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1. Introduction: What are Meanings?

The language faculty generates expressions that relatels@nd meanings, but it
is not immediately obvious exactly what kind of formal olijgmeanings” are. A
common assumption is that sentence meanings are truthtiworsdi unstructured
functions from worlds to truth valuésBy looking at the relationship between lan-
guage understanding and verification procedures, this gxpéores the possibility
that a sentence’s meaning could in fact be something strictier than a truth con-
dition, which makes reference to certain kinds of algorgtonrepresentations that
may be used to determine the truth value of the sentence irtiaypar world.

If this possibility is correct, then a sentence’s meaninll giwe some priv-
ileged status to a subset of the possible verification proesd On the other hand,
if a sentence’s meaning is nothing more than a bare truthitongthen all verifi-
cation procedures implementing the right function from lsto truth values will
have equal status. We provide evidence that meanings akenfitation-agnostic
truth conditions, by showing that varying the suitabilitiyaoscene to some types
of verification procedures affects participants’ accuracgssigning truth values,
whereas varying the suitability of a scene to some otherstyeeification proce-
dures does not.

To address these questions we investigated English-sis2akeerstanding
of the wordmost This was chosen as a starting point because the conventiona
truth-conditional semantics ofiostis relatively well-understood, and there exists a
range of useful findings concerning the psychology of nunamer constraints on
visual perception that we can bring to bear on experimeagallts. But there is no
reason that the same questions we ask atmmstshould not in principle be asked
about any other expression of natural language.

The rest of this paper is organised as follows. In Section 2uténe the
space of possible verification procedures for sentencelseofarm Most (of the)
Xs (are) Y and review some previous work addressing the relationsbipreen
the meaning and verification of these sentences. We theardr®go experiments.

10r perhaps structured abstracta composed of functionsy @seisswell (1985), though there
the structure serves only to ensure that complex expressmmtaining embedded propositions can
have their semantics determined compositionally. It tteeeeseems reasonable to assume that this
structure is “visible” only to the language faculty, for therposes of determining the semantics of
other linguistic expressions, and that the object deldéoeother cognitive faculties is nonetheless
an unstructured truth condition. But of course if evidereeéound that sentence meanings have
structure that is visible beyond the language faculty, oightrask if this is “the same structure” as
Cresswell proposes.



The first experiment (in Section 3) indicates that the meganirmostmakes refer-
ence to a kind of cardinality concept, contrary to an altevedased on one-to-one
correspondence that otherwise appears likely given theneuh Section 2. After
examining more closely the range of verification procedemssistent with these
findings (Section 4), the second experiment (Section Sjrgite to distinguish be-
tween these more fine-grained possibilities, and asks hewntbaning (provided
by the language faculty) of mostsentence interacts with properties of the visual
system which constrain participants’ perception of thevaht cardinalities.

2. Verification Procedures formost
2.1. Hackl (in press)mostand more than half

Hackl (in press) compares the verification procedures eyepln determining the
truth of sentences like those in (1) in order to provide enaefor a decision be-
tween which of the statements in (2) better expresses thainggaf (1a).

(1) a.Most of the dots are yellow.
b. More than half of the dots are yellow.

(2) a.|DOTNYELLOW| > |DOT - YELLOW|
b.[DOTNYELLOW| > |DOT]

Hackl observes differences in behaviour between parttgpaho are asked
to determine the truth of a sentence like (1a), and those wh@sked to deter-
mine the truth of a sentence like (1b). From this he conclutlag despite the
truth-conditional equivalence of the two expressions i)} (2a) better expresses
the meaning of (1a): since the meaning of (1b) is clearly gstessed as (2b), and
participants’ understanding of the two sentences led tleedifterent patterns of
behaviour, the best expression of the meaning of (1a) musblnething different
from (2b)?

This argument obviously relies on the notion that there mething more
to a meaning than just a truth condition, and that this “stimgtmore” is reflected
in the verification procedures used by speakers to assignvalues to sentences,
as described in Section 1. Under these assumptions, themarguhat the meaning
of mostdiffers from that ofmore than halfs convincing, but we can not easily con-
clude with any certainty from Hackl’s results exactly whiarification procedures
are implicated in the meanings ofostand ofmore than half— only that the two
meanings differ in this respect. Even on the assumption(&@tin some sense
best expresses the verificational implications of (1b)s ih@t clear that (2a) best

2For Hackl, this finding is one piece of evidence in a largeuargnt that the meaning ofiost
differs from that ofmore than halin that it is constructed compositionally as a superlatixgres-
sion. However, the relevant point for our purposes is juat the different verification profiles of
the two expressions in (1) provided evidence against esprgshe meaning of (1a) as (2b).



expresses those of (1a), because there are other expsess$ithe relevant truth
condition to consider as possibilities.

