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Phonological constraints can, in principle, be classified according to whether they are natural
(founded in principles of universal grammar (UG)) or unnatural (arbitrary, learned inductively
from the language data). Recent work has used this distinction as the basis for arguments about
the role of UG in learning. Some languages have phonological patterns that arguably reflect
unnatural constraints. With experimental testing, one can assess whether such patterns are actually
learned by native speakers. Becker, Ketrez, and Nevins (2007), testing speakers of Turkish, suggest
that they do indeed go unlearned. They interpret this result with a strong UG position: humans
are unable to learn data patterns not backed by UG principles.

This article pursues the same research line, locating similarly unnatural data patterns in the
vowel harmony system of Hungarian, such as the tendency (among certain stem types) for a final
bilabial stop to favor front harmony. Our own test leads to the opposite conclusion of Becker
and colleagues’: Hungarians evidently do learn the unnatural patterns.

To conclude we consider a bias account—that speakers are able to learn unnatural environments,
but devalue them relative to natural ones. We outline a method for testing the strength of constraints
as learned by speakers against the strength of the corresponding patterns in the lexicon, and show
that it offers tentative support for the hypothesis that unnatural constraints are disfavored by
language learners.*
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1. INTRODUCTION: THE UG PROBLEM. Theoretical study in linguistics has long sought
to discover principles of UNIVERSAL GRAMMAR (UG)—aspects of language that are
grounded in human nature, are (presumably) genetically coded at some level, and are
claimed to assist children in language acquisition. In its narrow sense, the term universal
grammar includes only characteristics specific to the language faculty; in its broad
sense it can include any innate properties of humans (cognitive, phonetic, etc.) that
determine aspects of language. Our interest here lies not in distinguishing between
these two, but rather in finding evidence concerning innate properties of language in
general.

Historically, work in generative grammar has pursued UG with an analytic/typologi-
cal approach. Grammarians submit individual languages to formal analysis under some
particular theoretical framework incorporating principles of UG. When multiple lan-
guages are analyzed, the theory is put to the test, since it must provide apparatus
sufficient for the analysis of every existing language, yet make falsifiable predictions
about phenomena that should not occur. Examples of work in phonology that has
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pursued this goal include parametric approaches to metrical stress theory (e.g. Halle &
Vergnaud 1987, Hayes 1995), or studies that compute and assess a factorial typology
(e.g. Kaun 1995, Alderete 1998, Kager & Elenbaas 1999, Gordon 2002) in the frame-
work of optimality theory (Prince & Smolensky 2004 [1993]:Ch. 3).

Although the analytic/typological approach has been very fruitful, there is reason to
believe that at least in phonology, it is unlikely to provide final answers to questions
of UG. The reason is that the languages we have available for analysis have in most
cases evolved from earlier diachronic stages, and it is a strong possibility that the
channels of change themselves, notably phonetic variation and reinterpretation by new
generations of speakers, have a strong influence on language typology. Moreton (2008)
particularly emphasizes the role of ‘channel bias’, in which the possibility of a phonetic
precursor will strongly influence the observed crosslinguistic frequency of a particular
phonological pattern. An example can be seen in cases where the normal phonetic
lowering of pitch after voiced obstruents evolves into a categorical phonological pattern
(‘tonogenesis’; see e.g. Hombert et al. 1979). It is a logical possibility that phonological
typology is largely governed by whether such precursors exist, rather than by innate
limits on the language faculty.

The most forceful statements of the phonetic-precursor idea attribute all phonological
patterning to channel bias (e.g. Ohala 1981, Blevins 2004). There are also mixed views,
in which a role is assigned to UG, perhaps in regulating the way that phonetic variation
is restructured into phonological change (Baroni 2001, Myers 2002, Koo & Cole 2006,
Wilson 2006, Finley 2008, Kawahara 2008, Moreton 2009, etc.). Under any of these
views, however, research based solely on analysis and typology will not suffice to
establish UG theories on a solid basis.

2. SEARCHING FOR UG WITH EXPERIMENTS. A natural consequence is that many pho-
nologists interested in questions of UG have become involved in experimental work,
which could in principle be made to bear on these questions free of the confounding
factor of diachronic origin. ‘UG experiments’ have been conducted in phonology at
least since the 1970s, but with a considerable upsurge in recent times. A partial list of
references would include Schane et al. 1974, Pertz & Bever 1975, Bailey et al. 1999,
Jusczyk et al. 2002, Albright & Hayes 2003, Jusczyk et al. 2003, Pater & Tessier 2003,
2006, Pycha et al. 2003, Saffran & Thiessen 2003, Wilson 2003a, 2006, Pertsova 2004,
Gilkerson 2005, Seidl & Buckley 2005, Kawahara 2006, Koo & Cole 2006, Peperkamp
et al. 2006, Pycha et al. 2006, Zhang & Lai 2006, Albright 2007, Becker et al. 2007,
Berent et al. 2007, Finley & Badecker 2007, Graff 2007, Peperkamp & Dupoux 2007,
Thatte 2007, Zhang et al. 2007, Zuraw 2007, Berent et al. 2008, and Finley 2008.

The study reported here is also intended as a UG experiment. As background to our
work, we first offer a survey of the kinds of experiments that have been done.

2.1. POVERTY-OF-THE-STIMULUS EXPERIMENTS. Many UG experiments in phonology
rely on a ‘poverty of the stimulus’ argument (Chomsky 1980, Pullum & Scholtz 2002).
The idea is that an experiment will reveal something about UG if it shows that the
participants exhibit consistent behavior that could not be traced either to their own
language background or to the information made available to them during the experi-
ment.

For instance, it is possible to expose experimental participants to miniature artificial
languages, then test them on additional data to see what generalizations they inferred.
If participants consistently generalize in some particular directions and not in others
(as in Wilson 2006), a plausible inference is that some UG principle is guiding the
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process of generalization—the data alone were too impoverished to have governed the
participants’ responses. The same strategy can be followed using the native language
of the participants, by constructing nonce forms that test what generalizations they
formed in the course of language acquisition (Zuraw 2007).

A less direct form of a poverty-of-the-stimulus experiment (e.g. Wilson 2003a, Holt
et al. 2004, Carpenter 2005, Moreton 2008) uses more than one artificial language, com-
paring how easily experimental participants learn them. The poverty-of-the-stimulus
argument here is based on the premise that if one such language is learnable and another
is not, then it must be a principle of UG that is making the difference.

2.2. UG AS ABSOLUTE LIMIT VS. UG AS BIAS. Such UG interpretations come in strong
and weak versions. A strong-UG interpretation is that any grammatical rule or constraint
not countenanced under UG is simply unlearnable; such a claim might be based, for
instance, on the universal constraint hypothesis adopted in many versions of optimality
theory (Tesar & Smolensky 1998, 2000, Prince & Smolensky 2004 [1993]). Alterna-
tively, theorists have suggested a BIAS interpretation of UG (Ohala 1974, Wilson 2006,
Zuraw 2007, Kawahara 2008, Moreton 2008): UG makes it easier to learn certain data
patterns, perhaps by directing the learner’s attention in particular ways; but people do
have the ability to learn phonology inductively, accessing data patterns outside the
scope of UG.

For phonological constraints that have some plausible foundation in UG, we employ
the term NATURAL, acknowledging that this word has other uses in phonology as well.
At present, it is impossible to distinguish natural from unnatural constraints with cer-
tainty, but there is often a sufficiently clear picture from typology to provide a reasona-
ble basis for proceeding; see §§6, 7 below.

2.3. SURFEIT-OF-THE-STIMULUS EXPERIMENTS. The flip side of the poverty-of-the-
stimulus idea is the ‘surfeit of the stimulus’ (term from Becker et al. 2007). Here, we
suppose that the data to which the language learner is exposed contain patterns that
are clear enough to the linguist (who sees the system ‘from the outside’), but are not
characterizable under the theory of UG. In a strong-UG interpretation, such patterns
are predicted to be simply unlearnable; under a bias interpretation, they will be harder
to learn. Comparative artificial-language experiments, mentioned above, implicitly in-
volve a surfeit-of-the-stimulus argument: the core argument is that one of the two
compared artificial languages is harder to learn because it has no UG backing. Substan-
tial differences in learnability are similarly explained under a bias interpretation of UG.

Somewhat surprisingly, it turns out to be possible to carry out a surfeit-of-the-stimulus
experiment using the native language of the experimental participants. The lexicon,
whose content is to some degree arbitrary, may by sheerest accident include data patterns
that have no basis in UG. Such patterns could be carried down through history in the
inherited lexicon, with the speakers of each generation oblivious to their presence.
Hayes and Londe (2006:§4.3) point out a data pattern from Hungarian that, according
to their experimental findings, goes unnoticed by speakers of this language, and offer
a surfeit-of-the-stimulus explanation. A more extensive example from Turkish is dis-
cussed below.

To summarize: experiments testing principles of UG can be classified according to
whether they use artificial languages or test speakers’ productive extensions of their
own language; and whether the outcome is interpreted on the basis of a poverty-of-
the-stimulus argument, a surfeit-of-the-stimulus argument, or some combination of the
two.
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The experiment we report here is a real-language experiment (Hungarian) that tests
for knowledge of unnatural constraints. We find evidence that Hungarian speakers are
in fact able to apprehend such constraints in the data they encounter during acquisition,
but this is not the whole story. Detailed examination of the experimental results with
computational modeling indicates that the speakers may UNDERVALUE unnatural patterns
relative to the strength with which they are manifested in the lexicon, a possible UG
bias effect.

In what follows, we introduce the research that forms the direct ancestry of our own
efforts, cover the crucial aspects of Hungarian, outline our experiment and its results,
and then interpret the experimental results with modeling and give our conclusions.

3. TWO PREVIOUS STUDIES.
3.1. FREQUENCY MATCHING IN PHONOLOGY: ERNESTUS & BAAYEN 2003. Our research is

based on a frequency-matching ability that is evidently possessed by human speakers.
As an example of this ability we review the findings of Ernestus & Baayen 2003.

Ernestus and Baayen’s study investigates the process of FINAL DEVOICING in Dutch
(1a), which is seen in data pairs like 1b.

(1) a. Dutch final devoicing
[�sonorant] N [�voice] / ]word

b. Examples
BEFORE VOWEL FINAL

[vεr�Eεid-Un] ‘to widen’ [vεr�Eεit] ‘widen’
[vεr�Eεit-Un] ‘to reproach’ [vεr�Eεit] ‘reproach’

Final devoicing is a standard textbook process in phonology, and the usual analysis
sets up underlying voiced and voiceless obstruents (/vεrEεid/, /vεrEεit/), devoicing the
voiced ones when they occur in final position: /vεr�Eεid/ → [vεr�Eεit]. In Dutch, there
are many pairs like [vεr�Eεid-Un] � [vεr�Eεit] that are related by final devoicing, as
well as many nonalternating pairs like [vεr�Eεit-Un] � [vεr�Eεit].

Ernestus and Baayen extended the study of this process by examining the distribution
of alternating and nonalternating forms in the Dutch lexicon. They found that the
alternation patterns for final devoicing are unevenly distributed according to factors
like the place and manner of articulation of the stem-final consonant. For instance,
Dutch has many nonalternating pairs like [p#] � [pV] (that is, [p] word-finally, [p]
before a vowel), but few instances of [p#] � [bV]. In the case of the labial fricatives,
the statistics go the other way, with few instances of [f#] � [fV], many of [f#] � [vV].
The idea behind Ernestus and Baayen’s study was to see if Dutch speakers are tacitly
aware of these statistical regularities. This was tested by checking if speakers use them
when they guess the suffixed form from the isolation form for novel stems, that is, in
a ‘wug’ test (Berko 1958). Since the Dutch lexicon has many cases of [p#] � [pV]
and few of [p#] � [bV], one might expect participants who heard [ìk d&up] ‘I daup’
to reply with daupen rather than dauben when queried for the infinitive,1 but they
should provide an infinitive [v] when probed with [ìk t&f] ‘I taff ’, again reflecting the
lexicon.

