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1. Background 
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1.1 What sort of formal models should we 

consider for the analysis of gradience? 

• Some contenders not discussed here:  
 analogical models (Skousen 2002, Bailey and Hahn 

2001, Daelemans et al. 2004) 
 connectionist models (Rumelhart and McClelland 

1986 et seq.) 

• Focus here:   “Quantitatively augmented” generative 
models 
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1.2 Quantitatively augmented generative models 

• Rules and constraints of generative grammar cover the 
primary descriptive work, and are adapted to gradience by 
embedding them in a quantitative framework. 

• Such frameworks are usually couched in the language of 
probability. 

• I will address two such models: 
 Stochastic Optimality Theory  
 Maximum Entropy models  
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1.3 Gradient model and algorithmic learning 

• Gradient analysis is hard, and we may be able to do better 
with machine-learned grammars.  

 Implemented systems can comb through the data, 
fine-tuning the grammar with greater care than 
humans can.   

• Grammars learned by algorithm address the long-standing 
goal of generative theorizing, namely to explain how 
acquisition is possible.  
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2. Stochastic Optimality Theory 
• Refs.:  Boersma (1997), Boersma and Hayes (2001) 

• Basics: 
 Constraints are arranged in ranking values on a 

numerical scale, corresponding to their probability 
of being “ranked high.” 

 The ranking values define the means of Gaussian 
probability distributions, from which sampling takes 
place when the grammar is applied. 
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2.1  Example 

  (taken from Boersma and Hayes 2001) 

• Two constraints with distributions centered at the ranking 
values 87.7 and 83.1: 
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2.2 Sampling from the distributions and deriving a 

winner 

 
• Obtain a selection point for each constraint by sampling. 
• Sort constraint in descending order by selection point 
• Find winner by normal methods of OT. 

 
/Input/ C1 

87.9 
C2  

83.6
 Candidate 1  * 

Candidate 2 *!  
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2.3  A sample with the less-probable ranking and 

winner 

 
 
 
 
 

/Input/ C2 
85.1 

C1  
83.4

Candidate 1 *!  
 Candidate 2  * 
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2.4 Long run behavior 

• This grammar generates Candidate 1 94.8% of the time, 
Candidate 2 5.2%. 

• This is deducible analytically, or by simulation. 
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2.5 Learning Stochastic OT Grammars  

• Starting point  
 a constraint set  
 observed output forms with frequencies 
 suitable set of rival candidates for each input 
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2.6 Gradual Learning Algorithm (Boersma 1997) 

• Try the grammar on known input-output pairs.  If it errs: 
 Incrementally raise the ranking values of all 

“winner-preferring” constraints 
 Incrementally lower the ranking values of all “loser-

preferring” constraints. 

• This has been shown in many cases to achieve good 
statistical matching to the learning data. 
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2.7 Other ranking algorithms for Stochastic OT  

• Maslova (to appear), Lin (2005), Wilson (2007). 
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3. Maximum Entropy grammars 
• References:  Eisner (2000), Johnson (2002), Goldwater 

and Johnson (2003), Hayes and Wilson (2007) 
 Closely related to Harmonic Grammar (Smolensky 

1986, Smolensky and Legendre 2006) and more 
distantly to Linear Optimality Theory (Keller 2000, 
2006). 
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3.1 Basics of Maximum Entropy grammars 

• Every constraint bears a weight, a nonnegative real 
number. 

• The weight of a constraint specifies a probability 
decrement for candidates that violate it:  “violating this 
constraint makes you x much less probable”. 
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3.2 The math relating weights to output 

probabilities 

• Step 1:  for each candidate x for an given input: 
 Compute its violations for each constraint Ci. 
 For each constraint Ci multiply violations Ci(x) times 

the weight of the constraint, wi. 
 Sum the result over all constraints: 

 
Σi wi Ci(x) 
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• Step 2:  take e to the negative power of the sum just 

calculated: 
 

e–Σi wi Ci(x) 
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• Step 3:  carry out similar sums for each candidate having 

the same input, and sum them.  Call the result Z. 
 