2.2. Verification without cardinalities

In particular, while both the expressions in (2) make rafeecto cardinalities, there
exist truth-conditionally equivalent expressions whichnit. It is even tempting to
suspect that such expressions might be more accurate eafagsns of the mean-
ing of (1a) than either of those in (2), given the intuitiomtlt is easy to quickly

determine the truth of (1a) in the scene shown in Figure lawitldetermining any

cardinalities at all — neither that of the set of all dots, tiwr set of yellow dots, nor
the set of blue (or non-yellow) dots. If we believe that theamiags of sentences
inform verification procedures, then this might lead us jeatboth of the expres-

sions in (2), to the extent that they both imply that a congmariof cardinalities is

required to verify (1a).

Figure 1: Intuitively, it seems to be possible to determime truth of a sentence
like Most of the dots are yellowithout determining any cardinalities at all.

Besides the intuition about scenes like Figure 1, furth@teswe thatmost
statements can be verified without determining cardimalitomes from research
with young children. Halberda et al. (2008) tested threet fair-year-olds’ un-
derstanding omostby asking them to determine the truth of sentencesMicst
of the crayons are yellown scenes like those shown in Figure 2, while varying
the number of crayons of each colour. Crucially, some céiidsf this age (“non-
counters”) have not yet acquired the ability to represeit @mpare arbitrarily
large integers: their understanding of cardinality doetsextend beyond three or
four. At some point in development, a child realises the r&€iga generalisation
which permits representations of larger integers, andivelg suddenly gains the
ability to represent all the remaining natural numbers ¢o@ag a “full-counter”).
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Figure 2: Sample stimuli from Halberda et al. (2008), shaptime easiest ratio of
set cardinalities, 1:9 (a), and the hardest ratio, 6:7 (b).



The graph in Figure 3 shows the percentage of trials whetejmants cor-
rectly determined the truth ofraostsentence as a function of the ratio of the size of
the larger colour-set to the smaller one (“Weber ratio”),dloildren who were older
than the estimated age ofostcomprehension in this task (Halberda et al. 2008).
The significant point for current purposes is that even thecmunters performed
significantly above chance for all but the hardest ratio. sEh@re children that are
unable to determine which of two given integers greater thage is the larger, so
comparison of two cardinalities can not be a part of the \aatifon procedure they
are using to verifyMost of the crayons are yellovBut they are performingome
verification procedure for this sentence which results iovabchance accuracy.
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Figure 3: Percentage of responses correct for non-couatetsull-counters at
various ratios. Even non-counters perform significantigvachance at verifying
mostsentences.

2.3. Verification using one-to-one correspondence

What sort of verification procedure could be used in thesexashere cardinal-
ity comparison is not possible, either because the paatntiis not a full-counter or
because the relevant items are shown too quickly to count@ Hdonsider the math-
ematical foundations of cardinality, then the possibitifya verification procedure
based on the notion @he-to-one correspondencpresents itself. A common way
to define cardinality begins by stating that two s&tndB have the same cardinal-
ity if and only if the elements oA can be put in one-to-one correspondeneéh
the elements oB:

(3) |A|=|B|] <= OneToOnéA,B)

Therefore it is possible to determine, for example, thasttef yellow dots has the
same cardinality as the set of non-yellow dots, by detemmgitinat there is a one-
to-one correspondence between the yellow dots and the eltlowydots, without
knowing what this shared cardinality is.

3More formally, the elements @ can be put in one-to-one correspondence with the elements of
B if and only if there exists a bijection (a surjective, injgetfunction) with domairA and ranges.



Extending this to the case where the cardinality of one setedks that of
another, via the definition of the greater-than relatiofglibws that (for finite sets)
the cardinality of a seA is greater than that of a SBif and only if there exists some
proper subset of, call it A, such that there exists a one-to-one correspondence
between the elements Af and the elements d8:

(4) |A >|B|] < JA[OneToOnéA,B) andA’ C A]

For convenience we define a new relation on sets OneToOna®faows:
(5) OneToOnePIy#\,B) < JA[OneToOnéA',B) andA’ C A]

and so we have:

(6) |DOTNYELLOW| > |DOT— YELLOW|
= JA[OneToOnéA’, (DOT— YELLOW)) andA’' C (DOTNYELLOW)]
= OneToOnePIUHOTN YELLOW, DOT — YELLOW)