In fact, the results were more interesting. Rather than always guessing the most
frequent option, participants gave mixed responses, and these responses taken in the

1 We give daupen and dauben to simplify the presentation; in fact the forms elicited were past tense
daupte and daubde; these are equally informative about the base form of a stem.
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aggregate matched the frequencies of the lexicon: for any particular stem-final conso-
nant, the more strongly the lexicon supported alternation, the more responses favored
alternation. Compare, for example, the five cases in Figure 1, taken from Ernestus &
Baayen 2003.
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FIGURE 1. Frequency matching in Dutch voicing alternations: Ernestus & Baayen 2003.

Although Ernestus and Baayen do not address this point, their findings are unlikely
to reflect a ‘dialect split’ among the participants. It is more likely that the variation is
within rather than across participants; this is what has been found in comparable studies
in which participants responded to the same items multiple times (Baroni 1999,
Ringen & Heinämäki 1999:314–15). The overall result of the experiment was to show
that Dutch speakers do tacitly know the quantitative alternation pattern of the lexicon,
and that they demonstrate their knowledge with frequency-matching behavior.

Ernestus and Baayen’s study is an especially meticulous demonstration of what other
experiments have also revealed. The finding is sufficiently important (both to what
follows, and we think for linguistics in general) that we give it a name (2).

(2) LAW OF FREQUENCY MATCHING: Speakers of languages with variable lexical
patterns respond stochastically when tested on such patterns. Their responses
aggregately match the lexical frequencies.

Some other phonological experiments whose results support this law are reported in
Eddington 1996, 1998, 2004, Coleman & Pierrehumbert 1997, Berkley 2000, Zuraw
2000, Bailey & Hahn 2001, Frisch & Zawaydeh 2001, Albright 2002, Albright &
Hayes 2003, Pierrehumbert 2006, and Jun & Lee 2007. Moreover, sociolinguistic study
demonstrates frequency matching by children during real-life phonological acquisition
(Labov 1994:Ch. 20).2

Having characterized 2 as a ‘Law’, we wish immediately to add that it holds only
as an approximation, and that indeed it is the DEVIATIONS from the law that are often
of greatest interest (Pertsova 2004, Goldrick & Larson 2010). In particular, if UG
facilitates certain forms of frequency matching, but inhibits or suppresses others, then
the law will not hold in the latter cases. In what follows, we cover studies claiming
effects of this kind.3

2 In his 1994 discussion, Labov strikingly situates such behaviors in a broader context: frequency-matching
behavior is quite common in the animal kingdom (Gallistel 1990) and is even to be expected from the
viewpoint of natural selection (e.g. creatures who sometimes select a less abundant feeding site will have
less competition there). For further discussion of frequency matching in phonology, see Idsardi 2006, Silver-
man 2006, and Nevins & Vaux 2007.

3 While the law of frequency matching seems fairly valid as a default characterization of wug-testing
behavior, its broader validity remains to be explored. For possible cases of ‘prefer the most frequent’ behavior,
see Hudson Kam & Newport 2005. For a puzzling case where native speakers systematically ‘fail’ a wug
test, see Vance 1987 and Griner 2001.
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3.2. A SURFEIT-OF-THE-STIMULUS EXPERIMENT: BECKER ET AL. 2007. Turkish resembles
Dutch in having a regular process of final devoicing as well as a lexicon that distributes
the various patterns of alternation and nonalternation asymmetrically with respect to
place of articulation and other factors. Becker, Ketrez, and Nevins (2007) studied these
asymmetries in detail by consulting the Turkish Electronic Living Lexicon (Inkelas et
al. 2000). Becker and colleagues found, for example, that in Turkish there are many
stems that alternate [p#] � [bV], but few with [p#] � [pV] (the opposite of Dutch).
For alveolar stops they found that there are few cases of [t#] � [dV], but many of
[t#] � [tV]. Thus Turkish is in principle a good venue for further study of the law of
frequency matching. Becker and colleagues pursued the question from a slightly differ-
ent angle, however, namely the possibility of ‘surfeit of the stimulus’ (see §2.3 above).
In particular, when they inspected the lexicon, they considered environments that were
more complex than just the place and manner of the final consonant, particularly the
quality of the preceding vowel. Their search found that the lexicon of Turkish is indeed
skewed for this factor. For obstruents in general, voicing alternation is more common
after high vowels, and for the particular obstruent pair [t+]/[dÇ], alternation is more
common after back vowels.

To find out whether Turkish speakers internalize these environments, Becker and
colleagues carried out a wug test, which employed twenty-four participants. There were
seventy-two wug items. The test found that with respect to place and manner of the
stem-final consonant, Turkish speakers did indeed follow the law of frequency match-
ing. However, when Becker and colleagues examined their test results with regard to
the other environments, involving the features of the rightmost stem vowel, they got
a null result: there is no evidence from the wug test that the speakers made any use of
these environments at all.4

Interpreting these findings, Becker and colleagues adopt a strong UG stance (§2.1):
‘The possibility of consonant voicing being determined or affected by vowel height or
vowel backness is excluded, or highly disfavored [by UG] to the point that even signifi-
cant evidence for such a relationship in the lexicon is not enough [for it to be learned]’
(2007:62). As for the UG principle that renders the consonant-vowel interactions inac-
cessible to learners, they speculate that some kind of ‘same-feature constraint on vowel-
consonant interactions’ (p. 61) is at work, to the effect that ‘the phonetic feature in the
consonant that triggers the change is identical to the changed feature on the vowel
(or vice-versa)’ (p. 60). Thus, processes like nasalization and palatalization (shown
schematically in 3a,b) would be possible under this constraint, but voicing governed
by vowel height (3c) would not.

(3) Illustrations of the same-feature constraint on consonant-vowel interactions
a. Nasalization—possible

V N [�nasal] / � C
�nasal�

b. Palatalization—possible

C N [�back] / � V
�back�

4 The authors suggest (p. 7) that the same finding is also observable for similar phenomena in Ernestus
and Baayen’s data.
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c. Height-triggered voicing—held impossible

C N [�voice] / � V
�high�

The authors note that their principle would also explain the experimental results of
Moreton (2008), who in a comparative artificial-language learning study demonstrated
that a different-feature, vowel-to-consonant dependency is relatively difficult to learn.
(For Moreton’s own account of the relevant UG principle, see Moreton 2009.)

The strong UG stance adopted by Becker and colleagues makes a clear prediction
about the law of frequency matching: it should be obeyed only for phonological patterns
that can be expressed in UG. For other patterns, one should find that language learners
are at a loss, because (by hypothesis) there can be no learning without UG support.

4. PROSPECT. While we admire Becker and colleagues’ work, we are skeptical of
the strong UG stance that they adopt. There is a fairly substantial literature arguing
that phonological processes are NOT always natural; see for example Bach & Harms
1972, Hellberg 1978, Anderson 1981, Buckley 2003, Hansson 2007, Odden 2007,
and Blevins 2008. Phonological processes can be rendered unnatural by diachronic
developments yet retain some productivity: see Ohala 1974 and Pierrehumbert 2006
on English velar softening and Kawahara 2008 on Lyman’s Law in Japanese. The
phenomenon of ‘islands of reliability’, studied by Albright (2000, 2002, 2003), fre-
quently reveals productive unnatural environments. For example, Albright and Hayes
(2003) observe that every verb of English that ends in a voiceless fricative is regular
(i.e. ending in a voiceless fricative is an island of reliability for the regular past); their
wug-test evidence indicates that this generalization, despite its lack of a natural basis,
is productively internalized by native speakers.

We judge that such cases indicate an ability in people to locate and internalize
phonological generalizations on an inductive basis, without having them prespecified
in UG. This does not imply, however, that endogenous factors (i.e. UG, broadly con-
strued) could not play a role in phonological learning, and we judge that some of the
experimental work cited in §2 above in fact supports this view. Thus, the theory we
ultimately advocate is a mixed, bias-based theory, in which learning can be assisted
by UG, but is not limited to a strict UG-specified form.5

In what follows, we support this ‘middle way’ empirically with a study of natural
and unnatural constraints in Hungarian vowel harmony. Like our predecessors Ernestus
and Baayen and Becker and colleagues, we combine a corpus study (examining the
generalizations in the Hungarian lexicon) with a wug-test study examining the degree
to which the generalizations are internalized by native speakers. We begin with the
relevant aspects of Hungarian phonology.

5. HUNGARIAN VOWEL HARMONY: THE DATA. The Hungarian vowel harmony system
has been extensively studied; references include Esztergár 1971, Vago 1974, 1976,
1980, Ringen 1975, Kontra & Ringen 1986, Hare 1990, Kornai 1991, Ringen & Vago

5 In various forms, this position has a long pedigree. The approach of NATURAL PHONOLOGY (Stampe 1973
et seq.) drew a distinction between natural ‘processes’ and learned ‘rules’; for similar distinctions see Schane
1972 and Hooper 1976.
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1995, 1998, Dienes 1997, Siptár & Törkenczy 2000, Benus 2005, Benus & Gafos 2005,
2007, and Hayes & Londe 2006.

Backness harmony in Hungarian is a highly productive process; the language abounds
in suffixes and most of them alternate. Harmony depends on the following classification
of vowels.

(4) Hungarian vowels
back [u, u�, o, o�, :, a�] abbreviated ‘B’
front rounded [y, y�, ø, ø�] abbreviated ‘F’
front unrounded, often called ‘neutral’ [i, i�, e�, ε] abbreviated ‘N’

To illustrate harmony, we use examples with the dative suffix, whose behavior is
representative. The dative has two allomorphs, back [-n:k] and front [-nεk], which are
distributed according to the principles of harmony. For further discussion and illustra-
tion, see Siptár & Törkenczy 2000:157–70, Hayes & Londe 2006:61–69.

To begin, whenever the rightmost vowel of a stem is [�back] (‘B’), the stem must
take back suffixes. This generalization, illustrated in 5, is exceptionless.

(5) Closest vowel back: back suffixes
BB [:bl:k-n:k] ‘window-DAT’
NB [bi�ro�-n:k] ‘judge-DAT’
FB [glyko�z-n:k] ‘glucose-DAT’

Likewise exceptionless is the generalization that if the closest stem vowel is front
rounded (‘F’), the stem must take front suffixes.

(6) Closest vowel front rounded: front suffixes
F [y+t-nεk] ‘cauldron-DAT’

NF [sεmølt+-nεk] ‘wart-DAT’
BF [+ofø�r-nεk] ‘chauffeur-DAT’

Moreover, front suffixes are obligatory when a front rounded vowel occurs separated
from the end of the word by one or more neutral vowels.

