
Insertion Minimalist Grammars: Eliminating
redundancies between merge and move

Tim Hunter?

Department of Linguistics
Yale University

Abstract. Minimalist Grammars (MGs) provide a setting for rigourous
investigations of ideas that have been proposed at a more intuitive level
in mainstream work in generative syntax. I address one such idea, namely
the possibility that when an element appears to be “displaced”, it might
be usefully analysed not as having merged into one position and then
moved to another position, but rather as simply having merged into one
position, and then merged again into another. Intuitively, there appears
to be some redundancy in a system where merge and move are unrelated
primitive operations, because the structures that they build are of the
same sort. I offer a careful illustration of how a MG variant based upon
re-merging can eliminate these redundancies.

Stabler [16] presents Minimalist Grammars (MGs) as a precise formulation
of the basic grammatical machinery introduced in [1]. MGs provide a setting
for rigourous investigations of ideas that have been proposed at a more intuitive
level in mainstream work in generative syntax. In this paper I address one such
idea (suggested by, among others, [7, 2]), namely the possibility that when an
element appears to be “displaced”, it might be usefully analysed not as having
merged into one position and then moved to another position, but rather as
simply having merged into one position, and then merged again into another.
Intuitively, there appears to be some redundancy in a system where merge and
move are unrelated primitive operations, because the structures that they build
are of the same sort, and the shift to a “move as re-merge” system offers the hope
of eliminating this redundancy and therefore of a more parsimonious theory of
grammar. In this paper I offer a careful illustration of how a MG variant based
upon re-merging (“Insertion Minimalist Grammars”, IMGs) can eliminate these
redundancies. Since I also show that this variant is formally equivalent to the
more standard version (both weakly and, in a meaningful sense, strongly), such
qualitative issues as parsimony and perspicuity appear to be the most relevant
criteria for deciding between the two formalisms.

I introduce standard MGs in section 1 and discuss the ways in which their
definition appears to duplicate certain information in section 2. I then introduce
the alternative IMG formalism, similar to the variant already presented in [17], in
section 3, and discuss its consequences in section 4. The appendix demonstrates
that IMGs are weakly equivalent to standard MGs.

? Thanks to Ed Stabler, Bob Frank, and anonymous reviewers for helpful advice.

1 (Standard) Minimalist Grammars

A Minimalist Grammar (MG) is a five-tuple G = 〈Σ,Sel ,Lic,Lex , c〉 where:

– Σ is a finite alphabet
– Sel (“selecting types”) and Lic (“licensing types”) are disjoint sets which

together determine the set Syn (“syntactic features”) as follows:

selectors = {=f | f ∈ Sel} licensors = {+f | f ∈ Lic}
selectees = { f | f ∈ Sel} licensees = {-f | f ∈ Lic}

Syn = selectors ∪ selectees ∪ licensors ∪ licencees

– Lex (“the lexicon”) is a finite subset of Σ∗×{::}× (selectors ∪ licensors)∗×
selectees× licensees∗

– c ∈ Sel is a designated type of completed expressions

Given an MG G = 〈Σ,Sel ,Lic,Lex , c〉, an expression is an element of

Expr = (Σ∗ × {:, ::} × Syn∗)× (Σ∗ × Syn+)∗

and a lexical expression is an element of the set ExprLex = Lex × {ε}. For an
expression of the form 〈x, 〈y1, y2, . . . , yn〉〉 I will often write x, y1y2 . . . yn, and
will sometimes call y1y2 . . . yn the “tail” of the expression; and for an expression
of the form 〈x, ε〉 (i.e. with an empty tail) I will often write just x.

CL(G) ⊆ Expr is the closure of ExprLex under the functions e-mrg and
i-mrg, defined as follows. In these definitions: s, t ∈ Σ∗; f ∈ Sel ∪ Lic; α, β ∈
Syn∗; γ ∈ Syn+; · ∈ {:, ::}; and φ, ψ ∈ (Σ∗ × Syn+)∗.

e-mrg = comp-e-mrg ∪ spec-e-mrg ∪ nonfinal-e-mrg

s :: =fα, ε t · f, ψ
st :α,ψ

comp-e-mrg
s : =fα, φ t · f, ψ

ts :α, φψ
spec-e-mrg

s · =fα, φ t · fγ, ψ
s :α, φ(t, γ)ψ

nonfinal-e-mrg

i-mrg = spec-i-mrg ∪ nonfinal-i-mrg

s : +fα, φ(t, -f)ψ

ts :α, φψ
spec-i-mrg

s : +fα, φ(t, -fγ)ψ

s :α, φ(t, γ)ψ
nonfinal-i-mrg

where we require, in all cases, that there is no other (t′, -f) or (t′, -fγ′) in φ or ψ

The language generated by G is L(G) = {s | 〈s · c, ε〉 ∈ CL(G) for · ∈ {:, ::}}.
The set of Minimalist Languages is defined as ML = {L(G) | G is an MG}.

A derivation of a basic question which book did the man read can be derived
from the lexical items in (1) as shown in Figure 1(a).

(1)
which :: =n d -wh the :: =n d read :: =d =d v

book :: n man :: n did :: =v +wh c

d
id

::
=
v
+
w
h
c

re
ad

::
=
d
=
d
v

w
h
ic
h

::
=
n
d
-
w
h

b
o
o
k

::
n

w
h
ic
h
b
o
o
k

:
d
-
w
h

e
-m

r
g

re
ad

:
=
d
v
,(
w
h
ic
h
b
o
o
k,
-
w
h
)

e
-m

r
g

th
e

::
=
n
d

m
an

::
n

th
e
m
an

:
d

e
-m

r
g

th
e
m
an

re
ad

:
v
,(
w
h
ic
h
b
o
o
k,
-
w
h
)

e
-m

r
g

d
id

th
e
m
an

re
ad

:
+
w
h
c
,(
w
h
ic
h
b
o
o
k,
-
w
h
)

e
-m

r
g

w
h
ic
h
b
o
o
k
d
id

th
e
m
an

re
ad

:
c

i-
m
r
g

(a
)