Therefore it is possible to identify expressions which anghtconditionally equiv-
alent to those in (2), but which do not make reference to angiralities. This
implies that it is possible to determine that the cardigaiitthe set of yellow dots
is greater than that of the set of non-yellow dots, by recsiggithat there exists a
one-to-one correspondence between the non-yellow dotsand proper subset of
the yellow dots — again, without ever determining any caadiires. This situation
is illustrated in Figure 4. Studies of object-tracking catgnce in infants (Wynn
1992, Feigenson 2005) have revealed a cognitive systeroahatetect the required
kind of one-to-one correspondences. It is therefore tergpt conclude that when
a child without full numerical competence manages to coiyrgadge the truth of
amoststatement, or when a competent adult does so having glah&éguae 1 so
quickly that counting is not possible, a verification prasedbased on one-to-one
correspondence is being used.

DOT n YELLOW DOT — YELLOW
Figure 4: Recognising that a proper subset of the yellow clatsbe put in one-to-
one correspondence with (all of) the non-yellow dots migdrtpt one to determine
thatMost of the dots are yellovs true.

2.4. Verification using the Approximate Number System

There is, however, another cognitive system known to pdggists that could per-
mit verification procedures fanoststatements that neither compares cardinalities



nor relies on one-to-one correspondence. From birth, harslaare with many non-
verbal animals approximate Number System(ANS) that very quickly (within
150ms of visual stimulus onset (Nieder and Miller 2004))eyates representations
of pluralities in ways that effectively order those plutigls according to cardinal-
ity — albeit stochastically, and within certain limits debed by Weber's Law
(Cordes et al. 2001, Feigenson et al. 2004, Dehaene 199benRd/kaw states that
discriminability (for our purposes, the ability to determaiwhich of two ANS rep-
resentations corresponds to the greater cardinality)raipenly on the ratio of the
two represented cardinalities.
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Figure 5: The representations of the ANS, modelled by a semef Gaussian
curves with linearly increasing means and standard deviati

To model this pattern of discriminability we can considemaehtal num-
ber line” as illustrated in Figure 5. On this view, the “ndigethe representations
increases with the number represented: the ANS repregentaggered by the
perception of a set with cardinality is characterised by a Gaussian curve with
meann and standard deviation directly proportionalrto The overlap between
any two curves therefore increases linearly with the raéitwieen the represented
cardinalities, and thus by Weber’s Law acts as a predicttedifficulty of distin-
guishing two representations (and identifying which ofiteygresented cardinalities
is the larger). For example, it is clear from Figure 5 thatcberes labelled 8 and
10 overlap to a much greater extent than those labelled 2 aindidating that the
ANS has more difficulty distinguishing a set of eight things a set of ten things,
than it does distinguishing a set of two things from a set af things. Also, note
that because the ratio of 2 to 4 is the same as the ratio of 4tte&NS’s ability
to distinguish a set of two things from a set of four thingsssgaod as its ability
to distinguish a set of four things from a set of eight thingike threshold of dis-
criminability (the ratio by which two numbers must differ amder for the ANS to
be able to reliably distinguish their representationsjegirom individual to indi-
vidual (Halberda et al. in press) and improves with age (Blala and Feigenson
in press); but wherever this threshold is, there will exashe cases where it is not
possible to determine the precise cardinality of any setiots (because the rele-
vant dots are perceived only very briefly), but where it isaréweless possible to
determine the truth oflost of the dots are yellolwy constructing and comparing



ANS representations of the approximate cardinality of thieos yellow dots and
that of the set of non-yellow dots.

2.5. Summary

To summarise, for the senten@lost of the dots are yellowve have identified two

ways to express the relevant truth condition (7) which ma&#erence to different

kinds of formal objects (sets and cardinalities in one caisd only sets in the other),
and three classes of verification procedures (8) that coelldsed to compute the
relevant truth value in a given scenario:

(7)  a.|DOTNYELLOW| > |DOT— YELLOW|
b. OneToONePIUHOTN YELLOW, DOT — YELLOW)

(8) a.Procedures involving computing and comparing peecasdinalities.
b. Procedures involving detecting one-to-one correspoceke
c. Procedures involving generating and comparing ANS sspr&tions.

The conventional expression of the relevant truth condljt{@a), suggests
the class of verification procedures in (8a), but we have geadon to believe that
some other verification procedures exist. The fact that weesgress this same
truth condition as (7b) alerts us to the existence of thesatdiverification proce-
dures in (8b). Finally, having noted that the ANS providegsteam of representa-
tions that support a stochastic version of the orderingdicgldahat (7a) relies on, we
can identify the class of procedures in (8c): stochastisives of the comparison-
based procedures in (8a).