(7) F � N*: front suffixes
FN [fy�sεr-nεk] ‘spice-DAT’
FNN [ø�rizεt-nεk] ‘custody-DAT’

This completes the taxonomy of Hungarian stem types in which harmony is fully
predictable. The remaining stems fall into what we call the ZONES OF VARIATION. In a
zone of variation, individual stems vary in the kind of harmony they take; this is a
fundamentally unpredictable property of these stems. Moreover, the zones of variation
also contain a fair number of ‘vacillators’: stems for which either front or back suffixes
are acceptable, and occur in various proportions. There are two zones of variation in
Hungarian, one consisting of the stems in which a back vowel is followed by one or
more front unrounded vowels ( . . .BN, . . .BNN), the other consisting of all-neutral
stems (N, NN, . . . ).6

Some representative data showing the lexical arbitrariness of harmony within the
BN(N) zone of variation are given in Table 1, with Google hits used to estimate fre-
quency. All four stems contain [o] followed by [e�], and there is evidently no way to
predict their differing harmonic behavior. Many similar cases exist.

6 More precisely, only the monosyllables and (marginally) disyllables fall into this zone; NNN and longer
predictably take front harmony.
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GOOGLE HITS

WORD ([o]�[e�]) GLOSS (Sept. 2008)7 %
doménnak [dome�n-n:k] ‘domain (on Web)-DAT’ 5 2.1
doménnek [dome�n-nεk] 234 97.9
bohémnak [bohe�m-n:k] ‘easy-going-DAT’ 433 24.4
bohémnek [bohe�m-nεk] 1,340 75.6
honvédnak [honve�d-n:k] ‘Hungarian soldier-DAT’ 8,820 74.1
honvédnek [honve�d-nεk] 3,084 25.9
poénnak [poe�n-n:k] ‘punch line-DAT’ 56,400 99.9
poénnek [poe�n-nεk] 36 0.1

TABLE 1. Examples: lexical arbitrariness of harmony within the zones of variation.

In the other zone of variation, the all-neutral stems, the norm is for the suffix to be
front (as one would expect, since neutral vowels are front phonetically). Examples of
this kind are given in 8. There is, however, a modest number of all-N stems that take
back suffixes, rendering harmony in this zone not entirely predictable; for discussion
see Vago 1980:8–10, Siptár & Törkenczy 2000:68. Examples are given in 9.

(8) All-neutral stems: normally front suffixes
N [kεrt-nεk] ‘garden-DAT’
N [tsi�m-nεk] ‘address-DAT’
NN [rεpεs-nεk] ‘splinter-DAT’

(9) Examples of all-neutral stems taking back suffixes
N [hi�d-n:k] ‘bridge-DAT’
N [+i�p-n:k] ‘whistle-DAT’
NN [dεre�k-n:k] ‘waist-DAT’

For detailed study of the zones of variation, it is helpful to have systematic frequency
data. Hayes and Londe (2006) addressed this need by machine searching for the Google
hit counts of the [-n:k] and [-nεk] forms of several thousand Hungarian nominal stems.8

We have since heavily edited this set, removing more compounds and other misleading
forms, and reducing to a single entry those instances in which a particular suffix (such
as the always-transparent nominalizing suffix [-e�k], e.g. maradék(nak) ‘remainder
(-DAT)’) was contributing a great number of items. The revised list, with 8,915 stems,
is posted at http://www.linguistics.ucla.edu/people/hayes/HungarianVH/. In discussion
below we refer to this list as our ‘lexical database’.

5.1. STATISTICAL PATTERNS WITHIN THE ZONES OF VARIATION. As inspection of our
lexical database demonstrates, the zones of variation are statistically structured in a
way that renders harmony ‘semi-predictable’—much like with the patterns of voicing
alternation in Dutch and Turkish, discussed above. The most significant patterns, dis-
cussed in the literature (e.g. Siptár & Törkenczy 2000:70–71) and documented by
Hayes and Londe, are summarized below.

Within the zone consisting of stems ending in BN or BNN, there are two salient
quantitative patterns. There is a COUNT EFFECT, whereby stems ending in BNN (aggre-

7 There is a nonsignificant trend toward higher [-n:k] rates for higher-frequency words.
8 Changes at Google have prevented us from updating the 2004 Hayes/Londe hit counts; the current

counts, checked by hand for just a few stems, are much higher.
A referee asks to what degree the Google counts might be contaminated by text from nonnative speakers.

This seems unlikely, given the small size of the linguistic minorities that inhabit Hungary (see Ethnologue,
http://www.ethnologue.com). The phonological effects found in the lexical database were also checked, for
a crucial subset of the words, against the judgments of three native speakers, who showed very similar
patterns (Hayes & Londe 2006:§3.2).
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gately) take front suffixes more than do stems ending in BN. Similarly, there is a HEIGHT

EFFECT, whereby stems ending in BN or BNN (aggregately) take more front suffixes
if their last vowel is [ε] than if it is [e�], and likewise more front suffixes if their last
vowel is [e�] than if it is [i] or [i�]. Both the count effect and the height effect are very
strong in the lexicon, as the frequencies from our lexical database, graphed in Figures
2 and 3, show.
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FIGURE 2. The count effect in Hungarian vowel harmony.
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Moreover, as Figure 4 indicates, the height and count effects combine in a fairly consis-
tent way.
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FIGURE 4. The height and count effects together.

There is also statistical structuring present in the all-neutral zone of variation; we
defer discussion of this to 11 below.9

The height and count effects are demonstrably phonologically productive. This was
shown by the wug test carried out by Hayes and Londe, which resulted in a fairly good
match between lexical patterns and native-speaker responses. This is summarized in
Figure 5.
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FIGURE 5. Hayes and Londe’s wug test: participant responses largely match lexical counts.

To sum up so far: the Hungarian vowel harmony system consists primarily of inviola-
ble phonological generalizations, but incorporates zones of variation in which harmony
is unpredictable. Within these zones, the statistical generalizations embodied in the

9 We also found, in both the lexicon and our wug test (below), that there is a weaker height effect for
the first N in BNN words, and that there are lower rates of [-n:k] after BBN words than after BN (for all three
heights of N). These two effects are not discussed further, however, as they make only modest improvements in
fitting the data.
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height and count effects can be discerned. In Hayes and Londe’s wug test, these generali-
zations were demonstrated to be internalized by native speakers, following the law of
frequency matching.

6. ANALYSIS OF THE HUNGARIAN DATA WITH NATURAL CONSTRAINTS. Hungarian vowel
harmony can be analyzed using constraints that we argue to be natural. Although in
the present state of our knowledge assessing the naturalness of a constraint is necessarily
a tentative procedure, we think that useful assessments are possible. There are two
ways to assess naturalness. First, a constraint should match typological data, particularly
when it is related to the other constraints in the construction of a factorial typology,
as noted in §1. Second, a constraint can be asserted to be natural on phonetic grounds,
when it can be shown to increase the ease of articulation or the saliency of contrasting
forms in perception. The role of phonetics in defining naturalness has long been a
theme in phonological theorizing; for recent overviews see Hume & Johnson 2001,
Blevins 2004, and Hayes, Kirchner, & Steriade 2004.

We begin by asserting pretheoretical principles of naturalness against which the
naturalness of the specific constraints governing vowel harmony can be evaluated.10

(i) SINGLE-FEATURE ASSIMILATION. First, we observe the naturalness of vowel harmony
itself: vowels assimilate to one another iteratively in a particular feature (here, [back]),
and they do so across strings of intervening consonants. Thus defined, vowel harmony
can be observed in a great number of languages throughout the world (Vago 1994).
Harmony is often thought (see e.g. Beddor et al. 2001) to originate in the phenomenon
of vowel-to-vowel coarticulation, documented in Öhman 1966 and subsequent work.

(ii) LOCALITY. When disagreeing triggers for harmony are present in a stem, it is
normally the LOCAL (closer) trigger that wins. This pattern is seen plainly in Hungarian,
where in borrowed stems F competes with B, as in [+ofø�r] ‘chauffeur’ (BF) or [glyko�z]
‘glucose’ (FB). For these, the dative forms must be [+ofø�r-nεk] and [glyko�z-n:k],
with harmony governed by the local vowel. The only exceptions to the locality principle
involve the neutral vowels, as in cases like [poe�n-n:k] from Table 1 above. Here, the
neutral vowel may plausibly be regarded as a ‘weak’ harmony trigger: alone (as in
forms like 8) it would govern front harmony, but in BN stems a preceding stronger
trigger often will override.

(iii) TRIGGER STRENGTH. Based on an extensive survey of harmony systems, Kaun
(1995, 2004) asserts a general principle: if a particular vowel is deficient in the acoustic
correlates for the harmonizing feature, it is typologically more likely to be a harmony
trigger. Initially, this seems almost paradoxical, but Kaun suggests a functional explana-
tion: the vowels that are most likely to be misidentified are the most likely to take
advantage of harmony to spread their harmonizing feature onto neighboring vowels,
thus providing a redundant cue for perception. The weak trigger effect is also invoked
by Walker (2005) in an account of Romance metaphony, and was observed to some
extent in an artificial-grammar learning experiment by Finley (2008:Ch. 10).

10 A quite different approach to naturalness in Hungarian vowel harmony is proposed by Benus (2005)
and Benus and Gafos (2005, 2007). The key idea in their work, supported by phonetic measurement, is that
the neutral vowels coarticulate extensively with neighboring vowels in backness, and that higher vowels
coarticulate more. In this view, backness can be considered as propagating across ALL the vowels of a word,
as opposed to the present conception here involving rival triggers. We have not explored this approach here,
but any constraint-based analysis that quantitatively fits the Hungarian data would be likely to suffice for
our present purpose. What we need is a baseline analysis involving only natural constraints, against which
the unnatural constraints of §7 can be assessed.
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In Hungarian, the most powerful triggers for front harmony are the front rounded
vowels, which always force harmony when they are the last nonneutral vowel; these
are acoustically inferior bearers of the feature [–back] since their rounding lowers F2,
where a high F2 is the principal cue for frontness. Likewise, the height effect can be
attributed to Kaun’s principle: the lower front vowels, which are the strongest triggers
of front harmony in BN or BNN stems, are the ones that have the lowest F2.11 A
language also showing a height effect is Old Mongolian (Svantesson et al. 2005:114),
where of the front unrounded vowels [i, e], only [i] was neutral.

(iv) TRIGGER COUNT. Lastly, Hayes and Londe suggest that having two trigger vowels
in a row is a stronger harmony environment than having just one. This is at least
intuitive as a concept, and there are two known cases (in Classical Manchu and Oroqen)
in which harmony occurs only when there are two consecutive triggers present
(Dresher & Zhang 1996, Zhang 1996, Walker 2001). A Finnish analogue to the count
effect of Hungarian is noted by Campbell (1980:252), and could be analyzed as a
trigger-count effect.

With these four principles in mind, we turn to the formulation of a set of natural
constraints for the analysis of Hungarian vowel harmony. The inventory in Table 2 is
closely based on the constraint set used by Hayes and Londe (2006:76–77).12

CONSTRAINT FORMALIZATION COMMENT

a. AGREE(back, local) *[�back][�back] Vowels must agree in
backness with a preceding
back vowel.

b. AGREE(back, nonlocal) *[�back] N0 [�back] Nonlocal version of (a)
c. AGREE(front rounded, local) *[�back,�round][�back] Vowels must agree in

backness with a preceding
front rounded vowel.

d. AGREE(front rounded, nonlocal) *[�back,�round] N0 [�back] Nonlocal version of (c)
e. AGREE(front, local) *[�back][�back] Vowels must agree in

backness with a preceding
front vowel.

f. AGREE(nonhigh front, local) *[�back,�high][�back] Specific version of (e),
limited to nonhigh triggers

g. AGREE(low front, local) *[�back,�low][�back] Specific version of (f),
limited to low triggersa

h. AGREE(double front, local) *[�back][�back][�back] Two-trigger harmony

TABLE 2. Natural constraints for Hungarian vowel harmony.
a We treat [ε], the lowest front vowel of Hungarian, as [�low]: in suffixes it alternates with a low

vowel, and phonetically it is often rather lower than the IPA symbol suggests.