A
si

m
p
le

M
G

d
er

iv
a
ti

o
n
,

d
is

cu
ss

ed
in

se
ct

io
n

1

d
id

::
+
v
+
w
h
-
c

re
ad

::
+
d
+
d
-
v

w
h
ic
h

::
+
n
-
d
-
w
h

b
o
o
k

::
-
n

w
h
ic
h

::
+
n
-
d
-
w
h
,(
b
o
o
k,
-
n
)

w
h
ic
h
b
o
o
k

:
-
d
-
w
h

m
r
g

re
ad

::
+
d
+
d
-
v
,(
w
h
ic
h
b
o
o
k,
-
d
-
w
h
)

re
ad

:
+
d
-
v
,(
w
h
ic
h
b
o
o
k,
-
w
h
)

m
r
g

th
e

::
+
n
-
d

m
an

::
-
n

th
e

::
+
n
-
d
,(
m
an
,-
n
)

th
e
m
an

:
-
d

m
r
g

re
ad

:
+
d
-
v
,(
w
h
ic
h
b
o
o
k,
-
w
h
),

(t
h
e
m
an
,-
d
)

th
e
m
an

re
ad

:
-
v
,(
w
h
ic
h
b
o
o
k,
-
w
h
)

m
r
g

d
id

::
+
v
+
w
h
-
c
,(
th
e
m
an

re
ad
,-
v
),

(w
h
ic
h
b
o
o
k,
-
w
h
)

d
id

th
e
m
an

re
ad

:
+
w
h
-
c
,(
w
h
ic
h
b
o
o
k,
-
w
h
)

m
r
g

w
h
ic
h
b
o
o
k
d
id

th
e
m
an

re
ad

:
-
c

m
r
g

(b
)

A
si

m
p
le

IM
G

d
er

iv
a
ti

o
n
,

d
is

cu
ss

ed
in

se
ct

io
n

3
(i
n
se

r
t

st
ep

s
a
re

u
n
la

b
el

ed
)

F
ig
.
1
.

D
er

iv
a
ti

o
n
s

o
f
w
h
ic
h
b
o
o
k
d
id

th
e
m
an

re
ad

in
ea

ch
o
f

th
e

tw
o

fo
rm

a
li
sm

s
co

n
si

d
er

ed

The e-mrg operation “checks” (or deletes) a selector feature (eg. =n) and a
corresponding selectee feature (eg. n), and combines the two expressions bearing
these features, in a manner roughly analogous to slash-elimation or function-
application rules in categorial grammars. The distinctive notion of movement is
implemented by the i-mrg operation which checks licensor (eg. +wh) and licensee
(eg. -wh) features. The features on the lexical item which :: =n d -wh dictate that
after being selected as a “d-type” element, an application of i-mrg will move
(a phrase headed by) which will move to another position in order to check
its -wh feature. Accordingly, the application of e-mrg that combines read with
which book is, more specifically, an application of nonfinal-e-mrg, and places
(which book, -wh) in the “tail” of the resulting expression. Intuitively the tail
of an expression records those parts of the expression that have been merged
into an initial position but will move on to a different position at some point
in the future of the derivation; this idea also bears some ressemblance to the
“Cooper Storage” approach to quantification [4], where the “stored” things are
not quantifier meanings but strings (see also [13]).

2 Redundancies in MGs

There are certain patterns which are shared by the definitions of both e-mrg
and i-mrg. Each has the ability to create specifiers (phrases that are linearised
to the left of the head that projects over them) and the ability to create empty
positions. It is natural to ask what reasons there may be for duplicating in this
way the stipulations of how these two things should be achieved.

2.1 Two ways to create specifiers

Consider the definitions of spec-e-mrg and spec-i-mrg. Each has the effect
of concatenating a string t, contributed by a phrase that is not projecting, on
the left of a string s, contributed by a phrase that is projecting.1 That the two
are stated separately prompts the question of whether this similarity is a mere
accident and the two results “could have been” different: say, ts in one case and
st in the other; or sst in one case and ttss in the other; or ts in one case and
t_foo_s in the other, where foo is a phonological reflex (not of just being in a
specifier position, but rather) of specifically being moved to a specifier position.
While it is obviously an empirical question whether any phenomena of this sort
will be discovered, it is more typically assumed that the relevant notion is that of
specifier, simpliciter; and that spec-e-mrg and spec-i-mrg construct the same
string for a single reason, namely that specifiers are linearised uniformly.

1 “Projecting” can be defined roughly as “contributing features to the non-tail part
of the resulting expression”. In the cases under discussion, s is contributed by a
phrase that projects because the features α that were associated with s in the input
expressions are carried over to the non-tail part of the expression s : α, φ(t, γ)ψ that
is generated.

More generally, it is standard to assume that the structural positions created
by movement are not different from those created by (external) merge. This
is the straightforward analog of the “structure-preserving constraint” [5] from
pre-minimalist theories, according to which the target sites of movements must
be positions that the base component “could have generated”. Consider, for
example, the positions of he and she in the two sentences in (2). They appear to
be the same position (namely, subject position), as evidenced by the fact that
they both participate in verbal agreement and both show nominative Case.

(2) a. He was arrested

b. She was happy

While he in (2a) has (on standard assumptions) been moved into this position
by a passivisation transformation, she is base-generated (or externally merged)
there in (2b).2 The movement of he is therefore structure-preserving in the sense
of [5], since the target position is the very same one that she is generated in
by the base in (2b); in terms of the MG system as defined above, the position
into which he would be placed by spec-i-mrg is the very same one that she is
placed into by spec-e-mrg. But if all movements are structure-preserving in this
way, as is generally assumed, then it is clear that spec-e-mrg and spec-i-mrg
will necessarily produce output that is equivalent in significant respects, and so
defining them as independent operations will entail unnecessary redundancy.

The redundancy described here, as a result of having two distinct ways to
build the one kind of structural position, will be multiplied if it turns out to
be necessary to permit additional kinds of structural positions. [8] present an
extension of the MG formalism that has exactly this form. They supplement
the system with a binary operation roughly analogous to e-mrg, called adjoin,
which establishes adjunction configurations; these have certain properties (not
relevant for present purposes) distinct from those of normal, non-adjunction con-
figurations, to which standard MGs restrict attention. In keeping with structure
preservation, however, there are also cases where elements are moved into ad-
junction configurations, just as was discussed in the case of subject positions
above. Therefore [8] are forced to also add a unary operation which (i) differs
from their new adjoin operation in precisely the way that i-mrg already differs
from e-mrg, and (ii) differs from i-mrg in precisely the way that adjoin already
differs from e-mrg, thus restating the distinctive properties of adjunction. The
four operations they end up with, rather than each being distinct primitives,
look quite clearly to be the result of two independent underlying distinctions:
first, the distinction between attaching as an adjunct and attaching as a non-
adjunct, and second, the distinction between attaching and re-attaching. The
reformulated version of MGs I discuss below reflects this underlying pattern.