 

Z = Σy (e–Σi wi Ci(y) ) 
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• Step 4:  find the fraction of Z assigned to the candidate x 

under discussion: 
 

Σx exp(–Σi wi Ci(x))
Z   

 
This is the probability of candidate x. 
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3.3 Sample grammar  

Text Cand. Target 
freq. 

Predicted 
freq. 

ME 
Score

C1 C2 C3 

     32.7 11.0 0 
Input1 1-1 1 0.99999993 11.0  *  
 1-2 0 0.00000007 32.7 *   
Input2 2-1 1 0.9999998 0   * 
 2-2 0 0.0000002 11.0  *  

 
• Weights were learned by algorithm; see below. 
• Example calculation, first predicted score:   

  
e–11.0

e–32.7 + e–11.0 = 0.99999993, the practical equivalent of 1. 
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3.4 Learning 

• There are many ways to find the weights for a MaxEnt 
grammar. 

• I cover here the method described and used in Hayes and 
Wilson (2007). 

• This draws heavily on Della Pietra, Della Pietra, and 
Lafferty (1997). 
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3.5 Criterion 

• Maximize the probability of the observed data P(D), given 
the constraint set (maximum likelihood estimation) 

 P(D) is the product of the probabilities of each 
observed datum, i.e. Πx∈D P(x) 

 
• This is a widely adopted criterion in learning theory. 

• For an intuitive rationale, observe that it likewise 
minimizes the probability of the unobserved data, since 
probability sums to one for each input. 
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3.6 Method for maximizing probability of 

observed data 

• A hill-climbing search, conducted on an n-dimensional 
surface,  

 n = number of constraints.  
 “Altitude” is P(D). 
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3.7 Example of hill-climbing 

• Here, n is 2, vertical axis depicts P(D): 
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3.8 Climbing a hill stepwise:  example 

• Contour map of same hill; top is at (3, 2). 
 Stage Weight 1 Weight 2
 1 1 1 
 2 2.77 2.19 
 3 2.94 1.94 
 4 2.96 1.99 
 5 2.98 2 
 6 2.99 2 
 7 3 2 
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3.9 How to climb 

• Climbing follows the gradient; i.e. vector of partial 
derivatives of (log) probability of observed data against 

individual weights (
∂
∂wi

 log(P(D)). 

• A theorem due to Della Pietra et al. (1997) tells us how to 
compute the gradient:  the component for each constraint 
is O – E, where  

 O = observed violation count in learning data 
 E = expected violation count (estimable from 

current guess for weights) 
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3.10 You won’t get lost… 

• Della Pietra et al. (1997) also demonstrate that the hill is 
convex (only one peak); hence no getting stuck in local 
maxima. 
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3.11 Convergence 

• Since the gradient is known, and the search space is 
convex, the weights found are guaranteed to be optimal; 
i.e. to maximize P(D).  
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3.12 Simulations reported here 

• Carried out with a software implementation of this 
algorithm created by Colin Wilson; public version in 
progress. 
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4. Some comparisons on general       
      grounds 
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4.1 No Harmonic bounding in MaxEnt 

• In OT, any candidate that has a strict superset of a rival’s 
violations never wins.   

• Not so in MaxEnt; see below. 
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4.2 Ganging  

• Ganging effects:  when two constraints combine to 
overcome the effect of one competing constraint 

 Stochastic OT permits partial, gradient ganging 
effects (see Hayes and Londe 2006, 81, for a 
Hungarian example) 

 Maxent also permits outright categorical ganging. 
 For discussion of ganging, both empirical and 

theoretical, see Jäger and Rosenbach (2006), Keller 
(2000, 2006), McClelland and Van der Wyck 
(2006), Pater, Bhatt and Potts (2007). 
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4.3 A point of similarity 

• Every non-stochastic OT analysis has a MaxEnt 
equivalent (Johnson 2002, Prince 2002), but not vice versa 
(Smolensky and Legendre 2006, Pater, Bhatt and Potts, 
2007), so the doubt is in the area of restrictiveness, not 
capacity. 
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4.4 Comparing learning algorithms 

• Unlike with MaxEnt learning, the support for GLA is 
purely “empirical”:  no proof has been found that it will 
find the best-fit ranking values for any data pattern. 