Here are the formal assumptions behind the constraints. First, it is assumed that
constraints may access some kind of ‘vowel tier’ (Clements 1976) or ‘vowel projection’
(McCarthy 1979, Hayes & Wilson 2008), which displays all the vowels of a word
adjacently, permitting vowel-to-vowel interaction in spite of intervening consonants.
Second, we allow constraints to specify the agreeing feature as well as restrictions on
the trigger based on the principle of trigger strength given above. Third, we allow

11 These commonplace acoustic effects are evident in Hungarian; see Magdics 1997:6.
12 The constraint type AGREE originates with Lombardi (1999). AGREE constraints suffer from problems

of overgeneration—that is, generation of typologically unattested patterns. These are discussed, with possible
remedies, in Wilson 2003b, McCarthy 2004, and Finley 2008. The overgeneration problem appears to be
independent of the issues at hand here, so we stick with AGREE for expository simplicity.
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constraints to specify whether they apply locally, or permit certain intervening neutral
vowels.

These are quite similar to the constraints used by Hayes and Londe (2006). In the
case of Table 2(e–g), we have made a minor change: instead of referring to specific
heights (e.g. ‘AGREE(mid vowel)’), we adopt the alternative approach of the ‘stringency
hierarchy’ (Prince 1997, De Lacy 2004), where agreement is required when a vowel
is of a particular height OR LOWER. These are essentially equivalent as far as the grammat-
ical analysis goes, but are easier to work with in statistical testing (see §8.3). For
AGREE(back, nonlocal) and AGREE(front rounded, nonlocal), in principle our system
should assess violations whenever the stem contains B or F (respectively); however,
difficulties involving the theory of locality (see Hayes & Londe 2006:§5.12 for discus-
sion and a proposal) led us to employ an ad hoc simplification, which simply assigns
a violation whenever the closest nonneutral vowel is B or F respectively.

Inspection indicates that all of these constraints reflect the typologically supported,
proposed UG principles given above. All of them enforce agreement in the feature
[back], reflecting the principle of single-feature assimilation. Five of the eight con-
straints are specifically limited to local triggers (a, c, e, f, g), respecting locality. Wher-
ever the trigger class is limited by features, it is limited in a way that designates
particular vowel classes that in accordance with Kaun’s principles should be strong
triggers: front rounded vowels (c, d) or front vowels of a particular height (f, g). Lastly,
the constraint in (h) reflects the principle of trigger count.

A complete analysis of Hungarian vowel harmony would have to cover several
aspects not discussed here—for instance, the need to limit harmony targets to suffixes
and to enforce any lexically specified patterns for stems within the zones of variation.
For discussion, see Hayes & Londe 2006:§5. Here, we are concerned only with how
a ranking of the crucial constraints yields the aggregated data patterns. Three of the
constraints are never violated and may be ranked at the top of the grammar: AGREE(back,
local), AGREE(front rounded, local), and AGREE(front rounded, nonlocal). The remaining
five constraints are illustrated below with schematic tableaux, leaving open for the
moment the constraint ranking and the winning candidates.

At an intuitive level, Table 3 shows how the height and count effects can be derived:
the lower the last stem vowel, the more violations penalize the [-n:k] candidate, increas-
ing the likelihood of [-nεk]. BNN forms with [-n:k] are likewise penalized by one
more constraint than the corresponding BN forms.

This general scheme can be made precise in a framework that generates quantitative
predictions. Hayes and Londe used STOCHASTIC OPTIMALITY THEORY (Boersma 1998,
Boersma & Hayes 2001), in which the constraints are assigned numerical ‘ranking
values’ and the grammar generates multiple outputs probabilistically. Their analysis
achieved a fairly close quantitative match to the wug-test data they gathered (see graph
and discussion, Hayes & Londe 2006:89). We implement a somewhat different analysis
below in §9.

The upshot of the discussion so far is this: not only do Hungarian speakers tend to
match the frequencies of the lexicon when tested on vowel harmony, but it is also
possible to achieve a good first-pass approximation to their behavior using a probabilis-
tic, constraint-based framework, the constraints being limited to those that would plausi-
bly be described as natural in phonological theory.

7. HUNGARIAN BEYOND UG: ARE THERE UNNATURAL CONSTRAINTS? We turn next to
the question of whether there might also be unnatural environments governing the
choice of front and back suffixes in the Hungarian zones of variation. A good place
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TABLE 3. Schematic tableaux for the five violable constraints.

to search is among the consonants at the end of the stem; at least in published work,
consonants have not been considered as possible influences on Hungarian vowel har-
mony.13 We therefore performed an intensive search for consonant effects in our Hun-
garian lexical data, using spreadsheets and small computer programs. Adopting a fairly
standard feature set for Hungarian, we checked every natural class of consonants Ci

that it defines, assessing whether a constraint preferring front suffixes or back suffixes
in the context / Ci has noticeable effects. We also checked as many other reasonable-
seeming unnatural environments that we could, simply relying on our intuitions of what
might work.

Our search was successful, in the sense that we found four consonant environments
that proved to have considerable influence on the outcome of harmony within the zones
of variation. As it happens, all four favor front harmony; they are listed in 10.

(10) Four unnatural vowel harmony constraints for Hungarian
a. Prefer front suffixes when the stem ends in a bilabial noncontinuant

([p, b, m]).
b. Prefer front suffixes when the stem ends in a sibilant

([s, z, +, Ç, ts, t+, dÇ]).
c. Prefer front suffixes when the stem ends in a coronal sonorant

([n, «, l, r]).
d. Prefer front suffixes when the stem ends in a sequence of two conso-

nants.14

13 A web-posted abstract, Trón 2007, claims that there are consonant environments for Hungarian vowel
harmony (without identifying them), and Anderson (1980) claims consonant environments for Finnish; both
study the lexicon only. The case of Turkish (Clements & Sezer 1982) is quite different: the consonants that
influence harmony in this language are palatalized, and hence themselves bear the harmonizing feature.

14 A referee suggested splitting 10d in two: one version for final geminates and one for true clusters. We
found that both significantly favor [-nεk], and model fits (see below) were not improved by the split.
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We judge that one of these environments (10d) is incontestably unnatural;15 and they
may all be. The contexts 10b and 10c might conceivably be said to favor front harmony
given the slight affiliation between coronal place of articulation and front vowels (Clem-
ents 1991, Hume 1992, Flemming 2003). However, the limitation to sonorants and
sibilants (observe the exclusion of coronal [t, d]) makes little sense in terms of typology.
Moreover, it is particularly puzzling that the coronality of the stem-final consonant
could influence the choice of suffix vowel, given that the suffix we examined begins
with [n]: the suffix vowel is always adjacent to a coronal sonorant. The effect in 10a
could be some form of labial dissimilation ([:] is rounded), as suggested by a referee,
but note that labiodentals ([f, v]) are excluded from the effect. In order for 10a,b,c to
all be phonetically based there would have to be both consonant-vowel assimilation
and consonant-vowel dissimilation.

For completeness, we note another apparently unnatural constraint, which governs
the minor all-neutral zone of variation.

(11) Constraint: monosyllables with [i�]
Prefer back suffixes when the stem is monosyllabic with the vowel [i�].

In the database we worked with, there are 1,955 all-neutral stems, of which only twenty
take majority back harmony. Of the latter, eighteen are monosyllabic, and of these,
sixteen have the vowel [i�] (the other two have [e�]). Hence, being of the form [C0i�C0]
nearly qualifies as a necessary condition for back harmony in all-neutral stems. It is
hardly a sufficient condition, however, since there are also seventeen monosyllabic
stems with [i�] that take the expected majority front harmony. For an exhaustive listing
of the relevant stems, leading to similar conclusions, see Vago 1980:8.

Though vowel dissimilation does sometimes occur in phonology (see e.g. Itô 1984),
the limitations to a particular vowel and to syllable count seen here have no natural
basis of which we are aware. The data pattern expressed in 11 has been claimed to be
traceable to a common diachronic path whereby the words that originally had the form
*CæCV (and took back harmony) evolved into Ci�C (Kálmán 1972:63–64).

Thus, we have a total of five plausibly unnatural constraints that can be evaluated
for their influence on Hungarian vowel harmony.

7.1. QUANTITATIVE ASSESSMENT OF THE CONSTRAINTS. Before proceeding with a wug
test based on these constraints, we sought some preliminary assurance that the skewing
of the Hungarian lexicon they represent is large enough that we might expect to find
their influence in the testing data.

To begin, when the constraints are taken in the aggregate, they produce a noticeable
quantitative effect in the zones of variation. In Table 4, we divide up the stems in
various lexical subzones according to whether at least one unnatural environment is
present. It can be seen that for certain stem types, the increase in [-nεk] counts found

15 John McCarthy (p.c.) offered an intriguing scenario under which 10d would emerge as natural: in the
BN/BNN zone of variation, a CC sequence increases the distance between the B trigger and the suffix, thus
perhaps attenuating the influence of B. We checked this by examining whether having two or more consonants
between the penult and ultima had a similar effect, since it also adds distance between B and the suffix. In
contrast to final CC, it had an essentially zero effect. This suggests that raw distance does not explain the
final-CC constraint.
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in our lexical database is quite substantial. The column labeled N indicates the number
of items over which the fractions in the preceding columns are calculated.

STEM TYPE FRACTION [-nεk] N
at least one unnatural

no unnatural consonant consonant environment
environment present favoring [-nεk]

B � high 0.03 0.03 97, 85
Be� 0.08 0.35 43, 32
Bε 0.34 0.91 4, 109
BNN 0.74 0.88 27, 36
N 0.84 0.96 68, 191

TABLE 4. Aggregated effects of the unnatural environments in the lexical database.

Statistics for the individual constraints are provided in Table 5. Where a stem shows
divided behavior in the Google counts, we apportion the values between the two options;
this is why the third column contains noninteger values.

total stems total taking
meeting the predicted
description harmony value %

USE FRONT / bilabial 41 36.1 88.0
USE FRONT / sibilant 136 88.5 65.1
USE FRONT / [�cor,�son] 182 116.8 64.2
USE FRONT / CC 168 157.6 93.8
(compare: all in zones of variation) 692 279.1 40.3
USE BACK / [C0i�C0] 33 15.6 47.1
(compare: all monosyllabic N) 259 18.8 7.3
TABLE 5. Lexical statistics for five unnatural constraints (zones of variation only).

We also sought to guard against the possibility that some of the unnatural constraints
could be artifacts. Words are often subject to several constraints, both natural and
unnatural, and some of the relevant properties may not be independent. For example,
if the height of front vowels differs statistically before consonants of various types, we
might get a consonant effect that was an epiphenomenon of the height effect.16 To
address this problem and assess the independent contribution of each constraint, we
fitted a generalized linear model of [-n:k] rates in the lexicon. Because [-n:k] rates in
the lexicon are not at all normally distributed, but instead clustered very strongly at 0
and 1, we could not use a simple linear regression. Instead, we collapsed all rates to
0 or 1, and performed a logistic regression.17 The model has a set of coefficients, one
for each constraint, plus an intercept (baseline value). These are shown in Table 6.