2 For ease of exposition I abstract away from the fact that it is now more common
to assume that subjects originate in a predicate-internal position even in active sen-
tences. For a comparison parallel to that presented in (2) that is more consistent with
modern assumptions, consider the thematic “wanter” position in John wants to win
and John wants Mary to win in the context of the movement theory of control [9]:
John will be moved there in the former but not in the latter.

2.2 Two ways to create vacated positions

Having observed similarities between the definitions of spec-e-mrg and spec-i-mrg,
consider now those of nonfinal-e-mrg and nonfinal-i-mrg. Each results in an
expression with s as the non-tail string and with t as a part of the tail, and each
differs from its specifier-creating counterpart precisely in requiring that there
be additional features associated with t besides the one being checked (recall
that γ 6= ε). Intuitively these two operations both create “vacated positions” or
“trace positions”, positions which t occupies only temporarily and where t there-
fore does not contribute to the eventual string yield. Again, we can ask whether
the similarities in the two definitions are a mere accident; the alternative is that
the similarities are there because there really is a uniform notion of a vacated
position, in which case we would prefer a formalism where the properties of such
positions (eg. contributing nothing to string yield) were stated only once.

Evidence suggests that it is oversimplifying to assume that all nonfinal po-
sitions are phonetically null, and one might therefore question the claim that
nonfinal-e-mrg and nonfinal-i-mrg share an underlying mechanism, on
the grounds that the similarities are artificially exaggerated in the definitions
above. But while the question of how a sequence of positions linked by move-
ment are phonetically realised remains very much open, in order to undermine
the claim that a generalisation is being missed one would need evidence that
the correct account will need to distinguish between base vacated positions
(created by nonfinal-e-mrg) and intermediate vacated positions (created by
nonfinal-i-mrg). This does not seem to be the case: wh-phrases, for example,
can surface as such in “final” (3a), intermediate (3b) or base positions (3c); and
resumptive pronouns can appear in intermediate (4a) or base positions (4b).

(3) a. Whoi did John meet ei?

b. Wasi denkst du weni Fritz ei eingeladen hat?

c. Who ei bought whati?

(4) a. the book whichi I wonder whether iti was read ti

b. the book whichi I wonder whether John read iti

This range of data suggests that while the assumption that all nonfinal positions
are phonetically null will have to be modified in some way, there is little reason
to believe that a distinction between base vacated positions and intermediate
vacated positions will play an important role in the eventual explanation. Put
differently, there is little reason to believe that these two kinds of positions
should not be treated with the same derivational mechanisms.3 The definitions of
nonfinal-e-mrg and nonfinal-i-mrg given above therefore constitute another
instance of unnecessary redundancy.

3 The data does suggest that the kind of feature checked (eg. wh feature or Case fea-
ture) in a particular position may be relevant to determining the phonetic realisation
of that position, but this is different from saying that whether the feature checking
occurred via e-mrg or i-mrg is relevant.

3 Insertion Minimalist Grammars

The central idea, following [17], is to define a single mrg operation which per-
forms all feature-checking (intuitively, all structure-building). Since all feature-
checking is performed by a single operation, we also eliminate the distinction
between selector/selectee (=f/f) feature pairs and licensor/licensee (+f/-f) fea-
ture pairs.4 I present here a bare bones implementation of these ideas, minimally
different from standard MGs, leaving aside other issues addressed in [17] such as
covert movement, copy movement, sidewards movement and persistent features.

An Insertion Minimalist Grammar is a four-tuple G = 〈Σ,Lic,Lex , c〉 where:

– Σ is a finite alphabet
– Lic (“licensing types”) is a set which determines the set Syn (“syntactic

features”) as follows:

licensors = {+f | f ∈ Lic}
licensees = {-f | f ∈ Lic}

Syn = licensors ∪ licencees

– Lex (“the lexicon”) is a finite subset of Σ∗×{::}× (licensors∗× licensees+)
– c ∈ Lic is a designated type of completed expressions

Given an IMG G = 〈Σ,Lic,Lex , c〉, an expression is an element of the set

Expr = (Σ∗ × {:, ::} × Syn∗)× (Σ∗ × Syn+)∗

and a lexical expression is an element of the set ExprLex = Lex × {ε}. For an
expression of the form 〈x, 〈y1, y2, . . . , yn〉〉 I will often write x, y1y2 . . . yn, and
will sometimes call y1y2 . . . yn the “tail” of the expression; and for an expression
of the form 〈x, ε〉 (i.e. with an empty tail) I will often write just x.

CL(G) ⊆ Expr is the closure of ExprLex under the functions insert and
mrg, defined as follows. In these definitions: s, t ∈ Σ∗; f ∈ Lic; α, β ∈ Syn∗;
γ ∈ Syn+; · ∈ {:, ::}; and φ, ψ ∈ (Σ∗ × Syn+)∗.

s ·1 +fα, φ t ·2 -fβ, ψ
s ·1 +fα, φ(t, -fβ)ψ

insert

mrg = comp-merge ∪ spec-merge ∪ nonfinal-merge

s :: +fα, φ(t, -f)ψ

st :α, φψ
comp-merge

s : +fα, φ(t, -f)ψ

ts :α, φψ
spec-merge

s · +fα, φ(t, -fγ)ψ

s :α, φ(t, γ)ψ
nonfinal-merge

where we require, in all cases, that there is no other (t′, -f) or (t′, -fγ′) in φ or ψ

4 Emonds [6, p.53, n.14] notes that the assumption that merge and move check the
same features is closely related to his earlier notion of structure preservation.

The language generated by G is L(G) = {s | 〈s · -c, ε〉 ∈ CL(G) for · ∈
{:, ::}}. The set of Insertion Minimalist Languages is defined as IML = {L(G) |
G is an IMG}.

The IMG derivation of which book did the man read, analogous to the MG
derivation presented earlier in Figure 1(a), is given in Figure 1(b). The relevant
lexical items are given in (5); compare with (1). I have left insert steps unla-
belled in Figure 1(b). This saves space but also facilitates comparison with the
earlier MG derivation.

(5)
which :: +n-d-wh book :: -n the :: +n-d
man :: -n read :: +d+d-v did :: +v+wh-c

The basic difference between the IMG derivation in Figure 1(b) and the cor-
responding MG derivation in Figure 1(a) is that what was previously achieved
by e-mrg is now achieved by applying insert and then applying (generic) mrg
to the result. For example, instead of forming the man from lexical items via a
single application of e-mrg, first insert produces (without checking any fea-
tures) an expression which contains (man, -n) as part of its tail, and then mrg
performs the feature-checking and concatenation. Crucially, this mrg step “does
not know” whether (man, -n) came to be in the tail of the expression via an
immediately preceding application of insert (as in fact it has in this example),
or whether it is there as a “moving” element that has been “left there” after
checking features in a non-final position. Thus the operation that “re-merges”
which book into its final position at the end of the derivation is no different from,
for example, that which “first merges” the man into its one and only position.