• Nor will there ever be.  Pater (in press) has constructed a 
clever counterexample: 

 an insidious pattern where many of the “winner 
preferrers” are, for other inputs, “loser preferrers”, 
fatally confusing the GLA. 

• The MaxEnt weighting algorithm given above easily 
learns Pater’s data pattern, as I have checked. 

• The unreliability of the GLA will be a factor in the 
discussion below. 
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4.5 MaxEnt weighting yields great precision 

• Boersma and Hayes’s (2001) Ilokano simulation, redone in 
MaxEnt: 

Output Target frequency GLA result MaxEnt    
[tawʔen] 1/2 .489 0.50000006 
[taʔwen] 1/2 .511 0.49999990 
[buːbwaja] 1/3 .329 0.33333334 
[bwajbwaja] 1/3 .337 0.33333328 
[bubwaja] 1/3 .334 0.33333329 
 

• This is of no importance for modeling experimental data 
(which has no such precision), but very helpful for 
diagnosing the adequacy of constraints. 
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4.6 Remainder of this talk 

• Informal survey of my research life over the past two 
years—working with both GLA and MaxEnt to solve 
analytic problems. 

• I don’t yet know what the right tool for analysis of 
gradience is, yet, but hope that my experience is of 
interest. 

• Cases: 
 Comparing the performance of stochastic OT/GLA 

with MaxEnt on a large simulation in gradient 
metrics.  

 Learning of gradient phonotactics (summarizing 
Hayes and Wilson 2007).   
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5. The textsetting problem 
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5.1 The textsetting problem 

• Suppose we have a phonological representation, like this: 
 

Phrasing:   IP     (Intonational Phrase)   
        
   PP                     PP   (Phonological Phrase) 
   |      
   CG    CG  CG (Clitic Group) 
   |       | 
  W W  W  W  W   W    W  (Phonological Word) 
  | | | | |    | 
Stress: 0 3 0 0 0 4  0 2 (SPE stress numbers)   
  I wooed her in the sum-  mer time 
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… and a rhythmic representation like this (Lerdahl and 

Jackendoff 1981) 
 

   x      x    x    x  
 x  x  x  x  x  x  x  x  
 x x x x x x x x x x x x x x x x 

 
• What should be the temporal alignment of text to grid? 
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5.2 Possibilities I 
   x      x    x    x  
 x  x  x  x  x  x  x  x  
 x x x x x x x x x x x x x x x x 
 
 
 I  wooed  her  in  the  sum-  mer  time 
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5.3 Possibilities II 
   x      x    x    x  
 x  x  x  x  x  x  x  x  
 x x x x x x x x x x x x x x x x 
 
 
 I  wooed  her  in  the  sum-  mer  time 
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5.4 Possibilities III 
   x      x    x    x  
 x  x  x  x  x  x  x  x  
 x x x x x x x x x x x x x x x x 
 
 
 I  wooed  her  in  the  sum-  mer  time 

 
 



  43 
5.5 Possibilities IV 
   x      x    x    x  
 x  x  x  x  x  x  x  x  
 x x x x x x x x x x x x x x x x 
 
 
 I  wooed  her  in  the  sum-  mer  time 
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5.6  Not a possibility:  one ill-formed textsetting 
   x      x    x    x  
 x  x  x  x  x  x  x  x  
 x x x x x x x x x x x x x x x x 
 
 
 *I    wooed  her  in  the  sum-  mer  time 
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5.7 The textsetting problem 

• People align texts to grids fluently—e.g. when they sing 
new verses to songs.  How do they do it?  How do they 
judge the well-formedness of settings? 

