antepenultimate stress if [i]-final.”

41. But what is the baseline in Moore-Cantwell and Kush’s experiment?

- I.e., why are the participants so amazingly variegated in their baseline preference for antepenultimate stress??
- Here is a conjecture.

42. Vocabulary strata in English stress

- English stress has major effects of vocabulary stratum (cf. SPE, Ito and Mester 1995).
- Words perceived as [+foreign] (i.e. truly “exotic”, not just Latinate) tend to obey the following, perhaps Spanish-derived, stress pattern:
 - Stress the penult if the final is CV;
 - Else stress the final (i.e. if CVC).
• Foreign words often obey this rule in the speech of Anglophones, even when the result both violates the native-English stress norm and produces the wrong answer in the source language! (Janda et al. 1994)

 - Final CVC: Hebrew *Shiˈmon *Peˈres, Menachem *Beˈgin7; Yiddish *Manˈdel, Aklan *Akˈlan, Spanish *Chaˈvez (all final in many people’s English, penultimate in source)
 - Final CVCC: Spanish Sepulˈveda, Japanese Oˈsaka, Italian Cristoˈfori, Hungarian paˈprika (penultimate in many people’s English, antepenultimate in source)

• Moore-Cantwell and Kush left it up to the participants whether to regard the experimental words as foreign or native, and this perhaps was the source of the massive variation.
 - We might learn more by manipulating frame sentences.8

43. The banana-shaped curve in Moore-Cantwell and Kush (2019)

• The diagonal set of points simply encodes the cases where one or more participants assigned the probability (on either axis) of antepenultimate stress to the [ə]-final stimuli.
• Aligned above this point: the mean value (same subset of participants) assigned to the [i] final stimuli.

![Graph showing the banana-shaped curve]

• The bulge is upward, since in this case Perturber constraint favors antepenultimate stress.
• For rigor, you can check the maxent math: take logs of probabilities, then see if the regression equation \(y = x + b \) fits ok; \(r = .981 \).

7 The public got this right in the end; Janda et al. report the earlier stages of hyperforeignization.
8 “We sang the fine old English folk song [ˈmæʃəbi/məˈʃæbi]”; “Hyman served up delightful steaming plates of [ˈdɛləsə/ˈdəlɛsə]”.
SUMMING UP

44. Theme

- We contrive to use a little bit of math fill the gap between abstract principles and empirical work.
- The math gives us general quantitative signatures — visible to the eye when plotted.
- We can use the presence of signature-like data as a way to evaluate the theories.

45. Who is winning?

- Especially if we consider the Zuraw/Hayes cases: the winner is either form of stochastic Harmonic Grammar (MaxEnt, NHG).
 - They match the wug, stripey wug, and diagonal banana signatures.
- Stochastic OT (historically, a great way to lead phonology into the domain of quantitative modeling) seems not to be holding up under this kind of scrutiny.

46. Further work

- Sorting these issues out …
- I am astonished by Featherston’s claim that Harmony can be directly measured, and would love to see this checked in the domain of phonology.
- I would also love to see work extending the Krochian diachronic-syntax tradition — itself essentially founded in MaxEnt — to synchronic syntax. The way is open:
 - existing MaxEnt syntax work by Bresnan et al. (2007) and others
 - the Featherstonian research paradigm, if valid, as a way of finding good data

References

Jurafsky, Dan and James H. Martin (2019) Speech and Language Processing (3rd ed. draft), web.stanford.edu/~jurafsky/slp3/

Moore-Cantwell, Claire and Dave Kush (2019) Cognitive load impairs access to the phonological grammar. Lecture given at the UCLA/USC Joint Seminar in Phonology, Fall meeting.