4 Comparison of IMGs and MGs

4.1 Elimination of redundancies

Observations in section 2 led us to the intuition that in the original MG for-
malism, spec-e-mrg and spec-i-mrg “did the same thing”, in some sense —
roughly, concatenate a string t, associated with only one unchecked feature, on
the left of a string s — the only difference being that while spec-e-mrg draws t
from (the non-tail part of) a separate expression, spec-i-mrg draws t from the
tail of the same expression that already contains s. Similarly, nonfinal-e-mrg
and nonfinal-i-mrg differed only in where they look for the element t which,
in the “nonfinal” case, remains detached but has a feature checked.

The IMG formalism generalises to the case of drawing t from the tail of
the expression that already contains s, i.e. essentially the case dealt with by
i-mrg in MGs. The task of transforming a situation requiring e-mrg into one
requiring (i-)mrg is taken up by insert, which puts a sought-after but hitherto
uninvolved element into the tail of an expression, “within view” of the seek-
ing element. To the extent that we can maintain the usual intuition of what a
derived tree is, insert puts things into the derivation (or into a “workspace”)
without putting them anywhere in the derived tree, making them available for
mrg to put them into the derived tree — as many times as necessary. Thus

what seemed to be the one thing done by both spec-e-mrg and spec-i-mrg,
namely creation of specifiers, is naturally seen as such in IMG the definition of
spec-merge. The connection between the condition of t being associated with
only one remaining -f feature and the concatenation with (non-lexical) s to
form ts is stated only there. Similarly, what seemed to be the one thing done
by both nonfinal-e-mrg and nonfinal-i-mrg is now stated just once in the
IMG definition of nonfinal-mrg.

Note that on this view, “external merge” is the more complex operation which
has “internal merge” as a part. More precisely, the derivative notion “external
merge” is a name for a certain combination of insert and mrg operations,
whereas internal merge is implemented by an application of mrg alone. When the
possibility of unifying the two operations is discussed in the linguistics literature,
however, this relationship is reversed: the idea is usually that internal merge
might be analysed as copy plus external merge ([3, 9], among many others).

4.2 Other consequences of adopting IMGs

There have been suggestions that the way adjuncts differ from non-adjuncts
might be usefully analysed as being not just differently attached, but in some
sense less attached, or less tightly attached. More specifically, it has been pro-
posed that adjunction structures differ in being unlabelled [10], or that “An
adjunct is simply activated on a derivational phase, without connecting to the
phrase-marker . . . adjuncts can be activated by simply ‘being there’ ” [14, pp.254–
255]. The intuition is appealing but needs sharpening to be pursued rigourously.
Decoupling the work of introducing new elements into the derivation from the
work of building the phrase-marker, as IMGs do (delegating these two respon-
sibilities to insert and mrg respectively), makes room for one approach to for-
malising this intuition: [11] presents a variant of IMGs where adjuncts are only
inserted and never merged.5 There is no correlate of this idea in standard MGs
because in that system an element is introduced into the derivation precisely
when it first checks features; there is no “middle ground” status corresponding
to being present in the derivation without being part of the phrase-marker.

Finally, there is a potential disadvantage that comes with the shift from
MGs to IMGs. Collapsing selectee features with licensee features has the effect
of eliminating the usual notion of “syntactic category”. A lexical item such as
who, for example, will have two features of the same kind, -d and -wh. This
means that we can no longer say (as we could in the MG system, where who
would bear the features d and -wh of different kinds) that d is in any sense the

5 This naturally requires further decoupling feature-checking (corresponding to build-
ing the phrase-marker) from string concatenation, both of which are achieved by
mrg in the IMG system presented here. Without this additional step it would be
impossible for an element that is only inserted to contribute to the eventual yield.
The basic analysis of adjuncts in [11] seems unlikely to affect the generative capacity
of the IMG formalism, although the proof in the appendix of this paper does not
address this.

category of this element. One response to this apparent problem would be to
modify the mrg function such that the first licensee (-f) feature checked by
a particular element is recorded and remains with the element, in a way that
characterises it for the remainder of the derivation; this would mimic the MGs’
stipulation that each lexical feature sequence contain exactly one selectee feature
in a specific position. Such a stipulation on the structure of the lexicon would,
of course, leave IMGs’ distinctive (and, I have argued, beneficial) derivational
machinery unchanged.

5 Conclusion

I have argued that there are significant unnecessary redundancies in the standard
MG formalism, and presented a reformulated version, IMGs, which eliminate
these. The central idea is to reduce merge and move to a single operation, in
accord with the intuition that the tree structure built by merge steps does not
differ in kind from that built by move steps. This reformulated version produces
the same string languages as the original formalism, and derivation structures
that can be put in a transparent one-to-one correspondence with those of the
original. Comparisons of the virtues of the two formalisms can therefore focus on
the extent to which IMGs bring gains in theoretical parsimony and perspicuity.

References

1. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge, MA (1995)
2. Chomsky, N.: Beyond explanatory adequacy. In: Belletti, A. (ed.) Structures and

Beyond. Oxford University Press, Oxford (2004)
3. Collins, C.: Local Economy. MIT Press, Cambridge, MA (1997)
4. Cooper, R.: Quantification and Syntactic Theory. Reidel, Dordrecht (1983)
5. Emonds, J.: Root and Structure-Preserving Transformations. Ph.D. thesis, MIT

(1970)
6. Emonds, J.: Adjectival passives. In: Everaert, M., van Riemsdijk, H. (eds.) The

Blackwell Companion to Syntax, pp. 16–60. Wiley-Blackwell, Malden, MA (2005)
7. Epstein, S.D., Groat, E., Kawashima, R., Kitahara, H.: A Derivational Approach

to Syntactic Relations. Oxford University Press, Oxford (1998)
8. Frey, W., Gärtner, H.M.: On the treatment of scrambling and adjunction in min-

imalist grammars. In: Jäger, G., Monachesi, P., Penn, G., Wintner, S. (eds.) Pro-
ceedings of Formal Grammar 2002. pp. 41–52 (2002)