• Textsetting is one problem in the field of metrics  
 see Halle and Keyser 1969, Kiparsky 1975, and 

much later work 

• It is also a canonical area for gradient analysis:   
 usually multiple possibilities, which vary in 

preference 
 but also thousands of forms that must be fully 

excluded. 
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5.8 Previous work 

• A rule-based analysis:  Halle and Lerdahl (1993)  

• An empirical study, with chanted settings elicited from 
nine native speaker consultants:  Hayes and Kaun (1996) 

• A non-stochastic OT analysis, covering only “consensus” 
settings of the Hayes/Kaun corpus:  Hayes (in press) 

• A preliminary stochastic OT grammar, learned with 
“easy”, prefiltered data:  Hayes (2005) 
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5.9 My long-term plan for the study of textsetting 

• The theories of phonology and metrics will provide an 
appropriate constraint set. 

• All the rest should follow from the choice of framework, 
particularly the learning algorithm. 

• Exposure to different kinds of input data will result in 
differing textsetting styles or dialects, each the result of 
different stochastic rankings/weightings. 
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5.10 Learning simulations 

• Data taken from the Hayes/Kaun corpus (426 4-beat lines) 

• Goal was to replicate the frequencies with which the 
consultants selected settings.   

 Hence values range from 0 (0/9) to 1 (9/9) 

• Tools used:   
 Stochastic OT/GLA 
 MaxEnt 
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5.11 Constraints employed 

• These are the best constraint set I could devise for non-
stochastic analysis (improving slightly on Hayes, in press) 

• They serve three basic functions: 
Match stress to 

rhythm 
Regulate 
duration 

Demarcate line 
division 

REGULATE SW 
REGULATE SM 
REGULATE MW 
DON’T FILL W 
MATCH LEXICAL STRESS

*MISMATCHED σ ˈσ]P 

FILL STRONG 

RESOLUTION 
STRONG IS LONG 
 

*LAPSE 
DON’T FILL 16 
DON’T FILL 1 
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5.12 These constraints aren’t bad 

• Applied to 364 lines with “consensus” votes, using 
nonstochastic OT to predict the most-selected scansion:   

 267 successes, 90 misses, 7 ties 
 = about 3/4 correct 
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5.13 Training data 

• All 3592 textsettings (933 distinct) used by any consultant  

• All 7,069 “contender” settings (Riggle 2004):  those 
which, in OT, win or tie on at least one ranking. 

• These two categories overlap heavily, but 408 attested 
settings (213 distinct) textsettings were not contenders. 

• 40,000 other candidates, randomly selected from the 
~4,000,000 logical possibilities. 
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5.14 Results (weights, ranking values) 

Constraint MaxEnt GLA 
REGULATE SW 
FILL STRONG 
DON’T FILL16 
*LAPSE 
DON’T FILL W 
DON’T FILL 1 
MATCH LEXICAL STRESS 
RESOLUTION 
*MISMATCHED σ ˈσ]P 
REGULATE SM 
REGULATE MW 
STRONG IS LONG 
MATCH RISING LEX. STRESS 

14.02 
12.28 

4.78 
4.07 
3.81 
2.08 
1.97 
1.72 
1.67 
1.61 
0.94 
0.91 
0.14 

106.0 
108.0 

-1100.1 
-1099.4 
-3272.6 
-3275.4 
-1102.1 
-3278.7 
-959.8 

-3274.8 
-3276.4 
-3328.9 

49.8 
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5.15 Comparison of grammar effectiveness 

• Correlation coefficients, all predicted frequencies vs. all 
observed, for two models.  Not too bad, and also very 
similar! 

 MaxEnt grammar:  r = 0.843 
 Stochastic OT grammar: r = 0.841 
 

• Nevertheless there is reason to think the maxent model is 
doing better: 

 the Stochastic OT/GLA model assigns zero 
probability to too many settings. 
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5.16 GLA predicted frequencies, sorted descending, 

for all settings volunteered by consultants 

 

GLA gives zeros 
to many attested 
settings 
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5.17 MaxEnt predicted frequencies, sorted 

descending, for all settings volunteered  

 
 

MaxEnt fades out 
gracefully 
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5.18 Why does Stochastic OT/GLA gives zeros to so 

many attested settings? 