16 Indeed, almost all [Bε] stems meet at least one unnatural environment; see Table 4.
17 Values � 0.1 were treated as zero, values � 0.9 were treated as 1, and the remaining sixty-seven words

with values in the middle were discarded. We used the bayesglm() function of the arm package (Gelman et
al. 2009) of the R statistics program (R Development Core Team 2007), with default values (prior.scale �

2.5, prior.df � 1), following Gelman and colleagues’ (2008) recommendation for logistic regression when
independent variables strongly predict each other (collinearity) and when some combinations of values for
the independent variables fully determine the outcome (separation).
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COEFFICIENT p
(Intercept) �2.479 0.0004

Natural constraints
AGREE(back, local) 6.330 � 0.0001
AGREE(back, nonlocal) 6.629 � 0.0001
AGREE(front rounded, local) �1.095 0.5751
AGREE(front rounded, nonlocal) �1.370 0.4834
AGREE(front, local) (redundant)a
AGREE(nonhigh front, local) �1.384 0.0046
AGREE(low front, local) �4.553 � 0.0001
AGREE(double front, local) �4.996 � 0.0001

Unnatural constraints
USE FRONT / bilabial �2.356 0.0095
USE FRONT / [�cor,�son] �1.290 0.0053
USE FRONT / sibilant �1.210 0.0205
USE FRONT / CC �1.266 0.0570
USE BACK / [C0i�C0] 3.187 � 0.0001

TABLE 6. Evaluating harmony constraints for strength in the lexicon: a generalized linear model.
a AGREE(front, local) is not assigned a value because its violation pattern is entirely predictable (the
complement set of AGREE(back, local)). When we later turn to maxent modeling of the data, however,
we see that AGREE(front, local) does play a role, accounting for the small number of Bi forms with front
suffixes. In the regression model, the intercept takes care of these cases.

In using the model to predict the probability that a given stem will take [-n:k], we
begin with the intercept, then add the coefficient for each constraint that is applicable
to that stem. The result is the logit, which can be converted into a probability: probability
� 1/(1 � e�logit). Some constraints’ coefficients are positive, which means that they
increase the probability that the stem takes [-n:k], while others’ are negative, decreasing
this probability. For example, the model’s logit value for [di:de�m-n:k] ‘diadem-DAT’
is computed as follows: �2.479 (intercept) � 6.629 (nonlocal back vowel encourages
[-n:k]) � 1.384 (local nonhigh front vowel discourages [-n:k]) � 2.356 (final bilabial
discourages [-n:k]) � 0.410. This logit is converted to a probability with the formula
just given: 1/(1 � e�0.41) � 0.601 (cf. the observed rate for [di:de�m-n:k] in the
corpus, 0.727).

The model demonstrates that the effects of the unnatural constraints are unlikely to
be artifacts: had this been the case, the model would have assigned coefficients to the
unnatural constraints at or near zero.18 Our local conclusion is that Hungarian includes
a number of phonological environments that appear to be unnatural, are correlated with
harmonic behavior in the lexicon, and whose effects are independent of the natural
constraints.

We emphasize that these findings pertain to the Hungarian LEXICON; the issues of
whether Hungarian speakers are aware of the unnatural environments and the degree
to which the unnatural environments play a role in forming their linguistic intuitions
remain to be covered.

18 Significance values for the coefficients are shown in the right column of Table 6. These p-values can
be used to evaluate the independence of the unnatural constraints from the others, but would not be appropriate
as a test of whether the lexicon contains unnatural constraints at all, since we are showing only a selection
of the strongest ones. AGREE(front rounded, local) and AGREE(front rounded, nonlocal) receive surprisingly
high p-values, considering that their phonological status in Hungarian is impeccable. Each of these two
factors is highly predictable from the other factors, leading to a large standard error and thus a high p-value.
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8. A WUG TEST FOR UNNATURAL CONSTRAINTS. To gain insight into these questions,
we conducted a wug experiment. The focus of the experiment was the four unnatural
consonant-based environments listed in 10, though we also report our findings on the
remaining constraints. Our particular interest in the consonant-based environments lies
in the fact that, following the work of Becker and colleagues (2007) summarized above,
we would expect them to fall outside the range of learnable constraints.

8.1. CHOICE OF WUG STEMS. All of the wug stems in our experiment were from the
zones of variation. To increase the sensitivity of our study, we employed a large number
of wug stems, by sampling with replacement from the set of possible stems, as detailed
below. With 1,602 items distributed over 1,703 trials (131 subjects � 13 trials each),
most items that a given participant saw were unique. Our purpose was to reduce the
chance of unwanted factors about particular stems playing a role; whatever factors may
have been present would be likely to be washed out among such a large number of
varying stems.19

We arranged the wug stems to have final consonants or consonant clusters that would
test the unnatural consonant environments given in 10. There were equal numbers of
monosyllables, disyllables, and trisyllables. Otherwise, we tried to make the wug stems
statistically resemble Hungarian stems in every possible respect by generating them
with a procedure that matched the frequencies of their initial, medial, and final conso-
nant sequences to the frequencies found in our lexical corpus. Each stem was required
to belong to one of the vowel schemata BNN, (B)BN (shown as BN in graphs),20 and
N, and within each vowel type (B or N) the vowels were again chosen at a frequency
that matched their frequency in the lexical corpus. We then filtered out real stems as
carefully as we could, both with comparison to large electronic Hungarian dictionaries
and with visual inspection by the two native-speaker authors. Because so many possible
monosyllables are already real words, there ended up being sixty-eight monosyllabic
stimuli that were used for two or more participants.

With this procedure, we obtained enough wug stems to give each consultant a bal-
anced set of thirteen stems, which were chosen as indicated in Table 7.21

FINAL

# OF FINAL CORONAL FINAL FINAL

STIMULI BILABIAL SONORANT SIBILANT CC EXAMPLE(S)

2 no no no no kóde, ráltényé
2 no no no yes Prett, Bótáredt
2 no no yes no csandendes, Vórmámlés
1 no no yes yes szalhárécc
2 no yes no no nen, Cir
1 no yes no yes Vureldern
2 yes no no no hárakem, Ém
1 yes no no yes kébb

TABLE 7. Basis for selecting each participant’s set of thirteen wug stems.

19 An alternative method to achieve this goal is to have a great number of wug items, each one given to
every participant, and then carry out a by-items analysis on the results. This would not be feasible with our
web survey method—our experience in a pilot study was that most participants would not complete more
than about fifteen items.

20 We included BBN in order to expand the list of phonotactically ordinary possibilities for stems ending
in BN. For monosyllables, there was no alternative but to give some of the stems to more than one participant.

21 In Hungarian orthography, ı́, é, á, ó, ú � [i�, e�, a�, o�, u�], a � [:]; e � [ε], c � [ts], cs � [t+],
s � [+], sz � [s], ny � [«].
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8.2. SUBJECTS AND PROCEDURE. We ran our test on the World Wide Web, using
scripts adapted from Zuraw 2007. Our server displayed the experimental materials and
recorded the participants’ responses.

Participants were recruited using Google AdWords, a commercial web advertising
service. This service caused a brief advertisement to be displayed to web users whose
internet addresses indicated that they had logged on to the web from a site within
Hungary. The advertisement appeared in some cases on the Google search engine, but
mostly on affiliated independent web sites. The target words that were used to guide the
placement of the advertisement were the Hungarian versions of ‘Hungarian language’,
‘language’, ‘dictionary’, ‘thesaurus’, ‘etymology’, ‘linguistics’, ‘vowel’, ‘consonant’,
‘dialect’, ‘letter game’, and ‘word game’.

Google ran our ad about 2,000,000 times, resulting in 872 visitors to the site. Of
these, 131 ultimately met our qualifications as participants: they completed all the items
in the test, they gave no noncongruent responses (see below), and on the information
page they told us that they were native speakers, eighteen or older, and living in Hun-
gary.22 Of these 131 subjects, seventy-six were male and fifty-five female, and the
median age was thirty-three (range: eighteen to seventy-five). We used Google Analyt-
ics software (www.google.com/analytics/) to monitor the location of our participants.
They turned out to be from all over Hungary, with about 56% from Budapest.

Following the introductory screen, the experiment displayed a series of screens giving
the wug words in Hungarian orthography, which is unambiguous in the grapheme-
to-phoneme direction. Each screen included a paragraph using the word twice; para-
graphs were drawn from Hayes & Londe 2006 and were intended to promote the sense
that the words could be native Hungarian words that had become obsolete with the
passage of time, rather than loanwords.23 Toward the end of the paragraph, a blank
appeared, which following the principles of Hungarian grammar would naturally be
filled with the dative form ([-n:k] or [-nεk]) of the wug stem. Participants first clicked
on one of two buttons to indicate a binary choice between [-n:k] and [-nεk], then rated
each form on a 1–7 scale. A sample page (rendered into English; the original is entirely
in Hungarian) is given in Figure 6.

The order of frame sentences was randomized for each subject. Each stimulus-frame
combination was automatically adjusted for upper vs. lower case, low vowel lengthening
(Hayes & Londe 2006:64), and definite-article allomorphy. For each item, the order
of the two candidate suffixes was randomized, though it was held constant between
the forced-choice task and the rating task.

Participants had to complete the choice task and both rating tasks on each page
before the program would allow them to continue to the next page. We deemed a
response ‘congruent’ if the suffixed form chosen was rated at least as high as the other
option. Participants were allowed by the program to continue even if they gave a
noncongruent answer, but no data for such participants was included in the results
reported below.24

Participants were rewarded for continuing the experiment with a ‘fun facts’ scheme:
in the introductory screen, a question of popular interest about the Hungarian language
was posed, and participants were shown the answer only after they had provided re-

22 For the importance of controlling for country of residence, see Zhang et al. 2007.
23 We judged that this would best serve in encouraging participants to access their native intuitions, rather

than treating the task as an abstract exercise or a form of word play.
24 Ninety-three subjects completed the survey but were excluded because they gave at least one noncon-

gruent response (usually just one or two).
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FIGURE 6. Example of a page from the web-based wug test.

sponses for two wug forms; they were then shown the next question, with the answer
coming two wug forms later, and so on.

8.3. RESULTS. First, we checked to see if our experiment yielded results similar to
those found by Hayes and Londe (2006), particularly with respect to the height and
count effects (§5). With a caveat, this turned out to be true.

The major difference is that the new wug-test results are less polarized: see in particu-
lar the series Bi/Be�/Bε, where every value in the present wug test is closer to the
middle value .5 than in the Hayes-Londe wug test. There is a plausible explanation for
this. The Hayes-Londe test was entirely of the ‘volunteering’ type, where the partici-
pants must make up the responses on their own. In contrast, the present test also included
the task of rating both the [-n:k] and [-nεk] forms. Thus, it modeled to the participants
a number of forms that are of very low probability in Hungarian: for instance, [BNε-
n:k] forms. We suggest that participants are more likely to accept an unusual form
presented to them than to volunteer it. The modeling effect has been found in earlier
work that used both rating and volunteering (Albright & Hayes 2003, Becker et al.
2007, Becker 2009).

Whatever the explanation for the less-polarized responses, the new test, just like the
old one, demonstrates the psychological reality of the height and count effects. This is
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FIGURE 7. Hayes-Londe experiment replicated.

evident in the graph above in Figure 7. Our statistical analysis, which confirms this,
is delayed to the following paragraphs where we discuss the results concerning unnatural
constraints. The results also reassure us that participants understood the task and applied
their knowledge of existing words to the wug words.

We now turn to the purpose for which the experiment was designed, namely determin-
ing whether the phonologically unnatural environments are internalized by Hungarian
speakers. We present results first for the forced-choice task and then for the rating task.