9. Hornstein, N.: Move! A minimalist theory of construal. Blackwell, Oxford (2001)
10. Hornstein, N., Nunes, J.: Adjunction, labeling, and bare phrase structure. Biolin-

guistics 2(1), 57–86 (2008)
11. Hunter, T.: Relating Movement and Adjunction in Syntax and Semantics. Ph.D.

thesis, University of Maryland (2010)
12. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer-Verlag, Berlin

Heidelberg (2010)
13. Kobele, G.M.: Inverse linking via function composition. Natural Language Seman-

tics 18(2), 183–196 (2010)

14. Lasnik, H., Uriagereka, J.: A Course in Minimalist Syntax. Blackwell, Malden, MA
(2005)

15. Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat, M.
(ed.) Logical Aspects of Computational Linguistics, LNCS, vol. 2014, pp. 179–198.
Springer, Berlin Heidelberg (2001)

16. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) Logical Aspects of
Computational Linguistics. LNCS, vol. 1328, pp. 68–95. Springer, Berlin Heidel-
berg (1997)

17. Stabler, E.P.: Sidewards without copying. In: Wintner, S. (ed.) Proceedings of FG-
2006: The 11th Conference on Formal Grammar. pp. 157–170. CSLI Publications,
Stanford, CA (2006)

A Appendix: The generative capacity of MGs and IMGs

This appendix provides a proof that MGs and IMGs are weakly equivalent,
i.e. that ML = IML. I first show that for every IMG there is a weakly equivalent
multiple context-free grammar (MCFG), and hence IML ⊆ MCFL, in subsec-
tion A.1. I then show that for every MG there is a weakly equivalent IMG,
and hence ML ⊆ IML, in subsection A.2; the construction clearly establishes a
one-to-one correspondence between the two systems’ derivation trees, in accord
with the intuitions discussed in section 4. In combination with the fact that
ML = MCFL [15], these results entail that IML = ML = MCFL.

A.1 Showing that IML ⊆ MCFL

Given an IMGG = 〈Σ,Lic,Lex , c〉, we will construct an MCFGG′ = 〈N,T, F, P, S〉
(taking definition from [12, pp.110-111]) such that L(G) = L(G′). The set
of terminals of the MCFG, T , is Σ from the IMG. The given IMG deter-
mines a set of categories Cat = {::, :} × (Syn∗)∗. For an IMG expression e =
s · α0, (t1, α1)(t2, α2) . . . (tn, αn), the category of e is Cat(e) = 〈·, α0, α1, α2, . . . , αn〉.

The set of nonterminals of the MCFG N = N ′ ∪ {S}, where N ′ is a certain
finite subset of Cat . Specifically, a category C = 〈·, α0, α1, . . . , αn〉 ∈ N ′ iff the
following are true: (i) no two of the αi share the same first feature, and (ii)
for every i such that 0 ≤ i ≤ n, |αi| ≤ k, where k is the length of the longest
feature-sequence in Lex .

The start symbol of the MCFG is S. The set F contains the function fid :
Σ∗ → Σ∗, fid(s) = s, and the set P contains the two productions S → fid[〈:, -c〉]
and S → fid[〈::, -c〉], in accordance with the fact that a complete expression may
be either derived or lexical.

The mrg operation is encoded in the MCFG as follows. For every category
C = 〈·, +fα0, α1, . . . , αn〉 ∈ N :

– if there is a unique αi, 1 ≤ i ≤ n, such that αi = -fα′i and α′i = ε, then:
• F contains a function fC : (Σ∗)n+1 → (Σ∗)n, such that

fC(〈s0, s1, . . . , sn〉) =

{
〈s0si, s1, . . . , si−1, si+1, . . . , sn〉 if · = ::

〈sis0, s1, . . . , si−1, si+1, . . . , sn〉 if · = :

• P contains a production C ′ → fC [C], where
C ′ = 〈:, α0, α1, . . . , αi−1, αi+1, . . . , αn〉

– if there is a unique αi, 1 ≤ i ≤ n, such that αi = -fα′i and α′i 6= ε, then:

• F contains a function fC : (Σ∗)n+1 → (Σ∗)n+1, such that

fC(〈s0, s1, . . . , sn〉) = 〈s0, s1, . . . , sn〉

• P contains a production C ′ → fC [C], where
C ′ = 〈:, α0, α1, . . . , αi−1, α

′
i, αi+1, . . . , αn〉

The insert operation is encoded in the MCFG as follows. For every two
categories C1 = 〈·1, +fα0, α1, . . . , αn〉 ∈ N and C2 = 〈·2, -fβ0, β1, . . . , βm〉 ∈ N :

– F contains a function fC1,C2
: (Σ∗)n+1× (Σ∗)m+1 → (Σ∗)n+m+2, such that

fC1,C2
(〈s0, s1, . . . , sn〉, 〈t0, t1, . . . , tm〉) = 〈s0, s1, . . . , sn, t0, t1, . . . , tm〉

– P contains a production C ′ → fC1,C2 [C1, C2], where
C ′ = 〈·1, +fα0, α1, . . . , αn, -fβ0, β1, . . . , βm〉

The IMG lexicon is encoded in the MCFG as follows. For every lexical item
s :: α ∈ Lex :

– F contains a function fs : (Σ∗)0 → (Σ∗)1 such that fs(〈〉) = 〈s〉
– P contains a production C → fs[] where C = 〈::, α〉

Lemma 1. If the MCFG G′ can derive that the tuple of strings 〈s0, . . . , sn〉
has category 〈·, α0, . . . , αn〉, then the IMG G can derive the expression s0 ·
α0, (s1, α1), . . . , (sn, αn).

Proof. – Base case. Any leaf of an MCFG derivation tree corresponds to a
nullary rule of the MCFG. The only nullary rules we have included in G′

are of the form C → fs[] where fs(〈〉) = 〈s〉 and C = 〈::, α〉 for some s :: α
in the lexicon of G. Therefore if there is a length-one G′ derivation which
derives 〈s0, . . . , sn〉 with category C, then n = 0 and C is 〈::, α〉 for some
s0 :: α ∈ Lex , and there is a length-one G derivation of the expression s0 :: α.