• Clearest answer:  ranking errors 
 Some constraint pairs must be given very close 

ranking values, because they jointly determine 
common patterns of free variation. 

 But the GLA assigns them very distant values, 
corresponding to strict ranking. 
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5.19 Example of stochastic OT grammar failure 

• A common type of free variation (Hayes, 2005) requires 
free ranking of  

 STRONG IS LONG (give more time to strong beats) 
RESOLUTION (give little time to non-final stressed 
syllables) 

• Tableau follows.  
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5.20 Tableau:  a common kind of free variation 

 

R
ESO

LU
TIO

N
  

S
TR

O
N

G
 IS 

L
O

N
G 

       x       x         x        x     
  x    x   x   x    x     x    x   x   
  x  x x x x x x x  x  x  x x  x x x x 
  |  | |   |   | |  |     |    |   | 

Such a pret-ty   story you     soon shall hear  

 * 

       x       x          x        x     
  x    x   x   x    x     x    x   x   
  x  x x x x x x x  x  x  x x  x x x x 
  |  | |   |   |    |  |  |    |   | 

Such a pret-ty   sto-    ry you soon shall hear  

*  
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5.21 Ranking failure 

• The GLA placed these constraints very far apart: 
 
  RESOLUTION     -3278.7  
  STRONG IS LONG   -3328.9 
 
(~ 50 units), and thus couldn’t derive the second free   

 variant. 

• Since this variation pattern is common, this is a major 
source of the error of assigning too many zeros. 
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5.22  MaxEnt grammar does ok with these lines 
Line Probability
       x       x         x        x     
  x    x   x   x    x     x    x   x   
  x  x x x x x x x  x  x  x x  x x x x 
  |  | |   |   | |  |     |    |   | 

Such a pret-ty   story you     soon shall hear  

 
 
 

.273 
       x       x          x        x     
  x    x   x   x    x     x    x   x   
  x  x x x x x x x  x  x  x x  x x x x 
  |  | |   |   |    |  |  |    |   | 

Such a pret-ty   sto-    ry you soon shall hear  

 
 
 

.123 
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5.23 Another possible problem  

• The problem just noted was a problem with the GLA, 
trying to find the right ranking. 

• But is there a Stochastic OT grammar that works at all?? 

• There would be none, if, as Keller (2000, 2006) thinks, 
harmonically bounded candidates should be able to 
emerge with positive (though non-maximal) scores. 
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5.24 Harmonically bounded candidates in MaxEnt 

• MaxEnt allows harmonically bounded winners, though 
never with the highest frequency.   

 Simplest example, with just one constraint: 
 

Input Cand. Predicted Freq. ME 
Score

C1 

    2.2 
Input Cand1 0.9 0  
 Cand2 0.1 2.2 * 
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5.25 Do harmonically bounded candidates win in 

textsetting? 

• About 11% of the settings volunteered by the consultants 
are not in the OT factorial typology of the constraint set. 

• MaxEnt grammar gives most of these modest scores, 
averaging 0.04. 

• Superficial implication:  nonoptimal candidates can win, 
supporting MaxEnt. 

• But this is extremely tentative—the problem could lie with 
the constraint set. 
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5.26 Summarizing 

• So far, MaxEnt is emerging as the better tool for my 
analytic purpose, due to: 

 Greater accuracy 
 Perhaps, its indulgence of harmonically bounded 

candidates 
 

• But before drawing any conclusions we should try to learn 
more by  

 trying other stochastic ranking algorithms 
 exploring more possibilities for the constraint set. 
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6. Phonotactic learning with MaxEnt 
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6.1 My project with Colin Wilson 

• We seek to produce an automated system that, examining 
representative phonological forms from languages will  

 learn a set of phonotactic constraints 
 weight them under the principles of MaxEnt 
 make accurate gradient predictions about the 

phonotactic well-formedness of any novel form 
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6.2 Two kinds of probability distribution in 

phonology 

• Assume an input, and find the probability of possible 
corresponding outputs. 