We analyze the forced-choice results with logistic regression, much as in Table 6
above, except that here we use a mixed-effects model (see Quené & van den Bergh
2004): as before, there are a baseline (intercept) value and a coefficient for each phono-
logical constraint (fixed effects), but this model also assigns each subject his or her
own baseline probability of choosing [-n:k] (random effect). The model was fitted
using the lmer() function of the lme4 package in R (Bates 2007). As in the logistic-
regression model of Table 6, we obtain the predicted logit of the probability of a
[-n:k] answer for a given stimulus by adding to the intercept the coefficients for the
constraints applicable to that form, but here we also add the subject intercept. The
subject intercepts average to 0, so on average, without knowing the identity of the
subject, the predicted logit will be the same as if there were no subject intercept added.
The logit is then transformed into a probability (probability � 1/(1 � e�logit). The
coefficients found are in Table 8; a positive value means that the property in question
encourages a [-n:k] answer, and a negative value the opposite.

The results can be summarized as follows. All of the natural constraints have strong,
reliable effects. Moreover, four of the five unnatural constraints also emerged as signifi-
cant in predicting the forced-choice responses. The only exception was USE BACK /
[C0i�C0] , a constraint that our experiment was not set up to test (not every participant
saw a [C0i�C0] stimulus). It remains to be seen whether a wug test with sufficient items
of this type would reveal effects of this constraint as well.

Our experiment also gathered rating data for both [-n:k] and [-nεk] forms. These
data require a different statistical approach. We define ‘[-n:k] advantage’ as the ob-
served rating for the [-n:k] option minus the rating for the [-nεk] option. Since each
response ranged from 1 to 7, the [-n:k] advantage ranges from �6 to 6. The model
is like that in Table 8 (and was fitted using the same function, except that p-values
were estimated using pvals.fnc() in the languageR package (Baayen 2007)), but here
the value obtained by adding the relevant coefficients to the intercept is the predicted
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COEFFICIENT p
Intercept �2.447 � 0.0001
Natural constraints

AGREE(back, local) (omitted)
AGREE(back, nonlocal) 4.024 � 0.0001
AGREE(front rounded, local) (omitted)
AGREE(front rounded, nonlocal) (omitted)
AGREE(front, local) (omitted)
AGREE(nonhigh front, local) �1.229 � 0.0001
AGREE(low front, local) �1.132 � 0.0001
AGREE(double front, local) �2.200 � 0.0001

Unnatural constraints
USE FRONT / bilabial �1.211 � 0.0001
USE FRONT / [�cor,�son] �0.519 0.0074
USE FRONT / sibilant �0.500 0.0230
USE FRONT / CC �0.762 � 0.0001
USE BACK / [C0i�C0] 0.610 0.3672

TABLE 8. Logistic-regression model of the forced-choice results.

[-n:k] advantage. The results are reported in Table 9. As before, a positive coefficient
means that the constraint favors [-n:k]; negative means it favors [-nεk].

COEFFICIENT ESTIMATED p
Intercept �2.247 � 0.0001
Natural constraints

AGREE(back, local) (omitted)
AGREE(back, nonlocal) 3.727 � 0.0001
AGREE(front rounded, local) (omitted)
AGREE(front rounded, nonlocal) (omitted)
AGREE(front, local) (omitted)
AGREE(nonhigh front, local) �1.583 � 0.0001
AGREE(low front, local) �1.286 � 0.0001
AGREE(double front, local) �2.678 � 0.0001

Unnatural constraints
USE FRONT / bilabial �1.015 � 0.0001
USE FRONT / [�cor,�son] �0.597 0.0046
USE FRONT / sibilant �0.537 0.0138
USE FRONT / CC �0.785 � 0.0001
USE BACK / [C0i�C0] �0.854 0.1612

TABLE 9. Mixed-effects model of the numerical rating results.

Again, all the constraints other than USE BACK / [C0i�C0] ___ emerge as having a
statistically significant effect.

We conclude that our experiment’s participants had learned the four unnatural gener-
alizations about final consonants and applied this implicit knowledge to the novel words
presented to them.

8.4. DISCUSSION. Our finding that unnatural constraints affect native-speaker judg-
ment is the opposite of what Becker and colleagues (2007) found. This is despite
the fact that our constraints, like theirs, involved a relationship between vowels and
consonants not reducible to dependency in a single feature. We cannot offer any firm
conclusions on why our study came out differently. One possibility is that the effects
we found are subtle enough that they emerge only with a fairly large-scale experiment
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(we used 131 participants).25 And of course, the particular phonological patterns exam-
ined were different (Turkish: local influence of vowels on following consonants; Hun-
garian: nonlocal effect of consonants on the following vowel).

The study of Moreton (2008), which likewise addressed non-same-feature V-C de-
pendencies, actually did find a modest effect for vowel environment: this emerged in
his experiment 2. Moreton suggested, therefore, that the role of naturalness in governing
the responses of his subjects involved not an absolute prohibition on learning vowel-
consonant dependencies (i.e. those involving distinct features) but rather a bias, in the
sense laid out in §2.2. Under this view, speakers perhaps have a harder time locating
the consonant environments, or they locate them but discount them to some degree
because of their unnaturalness. The following section, covering modeling, represents
our attempt to explore these possibilities more rigorously.

9. MODELING OUR RESULTS. In this final section, we attempt to develop a computa-
tional model of how the relevant aspects of Hungarian phonology are learned. The goal
is to explain why Hungarian speakers, whose life experience has exposed them to the
data patterns described above, would arrive at the intuitions that they displayed in our
wug test. Our modeling focuses on two questions.

First, there is the problem of whether such an arbitrary set of constraints as our
unnatural set is learnable at all. We assume that they would be learned through induction,
and show that one inductive learning model is capable of detecting them.

Second, we are interested in to what degree constraints are OVERLEARNED or UNDER-

LEARNED: that is, represented with a greater or lesser strength in the mental grammar
than would be justified purely by the strength of the corresponding patterns in the
Hungarian lexicon. We outline a method for detecting and assessing such deviations,
and suggest that unnatural constraints tend to be underlearned.

9.1. ENSURING THE LEARNABILITY OF THE UNNATURAL CONSTRAINTS. We ran a subset
of our lexical database—the forms in the zones of variation—through the ‘MinGen’
(minimal generalization) inductive morphophonemic learner proposed by Albright and
Hayes (2002, 2003). We equipped the MinGen learner with the phonological features
mentioned in §7 and assigned it the task of finding the best set of rules for predicting
the [-n:k] and [-nεk] suffixes from the segmental make-up of the stem. Of the four
unnatural environments that our wug test indicates were productively internalized by
native speakers (i.e. 10a–d), three showed up in the list of [-nεk] environments that
the algorithm learned, specifically as in 12.

(12) Unnatural harmony rules learned by the MinGen model26

RULE CORRECT/TOTAL CASES APPLICABLE

a. � N nεk / 38/44��labial
�continuant�

b. � N nεk / [�sibilant] 93/146

c. � N nεk / 127/211��coronal
�sonorant�

25 Post-hoc Monte Carlo simulations, fitting regression models to randomly sampled subsets of our data,
suggest that about 125 subjects would be needed in order to reliably observe significant effects of all four
unnatural constraints.

26 The implemented model’s output files describe natural classes in maximally verbose form; for clarity,
redundant features have been removed here. Numbers are rounded, reflecting a requirement of MinGen input
files.
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The consonant-cluster environment of 10d is not one that MinGen readily learns,
because it cannot express rules containing a sequence of natural classes. However,
when we provided the model with a representation of the training data consisting solely
of CV strings (cf. the ‘CV’ tier in some models of phonology; Clements & Keyser
1982), it readily learned the cluster environment (13).

(13) Postcluster environment learned by the MinGen model given CV informa-
tion27

� N nεk / CC 158/169

We note two caveats. First, the generalizations given above are not the only ones
that the MinGen model picked up from the data; dozens of others were found. Many
of these embody subsets of the environments in 12–13; others involve supersets or
overlapping sets. In principle, we could model Hungarian learning with all of these
generalizations included; however, given that our wug test examined only the specific
generalizations given in 12–13, we limit ourselves to the unnatural environments al-
ready discussed here.

Second, the MinGen model could not learn the ‘monosyllables with [i�]’ environment
for harmony (11), even when we provided it with a vowels-only tier. Whether this is
an important failing would depend on further evidence, not yet in hand, that this environ-
ment is in fact internalized by native speakers.

We conclude that the unnatural constraint environments discussed here are indeed
accessible from a fairly simple inductive procedure.

9.2. MODELING THE UNDERLEARNING AND OVERLEARNING OF CONSTRAINTS. To assess
whether constraints are overlearned or underlearned, our strategy was to employ a
computational model that learns a grammar for Hungarian vowel harmony on the basis
of the lexical data. This grammar is then tested on the same wug test forms we gave
to our human participants, permitting us to compare the strength of a constraint as it
is objectively manifested in the lexicon versus the strength of a constraint as it guides
human intuition.

Such modeling requires a number of initial assumptions. We first assume that our
lexical database is representative of Hungarian as a whole and can serve as a reasonable
stand-in for the learning experience that has been accumulated over time by a fluent
adult Hungarian speaker. We use the lexical database as the training data for our learning
simulation.

Second, we assume that the learning model has access to phonological constraints.
The constraint set we used consisted of thirteen constraints, the eight natural constraints
given in Table 2 and the five unnatural constraints in 10 and 11. We suppose that the
natural constraints could be part of UG or constructed by learners on the basis of their
superior phonetic properties, as in Hayes 1999 and Steriade 2008 [2001]. The unnatural
constraints, if we are right that they are unnatural, can only be learned through induction,
as in the preceding section.

Lastly, we must assume a framework for grammars and for learning; this is described
below.

9.3. CHOOSING A FRAMEWORK. The grammatical model we choose must be able to
make gradient predictions. Plausibly, these would be based on the assignment of numeri-

27 The full environment learned was / VCC __, the result of there being no triple final clusters in the input
data.
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cal values to the constraints reflecting their strengths.28 The gradient predictions would
take the form of probabilities assigned to the members of a candidate set (here, trivially,
the [-n:k] and [-nεk] suffixed versions of each stem). Such probabilities can then be
matched against the gradient data seen in our wug test.

There are various theories of this type available. Hayes and Londe (2006) primarily
employed stochastic optimality theory (OT), with its affiliated learning algorithm, the
gradual learning algorithm (GLA; Boersma 1998, Boersma & Hayes 2001). In recent
work, however, Pater (2008a) has shown that the GLA sometimes fails to find the
correct grammar.29 For this reason, we shift here to the alternative framework of maxi-
mum entropy (maxent) grammars (e.g. Goldwater & Johnson 2003, Fischer 2005, Wil-
son 2006, Jäger 2007, Hayes & Wilson 2008). This framework is described in the
following section.

9.4. MAXENT GRAMMARS. As deployed here, maxent grammars share the overall
architecture of optimality theory (Prince & Smolensky 2004 [1993]): a generator (GEN)
component creates a set of candidates for each input, and the grammar selects from
this set. More precisely, since maxent is a probabilistic approach, it assigns a probability
(often vanishingly small) to every member of the set.

In a maxent grammar the constraints are not ranked, but instead have weights, which
determine their influence in assigning probabilities to candidates: the larger a con-
straint’s weight, the lower the predicted probability of candidates that violate it. Given
the weights, candidates, and violation counts, the predicted probability of each candidate

x is P(x) � exp(��
N

i�1
wiCi (x)) / Z. This formula is explicated in 14.