– Induction step, unary case. Any unary-branching step in a G′ derivation
tree is licensed by some production C ′ → fC [C] and a subtree deriving that
〈s0, . . . , sn〉 has category C = 〈·, α, α1, . . . , αn〉. By the induction assump-
tion, there is aG derivation tree deriving the expression 〈s0·α, (s1, α1), . . . , (sn, αn)〉.
Since the production C ′ → fC [C] is present, we are in one of the following
two cases:

• α = +fα0 and there is a unique αi such that αi = -fα′i, and α′i = ε. Let
s′ = s0si if · = :: and s′ = sis0 otherwise. Then

fC(〈s0, s1, . . . , sn〉) = 〈s′, s1, . . . , si−1, si+1, . . . , sn〉

and C ′ = 〈·, α0, α1, . . . , αi−1, αi+1, . . . , αn〉. But also

mrg(〈s0 · α, (s1, α1), . . . , (sn, αn)〉) =

〈s′ : α0, (s1, α1), . . . , (si−1, αi−1), (si+1, αi+1), . . . , (sn, αn)〉

and therefore there is a G derivation of

〈s′ : α0, (s1, α1), . . . , (si−1, αi−1), (si+1, αi+1), . . . , (sn, αn)〉

as required.
• α = +fα0 and there is a unique αi such that αi = -fα′i, and α′i 6= ε.

Then
fC(〈s0, s1, . . . , sn〉) = 〈s0, s1, . . . , sn〉

and C ′ = 〈:, α0, α1, . . . , αi−1, α
′
i, αi+1, . . . , αn〉. But also

mrg(〈s0 · α, (s1, α1), . . . , (sn, αn)〉) =

〈s0 : α0, (s1, α1), . . . , (si, α
′
i), . . . , (sn, αn)〉

and therefore there is a G derivation of

〈s0 : α0, (s1, α1), . . . , (si, α
′
i), . . . , (sn, αn)〉

as required.
– Induction step, binary case. Any binary-branching step in a G′ derivation

tree is licensed by some production C ′ → fC1,C2
[C1, C2] and two subtrees,

one deriving that 〈s0, . . . , sn〉 has category C1 = 〈·1, α0, . . . , αn〉 and one
deriving that 〈t0, . . . , tm〉 has category C2 = 〈·2, β0, . . . , βm〉. By the in-
duction assumption, there are G derivation trees deriving the expressions
〈s0 ·1 α0, (s1, α1), . . . , (sn, αn)〉 and 〈t0 ·2 β0, (t1, β1), . . . , (tm, βm)〉. Since the
production C ′ → fC1,C2

[C1, C2] is present, there must be some f such that
α0 = +fα′0 and β0 = -fβ′0. Now

fC1,C2(〈s0, s1, . . . , sn〉, 〈t0, t1, . . . , tm〉) = 〈s0, s1, . . . , sn, t0, t1, . . . , tm〉

and C ′ = 〈·1, α0, α1, . . . , αn, β0, β1, . . . , βm〉. But also

insert(〈s0 ·1 α0, (s1, α1), . . . , (sn, αn)〉, 〈t0 ·2 β0, (t1, β1), . . . , (tm, βm)〉)
= 〈s0 ·1 α0, (s1, α1), . . . , (sn, αn), (t0, β0), (t1, β1), . . . , (tm, βm)〉

and therefore there is a G derivation of

〈s0 ·1 α0, (s1, α1), . . . , (sn, αn), (t0, β0), (t1, β1), . . . , (tm, βm)〉

as required.

Therefore, if G′ can derive that a one-tuple 〈s〉 has category 〈:, -c〉 then G
can derive the expression s : -c, and if G′ can derive that a one-tuple 〈s〉 has
category 〈::, -c〉 then G can derive the expression s :: -c. Also s ∈ L(G′) iff G′

can derive that 〈s〉 either has category 〈:, -c〉 or has category 〈::, -c〉. Thus if
s ∈ L(G′) then s ∈ L(G), and L(G′) ⊆ L(G).

Lemma 2. If the IMG G can derive the expression 〈s0·α0, (s1, α1), . . . , (sn, αn)〉,
then the MCFG G′ can derive that the tuple of strings 〈s0, . . . , sn〉 has category
〈·, α0, . . . , αn〉.

Proof. – Base case. A length-one G derivation is simply a lexical item s :: α.
For each such lexical item, G′ has a production C → fs[] where C = 〈::, α〉
and fs(〈〉) = s. Therefore there is a length-one G′ derivation of 〈s〉 with
category 〈::, α〉, as required.

– Induction step, unary case. A unary-branching step in a G derivation tree is
licensed by applying mrg to some expression 〈s0·+fα0, (s1, α1), . . . , (sn, αn)〉.
By the induction assumption, there is a G′ derivation of 〈s0, s1, . . . , sn〉 with
category C = 〈·, +fα0, α1, . . . , αn〉. Since mrg is applicable, we are in one of
the following two cases:
• There is a unique αi, 1 ≤ i ≤ n, such that αi = -fα′i and α′i = ε. Let
s′ = s0si if · = :: and s′ = sis0 otherwise. Then

mrg(〈s0 · +fα0, (s1, α1), . . . , (sn, αn)〉) =

〈s′ : α0, (s1, α1), . . . , (si−1, αi−1), (si+1, αi+1), . . . (sn, αn)〉

But also G′ contains a production C ′ → fC [C], where

fC(〈s0, s1, . . . , sn〉) = 〈s′, s1, . . . , si−1, si+1, . . . , sn〉
C ′ = 〈:, α0, α1, . . . , αi−1, αi+1, . . . , αn〉

and therefore there is a G′ derivation of 〈s′, s1, . . . , si−1, si+1, . . . , sn〉
with category 〈:, α0, α1, . . . , αi−1, αi+1, . . . , αn〉, as required.

• There is a unique αi, 1 ≤ i ≤ n, such that αi = -fα′i and α′i 6= ε. Then

mrg(〈s0 · +fα0, (s1, α1), . . . , (sn, αn)〉) =

〈s0 : α0, (s1, α1), . . . , (si, α
′
i), . . . , (sn, αn)〉

But also G′ contains a production C ′ → fC [C], where

fC(〈s0, s1, . . . , sn〉) = 〈s0, s1, . . . , sn〉
C ′ = 〈:, α0, α1, . . . , α

′
i, . . . , αn〉

and therefore there is a G′ derivation of 〈s0, s1, . . . , sn〉 with category
〈:, α0, α1, . . . , α

′
i, . . . , αn〉, as required.