• What we do:  assign probability to all forms. 
 Any one form will have an ultra-low probability, but 

the differences that exist among the ultra-low can be 
large and meaningful. 

 The problem of ∞ (unbounded string lengths) can 
be dealt with, for example by limiting the strings to 
(roughly) the length of those found in the learning 
data. 
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6.3 Graphic Illustration 

• Imagine the space of conceivable forms (here, just 100) to 
have equal a priori probability: 
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• A set of weighted phonological constraints penalizes 

various subsets.  Here are four (schematic) ones, with their 
weights: 

 1 2 3 4 5 6 7 8 9 10   1 2 3 4 5 6 7 8 9 10
1 * * * * * * * * * *  1 * * * *       
2 * * * * * * * * * *  2 * * * *       
3 * * * * * * * * * *  3 * * * *       
4            4 * * * *       
5            5 * * * *       
6            6 * * * *       
7            7 * * * *       
8            8 * * * *       
9            9 * * * *       

10            10 * * * *       
 Weight: 3 Weight: 4 
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 1 2 3 4 5 6 7 8 9 10   1 2 3 4 5 6 7 8 9 10
1       * * * *  1           
2       * * * *  2           
3       * * * *  3           
4       * * * *  4           
5       * * * *  5           
6       * * * *  6           
7       * * * *  7           
8       * * * *  8      * * * * * 
9       * * * *  9      * * * * * 

10       * * * *  10      * * * * * 
 Weight: 2 Weight: 1 
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6.4 Apply the MaxEnt formula 

• This was:   
Σx exp(–Σi wi Ci(x))

Z  ; slide 19 above)  

• We will obtain a probability for every form.   

• With other constraints not shown here added in, the graph 
of probability now looks like the next slide.
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• Probability has been reassigned, gradiently, to a small 

subset of all possible forms. 
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6.5 Other Hayes/Wilson agenda items 

• Eschew a UG that has all the constraints in it; instead learn 
them; using a much more modest UG as starting point. 

• Test the learnability implications of phonological theories 
(e.g. autosegmental, metrical):  do they make systems 
learnable that would otherwise not be? 
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6.6 Sample simulation:  English Onsets 

• Training set, from the CMU Online Pronouncing 
Dictionary: 

k 2764, r 2752, d 2526, s 2215, m 1965, p 1881, b 1544, 
l 1225, f 1222, h 1153, t 1146, pr 1046, w 780, n 716, 
v 615, g 537, d 524, st 521, tr 515, kr 387,  379, 
gr 331, tʃ 329, br 319, sp 313, fl 290, kl 285, sk 278, 
j 268, fr 254, pl 238, bl 233, sl 213, dr 211, kw 201, 
str 183, θ 173, sw 153, gl 131, hw 111, sn 109, skr 93, 
z 83, sm 82, θr 73, skw 69, tw 55, spr 51, ʃr 40, spl 27, 
ð 19, dw 17, gw 11, θw 4, skl 1 
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6.7 Grammar fabricated:  23 constraints  
Constraint Wght Constraint Wght  Constraint Wght 
1. *[+son,+dors] 5.64 

9. *[+lab]
⎣
⎢
⎡

⎦
⎥
⎤^+approx

  +cor   
4.96  

17. *[+voice] 
⎣
⎢
⎡

⎦
⎥
⎤^+approx

  +cor   
2.97 

2. *[+cont,+voice,–ant] 3.28 
10. *[–ant] 