In the next section we present evidence that when the pbssdfiusing the
cardinality-based procedures of (8a) is eliminated, spesalevert to the ANS-based
procedures of (8c) rather than the correspondence-baseddarres of (8b), even
in situations which seem to be well-suited to corresponddrased procedures. We
think the strength of this bias against correspondenceebearification procedures
constitutes evidence against the claim that a competemtkeps understanding
of a moststatement is exhaustively characterised by a verificagmestic truth
condition.

3. Experiment 1

This experiment is also reported in Pietroski et al. (2008).

3.1. Design and Procedure

On each trial, participants saw a 200ms display containiotg df two colours,
yellow and blue. Participants were asked to judifiest of the dots are yellowue



or false for each trial. The number of dots of each colourathbetween five and
seventeen. Whether the yellow set or the blue set was laager{ence, whether
the correct answer was “true” or “false”) was randomisedrti€lpants answered
“true” or “false” by pressing buttons on a keyboard.

Each trial came from one of nine “bins”, each characterised katio. The
first bin contained trials where the ratio of the smaller eght larger set was close
to 1:2; the second bin contained trials where the ratio wasecto 2:3; and the
remaining bins contained trials close to 3:4, 4:5, ..., 9B&ch participants received
ten trials in each bin for each of three conditions: Scatt&andom, Scattered Pairs
and Column Pairs. The total number of trials for each paudict was therefore 9
ratios x 3 conditionsx 10 trials = 270. These were presented in randomised order.

On Scattered Random trials, all the dots (yellow and blugeveeattered
randomly throughout the display. See Figure 6a. In the dikerconditions, dots
were displayed in some way intuitively amenable to a onerte-correspondence-
based verification procedure, with yellow dots and blue @atsurring in pairs.
On Scattered Pairs trials, every dot from the smaller setdiggdayed paired with
(approximately four pixels away from) a dot from the larget, &ind the remaining
dots from the larger set were scattered randomly. See F&ur®n Column Pairs
trials, dots were arranged in a grid with two columns amdws, wheren is the size
of the larger set. Each row had either one dot from each setsorgée dot from
the larger set, with the position (left column or right colnof each dot chosen
randomly for each row. See Figure 6c¢.

b. C.

Figure 6: Sample stimuli from Experiment 1, from each cdnodit Scattered Ran-
dom (a), Scattered Pairs (b) and Column Pairs (c).

Half of the trials for each condition were “area-controltethdividual dot
sizes varied, but the number of yellow pixels was equal totiraber of blue pixels
(that is, the average yellow dot was smaller than the avelbage dot whenever
there were more yellow dots than blue dots). This prevensiuguhe total area
covered by a colour as a proxy for set cardinality. The ottadf &f the trials for
each condition for each ratio were “size-controlled”: wehihdividual dot sizes
varied, the size of the average yellow dot was equal to treecdithe average blue
dot, so the set with more dots would also have a larger to&d an the screen



(that is, more yellow pixels than blue pixels whenever tiveeee more yellow dots
than blue dots). This avoided confounding average dot site set cardinality,
because if all trials were area-controlled then one coutdrdgne the set with the
larger cardinality by comparing dot sizes across colouns.bGth area-controlled
and size-controlled trials, individual dot sizes varieddamly by up to 35% of the
set average, such that dots of the same colour were not dileatame size (see
Figure 6).

3.2. Predictions

We can identify three distinct hypotheses about the vetifingorocedures used by
participants. The 200ms display time does not permit vatific procedures based
on explicit counting, ruling out cardinality-based proaesk (8a).

Firstly, participants might use one-to-one corresponddyased procedures
(8b) on all trials. In this case we predict responses to leetdtl by dot layout (more
accurate on Scattered Pairs and/or Column Pairs trialsdhe®cattered Random
trials), but unaffected by ratio.

Secondly, participants might use ANS-based procedurgsof8all trials.
In this case we predict responses to be affected by ratiogmocurate on “easy”
ratios like 1:2 and 2:3 than on “hard” ratios like 8:9 and 9;18ut unaffected by
dot layout.

Thirdly, participants might adopt the most suitable veaifion procedure
for each individual trial. In this case we predict responsebe affected by both
ratio and dot layout. Broadly speaking, accuracy shouldigledn on trials that use
the pairing layout®r use easy ratios; in either case, participants should be@ble
adopt a verification procedure which takes advantage ofidptay’s properties.

Of course, these predictions rely on the assumption thebtattered Pairs
and Column Pairs trials do in fact permit the detection ofrélevant one-to-one
correspondences within the 200ms display time. Controéerpgents using iden-
tical stimuli have shown that the 200ms display time is sidfitto detect these
one-to-one correspondences and identify the uniform cabthe remaining dots
(Halberda et al. 2007). Nothing inherent to the stimulinthean be preventing par-
ticipants from using correspondence-based verificatiocquures; if they do not
do so, there must be another reason.