– Induction step, binary case. A binary-branching step in a G derivation tree is
licensed by applying insert to two expressions 〈s0·1+fα0, (s1, α1), . . . , (sn, αn)〉
and 〈t0 ·2 -fβ0, (t1, β1), . . . , (tm, βm)〉. By the induction assumption, there
are G′ derivation trees deriving that 〈s0, s1, . . . , sn〉 has category C1 =
〈·1, +fα0, . . . , αn〉 and that 〈t0, t1, . . . , tm〉 has category C2 = 〈·2, -fβ0, . . . , βm〉.
Now

insert(〈s0·1+fα0, (s1, α1), . . . , (sn, αn)〉, 〈t0·2-fβ0, (t1, β1), . . . , (tm, βm)〉)
= 〈s0 ·1 +fα0, (s1, α1), . . . , (sn, αn), (t0, -fβ0), . . . , (tm, βm)〉

But also G′ contains a production C ′ → fC1,C2
[C1, C2], where

fC1,C2(〈s0, s1, . . . , sn〉, 〈t0, t1, . . . , tm〉) = 〈s0, s1, . . . , sn, t0, t1, . . . , tm〉
C ′ = 〈·1, +fα0, α1, . . . , αn, -fβ0, β1, . . . , βm〉

and therefore there is a G′ derivation of 〈s0, s1, . . . , sn, t0, t1, . . . , tm〉 with
category 〈·1, +fα0, α1, . . . , αn, -fβ0, β1, . . . , βm〉, as required.

Therefore, if G can derive an expression s : -c then G′ can derive that the
one-tuple 〈s〉 has category 〈:, -c〉, and if G can derive an expression s :: -c then
G′ can derive that the one-tuple 〈s〉 has category 〈::, -c〉. Also s ∈ L(G′) iff G′

can derive that 〈s〉 either has category 〈:, -c〉 or has category 〈::, -c〉. Thus if
s ∈ L(G) then s ∈ L(G′), and L(G) ⊆ L(G′).

A.2 Showing that ML ⊆ IML

Given an MGG = 〈Σ,Sel ,Lic,Lex , c〉, we will construct an IMGG′ = 〈Σ,Lic′,Lex ′, ĉ〉
such that L(G) = L(G′). The set of licensing types of the IMG is Lic′ = Lic∪{f̂ |
f ∈ Sel} (assuming that each f̂ is a new symbol not in Lic). This determines
the set of syntactic features as usual, Syn ′ = {-f | f ∈ Lic′} ∪ {+f | f ∈ Lic′}.
The lexicon of the IMG is Lex ′ = {s::T (α) | s::α ∈ Lex}, where T : Syn → Syn ′

is defined as follows (and is lifted to apply to sequences as necessary):

T (f) = -f̂ T (-f) = -f T (=f) = +f̂ T (+f) = +f

For any MG expression E, T (E) is the IMG expression that results from replac-
ing every feature f in E with T (f); likewise for other structures, eg. T (φ) where
φ ∈ (Σ∗ × Syn+)∗. Since we assume that {f̂ | f ∈ Sel} ∩ Lic = ∅, the inverse of
T is also defined. Let U be this function, eg. U(-f̂) = f, U(+f̂) = =f.

Lemma 3. If there is a G′ derivation of e′ that does not end with an application
of insert, then there is a G derivation of e = U(e′).

Proof. – Base case. A length-one G′ derivation consisting of nothing but a
lexical item does not end with an application of insert. Since any lexical
expression of G′ is s :: T (α) for some s :: α ∈ Lex , there is a G derivation of
U(s :: T (α)) = s :: α.

– Induction step, unary case. A unary-branching step in a G′ derivation of e′ is
licensed by applying mrg to some expression e′p = 〈s0·+fα0, (s1, α1), . . . , (sn, αn)〉.
Since mrg is applicable to e′p, there is a unique αi, 1 ≤ i ≤ n, such that
αi = -fα′i, and

e′ = mrg(e′p) =
〈s0si : α0, (s1, α1), . . . , (si−1, αi−1), (si+1, αi+1), . . . , (sn, αn)〉 if α′i = ε and · = ::

〈sis0 : α0, (s1, α1), . . . , (si−1, αi−1), (si+1, αi+1), . . . , (sn, αn)〉 if α′i = ε and · = :

〈s0 : α0, (s1, α1), . . . , (si, α
′
i), . . . , (sn, αn)〉 if α′i 6= ε

We are in one of the following cases:

• The G′ derivation of e′p ends with an application of insert. Suppose that
e′p = insert(e′q, e

′
r). Then e′q must be of the form 〈s0 · +fα0, φq〉, and e′r

must be of the form 〈si ·2 -fα′i, φr〉. Clearly e′r is of a form that cannot
be produced by insert, so by the induction assumption there is a G
derivation of U(e′r). Also, e′q cannot have been produced by insert, for
if it were, φq would already contain a feature sequence beginning with
-f and so there would be two such feature sequences in e′p, preventing
application of mrg to e′p, contrary to our assumptions; therefore there
is also a G derivation of U(e′q).
Every feature sequence in the lexicon Lex of G contains a selectee feature
which precedes all licensee features; so every feature sequence in the
lexicon Lex ′ of G′ contains a feature of the form -ĝ, g ∈ Sel , which
precedes all features of the form -h, h ∈ Lic. Since none of these features
can be checked before becoming part of the tail of some expression, the
feature sequence -fα′i in e′r must begin with a feature of the form -ĝ,
g ∈ Sel , so U(-f) = g and U(+f) = =g. Therefore

U(e′q) = 〈s0 · =gU(α0),U(φq)〉
U(e′r) = 〈si ·2 gU(α′i),U(φr)〉

e-mrg(U(e′q),U(e′r)) =

〈s0si : U(α0),U(φqφr)〉 if α′i = ε and · = ::

〈sis0 : U(α0),U(φqφr)〉 if α′i = ε and · = :

〈s0 : U(α0),U(φq(si, α
′
i)φr)〉 if α′i 6= ε

Since e′p = insert(e′q, e
′
r), we know that (s1, α1), . . . , (sn, αn) = φq(si, -fα

′
i)φr,

and therefore

e-mrg(U(e′q),U(e′r)) = U(mrg(e′p)) = U(e′)

so there is a G derivation of U(e′), as required.
• The G′ derivation of e′p ends with an application of mrg. None of the

feature sequences α1, . . . , αn in the tail of e′p can begin with a feature of
the form -ĝ, g ∈ Sel , since this is possible only in expressions produced
by insert. Therefore the feature -f in αi = -fα′i is of the form -h,
h ∈ Lic, and so U(-f) = -h and U(+f) = +h. Therefore by the induction
assumption there is a G derivation of

U(e′p) = 〈s0 · +hU(α0), (s1,U(α1)), . . . , (sn,U(αn))〉

Now αi = -fα′i = -hα′i, and there is no j, j 6= i, such that U(αj) begins
with -h. And since h ∈ Lic, U(e′p) is not a lexical expression and so · = :.
Therefore

i-mrg(U(e′p))

=

{
〈sis0 : U(α0),U((s1, α1), . . . , (si−1, αi−1), (si+1, αi+1), . . . , (sn, αn))〉 if α′i = ε

〈s0 : U(α0),U((s1, α1), . . . , (si, α
′
i), . . . , (sn, αn))〉 if α′i 6= ε

= U(mrg(e′p)) = U(e′)

so there is a G derivation of U(e′), as required.