(14) Probability computation in maxent for a particular candidate x
a. For each constraint Ci, multiply its weight wi by the number of times the

candidate violates it, Ci(x).

b. Sum the result of (a) over all N constraints. This sum, �
N

i�1
wiCi(x), is often

called the HARMONY of the candidate (Legendre et al. 1992, Smolensky &
Legendre 2006, Pater et al. 2007).

c. Take e to the negative power of the harmony. Hayes and Wilson (2008)
call this the MAXENT VALUE of the candidate.

d. Compute the maxent values of all candidates assigned by GEN to the
input and sum them. This value is conventionally called Z.30

e. P(x), the predicted probability of candidate x, is its maxent value divided
by Z.

28 Kiparsky (2005) rejects such numerical models on grounds of insufficient restrictiveness, favoring
instead the theory of Anttila (1997), in which there are no quantitative parameters, only freely ranked strata.
In our efforts to model our data with this system, we found that it somewhat underperforms the maxent
simulations given in §9.5 below (best correlation to wug ratings data: r � .522), though in fairness it has
fewer degrees of freedom. More problematically, inclusion of the unnatural constraints actually decreases
accuracy (r � .507). It appears that including the unnatural constraints in the same stratum as the violable
natural ones gives them too much force. Placing them in a lower stratum, however, is equivalent to omitting
them.

29 Indeed, our own simulation may be such a case; the stringency hierarchy of Table 2 (not used by Hayes
and Londe) creates a ‘credit problem’ (Pater 2008a, Dresher 1999), which leads the GLA under some settings
to form a grammar assigning 100% [-n:k] values to Bi and Be� forms.

30 Where GEN creates an infinite set of candidates, some form of idealization is needed to perform the
computation—for instance, setting a large but finite length limit. We presuppose here a very small set of
just two candidates.
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Several aspects of maxent grammars should be noted. First, the theory is in a certain
sense a superset of classical optimality theory: every nonstochastic OT grammar with
a finite bound on the number of violations has a maxent translation that derives the
same outputs with a probability as close to 1 as is desired (Johnson 2002). Second,
like all versions of HARMONIC GRAMMAR, maxent has the property of GANGING (Pater et
al. 2007, Pater 2008b, Hayes & Wilson 2008): when a candidate violates two constraints
together, its probability will go down more than if it violated just one. Third, maxent
is affiliated with a learning procedure (Berger et al. 1996) that is proven to converge
to the optimal weights (i.e. those that maximize the probability of the training data).
To our knowledge, it is the only current theory of stochastic grammar that has this
property.31

9.5. A FIRST-PASS LEARNING SIMULATION. For our maxent simulations, we developed
an input file for grammar training based on our lexical database (§5). In this file, each
stem included both a [-n:k] candidate and a [-nεk] candidate, along with the observed
fraction for both of these candidates in the Google survey data. This was intended as
our best available approximation of what real Hungarian speakers encounter while
learning harmony. We used type frequencies, not token frequencies, since (as is usually
the case in modeling intuitions based on the lexicon; Hayes & Wilson 2008:395), the
type frequencies result in a better fit to the wug-test data. Our file included the violations
for all thirteen natural and unnatural constraints examined here.

Submitting this file to maxent software (we used a program created by Colin Wilson
and Benjamin George), we found the constraint weights given in Table 10.32 We refer
to this combination of constraints and weights as GRAMMAR L, for ‘lexicon-trained’.

WEIGHT

Natural constraints
AGREE(back, local) 3.95
AGREE(back, nonlocal) 5.39
AGREE(front rounded, local) 3.72
AGREE(front rounded, nonlocal) 1.70
AGREE(front, local) 1.69
AGREE(nonhigh front, local) 1.46
AGREE(low front, local) 3.00
AGREE(double front, local) 4.04

Unnatural constraints
USE FRONT / bilabial 2.45
USE FRONT / [�cor,�son] 1.08
USE FRONT / sibilant .91
USE FRONT / CC 1.73
USE BACK / [C0i�C0] 2.42

TABLE 10. Grammar L: constraints and weights.

31 The HG-GLA algorithm, which learns NOISY HARMONIC GRAMMAR, is proven to converge for cases where
there is no free variation by Boersma and Pater (2008). The question of whether it reliably converges for
gradient data remains open.

32 Our program (available from http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/) em-
ploys the Conjugate Gradient method (Press et al. 1992) to find the weights. It includes a Gaussian prior
term, explained in Goldwater & Johnson 2003. We set this to be weak enough (� � 100,000) to have almost
nil effect on the weights.
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As a minimal check on Grammar L, we assessed whether it was capable of reproduc-
ing the frequencies for the data on which it was trained. In fact, there is close agreement
between its predictions and the original values: r � .992. This simply means that the
constraint set largely sufficed to capture the generalizations present in the lexical data.
When we confined the comparison to words of the form . . .BN(N) and N (as in the
wug test), r emerged as .892, indicating that not only the exceptionless generalizations
but also the gradient ones are well captured by these constraints.

We find that Grammar L also shows some ability to predict the wug-test data. We
obtained slightly higher correlations with our ‘[-n:k] advantage’ scores ([-n:k] rating
minus [-nεk] rating), and report these here. The correlation found is not as high, but
still substantial: r � .546. This matchup indicates that at a basic level, the participants
were following the law of frequency matching, projecting the patterns of the lexicon
into their own wug-test intuitions.

The degree of matching can be seen in Figure 8. The model’s values shown for
patterns that were in the wug test are the average for the complete set of wug-test forms
falling within each pattern; the model’s predicted [-n:k] rates are lower than those in
the lexicon, since the wug items are loaded with [-nεk]-preferring final consonantal
environments. The model-prediction values for remaining items are averages for lexical-
corpus items.
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FIGURE 8. Predictions of Grammar L.

Through further modeling, we found that excluding the unnatural constraints reduces
the fit to the data. Let us call the grammar with just the eight natural constraints of
Table 2, and with weights again learned by the maxent algorithm from the lexical data,
GRAMMAR LNAT. The correlations of the predictions of Grammar Lnat against the wug-
test data are lower, r � .521. This is just as we would expect, given that our statistical
testing earlier demonstrated that the unnatural constraints play a role in our participants’
judgments.

9.6. DETECTING OVERLEARNING AND UNDERLEARNING. In our next simulation, we
trained the weights directly on the forced-choice wug-test data. This certainly does not
simulate the process of language learning (children seldom access their parents’ well-
formedness intuitions), but rather is intended as an approximation of the final, learned
state of the grammar, insofar as this can be assessed by our wug test. The purpose is
to obtain weights we can compare against the weights of Grammar L, in order to detect
overlearning and underlearning.

In this simulation, we left out the constraints AGREE(back, local), AGREE(front
rounded, nonlocal), and AGREE(front rounded, local). Since the wug data consisted
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solely of BN, BNN, BBN, and N forms, these constraints are violated by neither the
[-n:k] nor the [-nεk] candidates, so their weights are irrelevant. The grammar thus
obtained, which we call GRAMMAR W (for ‘wug’), is as in Table 11.

WEIGHT

Natural constraints
AGREE(back, local) NA
AGREE(back, nonlocal) 3.59
AGREE(front rounded, local) NA
AGREE(front rounded, nonlocal) NA
AGREE(front, local) 2.24
AGREE(nonhigh front, local) .95
AGREE(low front, local) 1.06
AGREE(double front, local) 1.94

Unnatural constraints
USE FRONT / bilabial 1.03
USE FRONT / [�cor,�son] .44
USE FRONT / sibilant .37
USE FRONT / CC .67
USE BACK / [C0i�C0] .81

TABLE 11. Grammar W: constraint weights matched to the wug-test results.

We note the following. First, the correlation to the wug-test data obtained with
Grammar W was r � .575: higher, but not greatly so, than Grammar L (recall r �
.546). Some improvement is to be expected, since these weights are the mathematical
optimum for the data to which they were fitted.

Second, the weights of Grammar W (Table 11) are considerably lower than those
of Grammar L (Table 10): leaving out the constraints not shared by both grammars,
we find that the average weight in Grammar W was 1.31 and in Grammar L was 2.42,
a ratio of .54. We are not certain why the wug-fitted weights should be lower, but our
guess is that it has to do with a factor mentioned in §8.3: because the wug test presented
unlikely outputs to the participants (rather than seeing if they would be volunteered),
such outputs were treated more favorably. In general, lowering the weights depolarizes
the output distribution. Thus, the lower weights in Grammar W produce a better fit to
the wug-test data.

Keeping this general effect in mind, we now have a means of roughly estimating
the degree of underlearning and overlearning for the various constraints, specifically
the degree of ‘shrinkage’ one observes for a given constraint weight in comparing
Grammar L with Grammar W. Table 12 expresses this as a ratio,Grammar W/Grammar
L, for each constraint.

In rough terms, we see that AGREE(back, nonlocal) and AGREE(nonhigh front, local)
have rather middling ratios, of about .65. All the unnatural constraints’ ratios are rather
lower than this, around .4, and AGREE(low front, local) and AGREE(double front, local)
also have rather low ratios. Lastly, AGREE(front, local) stands out for its high ratio,
1.32.33

Before we try to make sense of these patterns, we first propose a means of testing
such differences more rigorously.

33 The differences apparently do not arise from Grammar W and Grammar L having different constraints,
a possible confound. We set up a Grammar LBNN/BN/N, with the same constraints as Grammar W but trained
using the . . .BNN, . . .BN, and N stems of the lexicon, which were the patterns used in the wug test.
Comparison of Grammar W and Grammar LBNN/BN/N yielded ratios similar to Table 12.
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GRAMMAR GRAMMAR

L WEIGHT W WEIGHT W/L RATIO

Natural constraints
AGREE(back, local) 3.95 NA
AGREE(back, nonlocal) 5.39 3.59 .67
AGREE(front rounded, local) 3.72 NA
AGREE(front rounded, nonlocal) 1.70 NA
AGREE(front, local) 1.69 2.24 1.32
AGREE(nonhigh front, local) 1.46 .95 .65
AGREE(low front, local) 3.00 1.06 .35
AGREE(double front, local) 4.04 1.94 .48

Unnatural constraints
USE FRONT / bilabial 2.45 1.03 .42
USE FRONT / [�cor,�son] 1.08 .44 .41
USE FRONT / sibilant 0.91 .37 .40
USE FRONT / CC 1.73 .67 .39
USE BACK / [C0i�C0] 2.42 .81 .34

TABLE 12. Comparing Grammar L and Grammar W.

9.7. ASSESSING THE CONSTRAINT WEIGHTS WITH A MONTE CARLO SIMULATION. The
weights in Grammars L and W are based on different sets of words, and thus are not
expected to be the same. To take an extreme example, AGREE(back, local) has a weight
of 3.95 in Grammar L, which was fitted to the lexicon. But we do not expect this
constraint to have a strong weight in Grammar W, no matter what the experimental
data: Grammar W was fitted to a data set in which no candidates ever violated that
constraint, so regardless of participant responses, the constraint’s weight remains at
whatever the default value has been set to (typically 0). More generally, even if partici-
pants used exactly Grammar L to generate their experimental responses, Grammar W
is expected to be different from Grammar L because each constraint applies to different
numbers of words in the two training sets.

Therefore, in order to determine just how different the experimental responses are
from the lexicon, we cannot simply compare Grammars L and W. Instead, we must
ask how the observed Grammar W weights compare to those that would be expected
if experimental participants’ responses faithfully reflect the lexicon: are some of the
constraints reflected more weakly (or more strongly) than would be expected? Our null
hypothesis is that Hungarian speakers are bias-free; that is, their responses in the wug
test are based on the law of frequency matching, and deviate from it only insofar as
there is noise. One might imagine a population of idealized Hungarian speakers who
have learned Grammar L and use it as the basis of their vowel harmony intuitions.