⎣
⎢
⎡

⎦
⎥
⎤^+approx

  –ant    
4.84  

18. *
⎣
⎢
⎡

⎦
⎥
⎤+cont

–strid   
⎣
⎢
⎡

⎦
⎥
⎤^+approx

  –ant   
2.06 

3. *
⎣
⎢
⎡

⎦
⎥
⎤^–voice

 +ant
 +strid

 [–approx] 
5.91 11. *[+cont,+voice][ ] 4.84  

19. *[ ] 
⎣
⎢
⎡

⎦
⎥
⎤^–cont

  –voice
  +lab

 [+cons] 
3.05 

4. *[ ][+cont] 5.17 12. *[–cont,–ant][ ] 3.17  
20. *[ ][+cor] 

⎣
⎢
⎡

⎦
⎥
⎤^+approx

  –ant   
2.06 

5. *[ ][+voice] 5.37 13. *[ ][–back] 5.04  21. *[+cont,–strid] 1.84 
6. *[+son][ ] 6.66 14. *[+ant,+strid][–ant] 2.80  22. *[+strid][–ant] 2.10 
7. *[–strid][+cons] 4.40 15. *[+spread][^+back] 4.82  

23. *
⎣
⎢
⎡

⎦
⎥
⎤–cont

–voice
+cor

 
⎣
⎢
⎡

⎦
⎥
⎤^+approx

  –ant   
1.70 

8. *[ ][+strid] 1.31 16. 
*[+cont,+voice,+cor] 

2.69   
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6.8 Testing the grammar 

• Experimental data from Scholes (1966) 

• 33 subjects rated 66 monosyllabic nonce words, with 
ordinary syllable rhymes; independent variable was the 
onset. 
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6.9 Results   

• Predictions of our grammar correlate well with the Scholes 
data, r = 0.946 

• This outperforms all other approaches we tried for 
comparison (e.g. Coleman and Pierrehumbert 1997, n-
gram model from Mohri 2002, Allauzen et al. 2005) 
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6.10 Scattergram:  rescaled model predictions vs. 

Scholes data  

Predicted 

O
bs

er
ve

d 
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6.11 Larger scale work 

• We have analyzed the complete phonotactics of 
Wargamay (Australian, Dixon 1981), showing that we can 
fully cover at least the simpler phonotactic systems of 
languages. 
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6.12 Some phonotactic learning algorithms using 

Optimality Theory 

• Hayes 2004, Prince and Tesar 2004, Jarosz 2006 

• This work assumes the standard OT approach of the Rich 
Base:  a legal form is one that can derived from any input. 

• Why must things be done this way?  [or, why do I think this…]  

Because OT is based inherently on a comparison of 
alternatives. 
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6.13 Why the OT/Rich Base scheme may be 

inappropriate to phonotactic learning 

• Problems of search space size:  we aren’t just rating the 
forms, but any form as derived from any underlying 
representation. 

• Previous work seem to suffer from this: 
 Hayes (2004), Prince and Tesar (2004):  idealize to 

non-gradient learning 
 Jarosz (2006):  makes a gradient system the goal, 

and uses the same basic strategy (maximum 
likelihood estimation) as Hayes/Wilson.  But search 
space is the full set of rankings (factorial in size). 

• All three:  examples are schematic, not real-language. 
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6.14 Rating forms in isolation goes out on a limb 

• The idea of assigning probability just to forms (as opposed 
to the outputs for an input) raises many further questions—
e.g., how to relate phonotactics to alternations. 

• But does offer a search space that permits full-size (e.g. 
full-language; Hayes and Wilson 2007, §8) phonotactic 
analysis. 
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7. Conclusions 
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7.1 Analysis of gradience in phonology cannot be 

taken as peripheral 

• Gradient phenomena are pervasive. 

• The question of how to analyze gradience quickly moves 
us into the question of choice of framework, with major 
implications for nongradient phonology. 
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7.2 Some possible reasons for favoring a 

Maximum Entropy approach 

• Accuracy and trustability of its affiliated weighting 
algorithm. 

• Perhaps:  ability to assign modest probabilities to 
harmonically bounded candidates 

• Ability to form phonotactic grammars without the use of 
the Rich Base principle and its accompanying search-space 
problem 
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Thank you 
 
 
 
 
 
 

• Comments and afterthoughts to:  bhayes@humnet.ucla.edu 
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