– Induction step, binary case. A binary-branching step in a G′ derivation of
e′ is licensed by applying insert to two expressions, so the condition is
vacuously satisfied.

If s ∈ L(G′) then 〈s · -ĉ, ε〉 ∈ CL(G′), and since this expression is clearly not
produced by insert, 〈s · c, ε〉 ∈ CL(G) and s ∈ L(G). Thus L(G′) ⊆ L(G).

We now turn to showing that L(G) ⊆ L(G′).
Let us say that an expression 〈s · α, φ〉 ∈ CL(G) is relevant if and only if

φ has the form (s1, -f1α1), (s2, -f2α2), . . . , (sn, -fnαn) for n ≥ 0, i.e. iff every
feature sequence in φ begins with a feature of the form -f.

Proposition 1. Every G derivation that contains an irrelevant expression, con-
cludes with an irrelevant expression. (Intuitively: irrelevance is “maintained” by
all derivational operations.)

Note that L(G) is defined such that it depends only on the relevant expres-
sions in CL(G) (in particular those where n = 0 and so φ = ε).

Lemma 4. If the MG G can derive a relevant expression e, then the IMG G′

can derive the expression e′ = T (e).

Proof. – Base case. A length-one G derivation is simply a lexical item s :: α ∈
Lex . For each such lexical item, G′ has a lexical item s :: T (α) ∈ Lex ′. This
constitutes a G′ derivation of T (s :: α).

– Induction step, unary case. A unary-branching step in a G derivation tree is
licensed by applying i-mrg to some expression e = 〈s0 : +fα0, (s1, α1), . . . , (sn, αn)〉.
By the induction assumption, there is a G′ derivation of T (e) = 〈s0 :
+fT (α0), (s1,T (α1)), . . . , (sn,T (αn))〉. Since i-mrg is applicable, there is a
unique αi, 1 ≤ i ≤ n, such that αi = -fα′i. We are in one of the following
two cases:

• α′i = ε, and so

i-mrg(e) = i-mrg(〈s0 : +fα0, (s1, α1), . . . , (sn, αn)〉)
= 〈sis0 : α0, (s1, α1), . . . , (si−1, αi−1), (si+1, αi+1), . . . , (sn, αn)〉

But also T (αi) = -f, and there is no αj , j 6= i, such that T (αj) begins
with -f, so

mrg(T (e)) = mrg(〈s0 : +fT (α0), (s1,T (α1)), . . . , (sn,T (αn))〉)
= T (i-mrg(e))

and therefore there is a G′ derivation of T (i-mrg(e)), as required.
• α′i 6= ε, and so

i-mrg(e) = i-mrg(〈s0 : +fα0, (s1, α1), . . . , (sn, αn)〉)
= 〈s0 : α0, (s1, α1), . . . , (si, α

′
i), . . . , (sn, αn)〉

But also T (αi) = -fT (α′i), and there is no αj , j 6= i, such that T (αj)
begins with -f, so

mrg(T (e)) = mrg(〈s0 : +fT (α0), (s1,T (α1)), . . . , (sn,T (αn))〉)
= 〈s0 : T (α0), (s1,T (α1)), . . . , (si,T (α′i)), . . . , (sn,T (αn))〉
= T (i-mrg(e))

and therefore there is a G′ derivation of T (i-mrg(e)), as required.

– Induction step, binary case A binary-branching step in a G derivation tree
is licensed by applying e-mrg to two expressions e1 = 〈s ·1 =fα, φ〉 and
e2 = 〈t ·2 fβ, ψ〉. By the induction assumption, there are G′ derivations of
T (e1) and T (e2). And since e1 and e2 are both relevant, no feature sequence
in φ or ψ begins with a feature of the form f, and so no feature sequence
in T (φ) or T (ψ) begins with a feature of the form -f̂. We are in one of the
following three cases:

• e1 = 〈s :: =fα, ε〉 and e2 = 〈t ·2 f, ψ〉, so mrg(e1, e2) = 〈st : α,ψ〉.
But also T (e1) = 〈s :: +f̂T (α), ε〉 and T (e2) = 〈t ·2 -f̂,T (ψ)〉, and so

ins(T (e1),T (e2)) = 〈s :: +f̂T (α), (t, -f̂),T (ψ)〉
mrg(ins(T (e1),T (e2))) = 〈st : T (α),T (ψ)〉

= T (e-mrg(e1, e2))

• e1 = 〈s : =fα, φ〉 and e2 = 〈t ·2 f, ψ〉, so mrg(e1, e2) = 〈ts : α, φψ〉.
But also T (e1) = 〈s : +f̂T (α),T (φ)〉 and T (e2) = 〈t ·2 -f̂,T (ψ)〉, and so

ins(T (e1),T (e2)) = 〈s : +f̂T (α),T (φ), (t, -f̂),T (ψ)〉
mrg(ins(T (e1),T (e2))) = 〈ts : T (α),T (φ),T (ψ)〉

= T (e-mrg(e1, e2))

• e1 = 〈s · =fα, φ〉 and e2 = 〈t · fβ, ψ〉, so mrg(e1, e2) = 〈s : α, φ(t, β)ψ〉.
But also T (e1) = 〈s ·+f̂T (α),T (φ)〉 and T (e2) = 〈t ·-f̂T (β),T (ψ)〉, and
so

ins(T (e1),T (e2)) = 〈s · +f̂T (α),T (φ), (t, -f̂T (β)),T (ψ)〉
mrg(ins(T (e1),T (e2))) = 〈s : T (α),T (φ), (t,T (β)),T (ψ)〉

= T (e-mrg(e1, e2))

If s ∈ L(G) then 〈s · c, ε〉 ∈ CL(G), and so by this lemma 〈s · -ĉ, ε〉 ∈ CL(G′)
and s ∈ L(G′). Thus L(G) ⊆ L(G′).

Theorem 1. ML ⊆ IML ⊆ MCFL, which, given also that ML = MCFL, entails
that IML = ML.