In order to test the null hypothesis, we adopted a Monte Carlo approach (Metropolis &
Ulam 1949), approximating the distribution of expected wug-test responses by repeat-
edly generating simulated sets of responses using Grammar L. Pseudo-Grammar Ws
fitted to these simulated responses yield the distribution of the expected weight for
each constraint, which can then be compared to its observed, Grammar W weight.

The details are as follows. Grammar L is used to assign a probability to the [-n:k]
and [-nεk] output for each of the 1,703 wug stems. We conducted 10,000 simulated
wug tests, simulating how 10,000 groups of idealized speakers would have responded
to the forced-choice task. As noted above in §9.5, the observed wug responses tended
to be closer to 50% [-n:k] than the lexical rates, perhaps as a result of both choices
being shown to the participants. To model this, we introduced a parameter of tempera-
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ture (Ackley et al. 1985:150–52), which appears as the parameter T in equation 15,
replacing the formula discussed above in 14.

(15) Maxent with temperature

P(x) � exp(��
N

i�1
- wiCi(x) / T) / Z′

where Z′ is the sum of exp(��
N

i�1
wiCi (x) / T) over all candidates.

If temperature is equal to 1, then the probability that the [-n:k] candidate is chosen
on any given simulation run is exactly equal to that candidate’s probability under
Grammar L. As the temperature climbs, the probability moves toward 0.5. With temper-
ature of 1.5 (the value used in the simulation below), the Grammar-L generated probabil-
ities 0.90, 0.75, 0.50, 0.25, and 0.10 are transformed to 0.81, 0.68, 0.50, 0.32, and 0.19.

At this stage we have a large population of simulated wug tests, each created with
temperature 1.5 to better match the behavior of the real participants. The next step is
to take each simulated wug test and construct a maxent grammar for it, with the con-
straints of Grammar W. Since this is done 10,000 times, this creates 10,000 values for
each weight, approximating the distribution of weights that would be expected from
idealized (unbiased) speakers. For example, Figure 9 gives the probability distribution
for the weight of AGREE(back, nonlocal). For reference, the solid line shows the weight
of this constraint in Grammar W and the dashed line shows its weight in Grammar L.

FIGURE 9. Simulated distribution of expected weights for AGREE(back, nonlocal).

We selected the temperature value of 1.5 because it causes the observed weight of this
uncontroversial constraint (3.59 in Grammar W) to be at the peak of the expected
distribution, as seen in Fig. 9.

The last step is to see where the weights of Grammar W, based on real speakers,
fall within these null-hypothesis distributions. If the weight of a constraint C in Grammar
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W falls in the left tail of the distribution, we take this as evidence that C is underlearned;
that is, it has a lower weight than the null hypothesis predicts. Similarly, if it falls in
the right tail, we diagnose it as overlearned. These characterizations are quantified by
determining what proportion of simulations yielded a weight lower than the observed
weight. For instance, if only 1% of simulations yield a weight to the left of C’s Grammar
W weight, then we can say that the estimated probability of observing such a low
weight—this degree of underlearning—under the null hypothesis of unbiased speakers
is 0.01; that is to say, p̂ (estimated p) � 0.01.

The results for all constraints are shown in Figure 10. Again, the solid line shows
the Grammar W weight for each constraint, and the dashed line shows the Grammar
L weight.

The numerical results for under- or overlearning are given in the last two columns
of Table 13. A small p̂ value indicates underlearning, and a large p̂ value indicates
overlearning. For the unnatural constraints, we test the one-tailed hypothesis that they
are underlearned, so we adopt a cut-off value of 0.05 for significance. For the natural
constraints, we test the two-tailed hypothesis that they are either under- or overlearned,
with cut-offs of 0.025 for underlearning and 0.975 for overlearning. For comparison,
we include also the weights and ratios of Table 12.

Our test generally confirms what was said in §9.6. AGREE(back, nonlocal) and
AGREE(nonhigh front, local) are neither overlearned or underlearned. The unnatural
constraints emerge as underlearned or tending in this direction. AGREE(low front, local)
and AGREE(double front, local) are underlearned, and AGREE(front, local) is overlearned.

What might these data be telling us? Clearly, interpretations at this stage are tentative,
but we offer the following conjectures.

First, the underlearning of the unnatural constraints may be reflecting a naturalness
bias, of the sort suggested by Wilson (2006) and Moreton (2008).

Second, concerning differences among the natural constraints, we think it is useful
to make a distinction between harmony in its raw form—backness harmony, skipping
across neutral vowels—and the more subtle modulations of it seen in the height and
count effects. Specifically, the details of the height effect are not reflected in the wug
data. This can be seen graphically in Fig. 7, where the lexicon shows a larger difference
between low and mid N triggers than between mid and high, but the wug responses—
including the responses obtained by Hayes and Londe—are more evenly spaced. This
discrepancy is robust in that it occurs in both BN and BNN words. Correspondingly,
our simulation finds that AGREE(low front, local) was underlearned, meaning that in
Grammar W the additional [-nεk]-favoring effect of a low N vowel as compared to a
mid N vowel, though substantial, is smaller than it is in the lexicon. The underlearning
of AGREE(double front, local) likewise reflects the lesser salience of the count effect
for speakers, relative to its prevalence in the lexicon. Looking again at Fig. 7, this
underlearning too is robust, in that it occurs in both Bi/i� vs. BNi/i� and Be� vs.
BNe� (the difference between Bε and BNε is small to begin with in the lexicon). The
underlearning is largely in the direction of BN words taking more [-nεk] suffixes,
rather than BNN words taking fewer; this is reflected in the overlearning seen for
AGREE(front, local).

What may be emerging is a SIMPLICITY BIAS: that is, a bias for phonological generaliza-
tions that embody relatively few segments and features. The basic harmony constraints
refer only to backness (of trigger and target), whereas the elaborated constraints refer
in addition to height or to the number of triggers present. The data do not permit any
more detailed assessment of this hypothesis, which our experiment was not designed
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FIGURE 10. Simulated distributions of expected weights for all Grammar W constraints.
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GRAMMAR GRAMMAR W/L
L W RATIO MONTE CARLO TEST p̂

Natural constraints
AGREE(back, local) 3.95 NA
AGREE(back, nonlocal) 5.39 3.59 0.67 neither overlearned 0.448

nor underlearned
AGREE(front rounded, local) 3.72 NA
AGREE(front rounded, nonlocal) 1.70 NA
AGREE(front, local) 1.69 2.24 1.32 overlearned 0.999
AGREE(nonhigh front, local) 1.46 .95 0.65 neither overlearned 0.421

nor underlearned
AGREE(low front, local) 3.00 1.06 0.35 underlearned 0.0000
AGREE(double front, local) 4.04 1.94 0.48 underlearned � 0.0001

Unnatural constraints
USE FRONT / bilabial 2.45 1.03 0.42 underlearned � 0.001
USE FRONT / [�cor,�son] 1.08 .44 0.41 nonsignificantly 0.069

underlearned
USE FRONT / sibilant .91 .37 0.40 nonsignificantly 0.103

underlearned
USE FRONT / CC 1.73 .67 0.39 underlearned � 0.001
USE BACK / [C0i�C0] 2.42 .81 0.34 underlearned 0.043

TABLE 13. Monte Carlo test of underlearning and overlearning.

to test. The idea of a simplicity bias in phonology has a long history, going back to
the feature-counting evaluation metric proposed in Chomsky & Halle 1968. We believe
that further study of the kind carried out here could shed further light on how phonologi-
cal learning is constrained by simplicity considerations.

It also seems possible that a well-supported theory of simplicity bias might ultimately
explain the underlearning of our unnatural constraints as well. Again, careful assessment
of this possibility would require much broader data than we have at present.

9.8. ANALOGY? Before concluding, it is appropriate to address one other possibility,
which would render our experimental results compatible with the idea that phonology
is exclusively based on a universal set of natural constraints. The idea is that what we
have posited as ‘unnatural constraints’ are not grammatical constraints at all, but rather
are only approximations for what in reality is analogy. This idea has been repeatedly
proposed (Ohala 1974, Daelemans & van den Bosch 2005, Skousen et al. 2002, and,
as a straw man, Albright & Hayes 2003): when speakers must make a grammatical
choice for a novel stem (such as that of [-n:k] vs. [-nεk]), they consult their lexicons,
locating stems that are phonetically similar to the stems in question, and the novel stem
is then classified so as to behave like the preponderant similar stem(s).

In the present context, the key idea would be that such analogical effects have a
somewhat weaker influence on native-speaker judgment than true grammatical con-
straints. The view that grammatical rules/constraints work in tandem with analogy is
a hallmark of the ‘dual mechanism’ theory of grammar; see Pinker & Prince 1988,
Pinker 1999, and for further discussion Albright & Hayes 2003.

We addressed the analogy hypothesis using the well-known TiMBL model of analogy
(Daelemans & van den Bosch 2005, http://ilk.uvt.nl/timbl/). We adopted the same pho-
nological coding that the TiMBL 6.1 reference guide employs for its illustrative Dutch
diminutive simulation. Exploring various combinations of learning parameters, we
found the best TiMBL correlation to the rating data to be .500. This is substantially
below what we could obtain with the best temperature-adjusted version of Grammar
L, which was r � .559.
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We evaluated the dual-mechanism hypothesis as follows. We started with a grammar
containing only the eight natural constraints of Table 2, optimally adjusted for tempera-
ture. This grammar’s predicted scores correlated somewhat less with the wug data,
r � .529. We thought that by blending the scores of this all-natural grammar with the
scores of the analogical system we might obtain the best of both; and we tried this by
examining all possible weighted averages of their predictions. However, the best of
these (81% all-natural constraints, 19% analogy) received a correlation of only .532.
Thus, adding in unnatural constraints increases the correlation by .030, whereas folding
in analogy increases it by only .003. In sum, our modeling efforts so far offer modest
support for an approach in which the effects of the unnatural environments are embodied
by highly specific grammatical constraints, not analogy.

10. SUMMARY AND CONCLUSION. Our original interest in this topic arose from the
issue of the surfeit of the stimulus: can a language include data patterns to which native
speakers are oblivious because the patterns are unlearnable? The question is central to
current UG theorizing, since it sharply distinguishes strong versions of the UG hypothe-
sis from theories that also permit a degree of inductive learning. To this end, we located
a group of arguably unnatural constraints that hold true statistically of the Hungarian
lexicon, then checked the ability of Hungarian speakers to learn these unnatural con-
straints by conducting a wug test.

Our test got a different result from the earlier findings of Becker and colleagues
(2007) on Turkish: the behavior of our participants clearly shows the effect of the
unnatural constraints. The ability of speakers to learn unnatural constraints has been
asserted before (§4), and our experimental findings further support such claims. Why the
two experiments obtained contrasting results must remain a topic for further research.

Our results are also of interest because, although they generally reflected the law of
frequency matching, there were notable deviations. We examined these deviations more
closely through modeling: we fitted maxent grammars to both the lexical data and the
wug-test responses, and, in a Monte Carlo simulation, compared the constraint weights
fitted to the observed data against those expected under the null hypothesis that re-
sponses are faithfully generated by the lexicon-trained grammar. We found that unnatu-
ral constraints were underlearned, giving modest support to the idea (Wilson 2003a,
Moreton 2008) that people show a learning bias against unnatural constraints. We
also found underlearning for some of the natural constraints, however, namely those
responsible for the count effect and part of the height effect. This suggests perhaps a
role for a simplicity bias as well. We suggest that study of underlearning and overlearn-
ing along the lines we have laid out, for a variety of phonological systems, could help
shed further light on these issues.
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