3.3. Results and Discussion

Percentage of correct responses for each participant waiednnto a 3 condition
(Scattered Random, Scattered Pairs, Column Paif3}rial type (size-controlled,
area-controlled)x 9 ratio Repeated Measures ANOVA. There was a significant
effect of ratio, as participants did better with easieragff (8,80) = 14.603 p <
0.001), and no significant effect of conditioR (2,20) = 0.215 p = 0.808). This
pattern of results can be seen in Figure 7. There was alsayndisant effect of
trial type (1,10) = 3.187,p = 0.105), indicating that participants relied on the



number of dots and not other factors such as area that migtwifeunded with
number, so performance has been collapsed across triahtyjgure 7.

100

90

80

70

Percent Correct

—o— Scattered Random

60 —o--Scattered Pairs -

--«- Column Pairs

50

1 1.5 2
Ratio (Weber Ratio)

Figure 7: Percentage of responses correct for each trialdagpa function of ratio.
The ratio referred to as 1:2 in the main text appears at 2 onx-thes; the ratio
referred to as 9:10 appearsiit~ 1.11.

These results favour the second hypothesis presented tois&c2, on
which participants use ANS-based procedures on all tridigir performance im-
proved as the ratio of yellow dots to non-yellow dots becaess ‘'even” (further
from 1:1), as predicted by the ratio-dependence of ANS coisqas, but did not
improve (or change at all) when dots were presented in ols\pairs.

Furthermore, the particular pattern of improvement asdties became less
“even” — that is, the particulashapeof the upward trend in Figure 7 — matched
the function predicted by the standard model of the psychsiph of the ANS ex-
tremely closely. If we suppose that a participant’s repnegt@on of the cardinality
of a set ofn; dots is a Gaussian curve with meanand standard deviationn,,
and thus that the representation frdots is a Gaussian curve with meanand
standard deviatiown,, then the standard model predicts that the probability ef th
participant judging, to be greater than; is determined by the curve represent-
ing the difference between these two random variables: #ugs§&an curve with

mean(n, —ny) and standard deviation, /n2 +n3 (Pica et al. 2004). (Herw is

a constant characterising the acuity of this particulamMiddal’s ANS, called the
“internal Weber fraction”.) In particular, the probabylibf n, being judged greater
thanny is the proportion of the area under this curve to the rightesbzZbecause
this is the probability of np — n;) being judged greater than zero), as given by the
following formula:

np—ng

Vaw, /n2 +n3

Therefore for each value of, the model determines a function mapping Weber ratio

(9)  Pr(nzjudged greater tham ) = %erfc



to percentage correct responéeBhe crucial point is that there exists a valuenof

for each condition such that this function matches the tesadtremely closely.
See Figure 8 and Table®1This constitutes strong evidence that participants used
ANS-based verification procedures, and not any other vatifio procedure which
would show improved accuracy with less evenly-matchedsati

Condition Correlation(R?) | Internal Weber Fractiofw)
Scattered Random 0.9677 0.32
Scattered Pairs 0.8642 0.33
Column Pairs 0.9364 0.30

Table 1: The high values & (close to 1) indicate a high correlation between the
predictions of the ANS model, for the given value of the int#rWeber fraction
(w), and the pattern of results for each condition.

At least as importantly from a linguistic point of view, hoveg, as telling
us which particular verification procedure was used, thesalts suggest that the
choice of which verification procedure to use is not as unicaimed as one might
have thought. Participants ditbt adopt the most suitable verification procedure

4While the formula in (9) is expressed in termsmf andn, (andw), the result is uniquely
determined by the ratio af; to n, (andw):

Ny —ny = (n—ny) p-1

vawy/ni+ng  Vawgmng sy (%) +1

STypical values forw in a task where participants are asked to directly judge rihih tof a
sentence likeThere are more yellow dots than blue det®e around 0.14 (Pica et al. 2004), so
our participants’ accuracy in verifyinglost of the dots are yellows poorer — their performance
showed the signature of a system with 0.3, meaning larger standard deviations and thus noisier
representations. Further research is required to deterexiactly why this is, although Experiment
2 will suggest one possibility.

5The curve for the Scattered Random condition falls slightjow that of Scattered Pairs be-
cause of a slight tendency for participants to guess rangomsome trials£6% in each condition).
Given the size of the standard errors for each conditionK&gpare 7), the estimated value wffor
each condition — and therefore the predicted curve for eactdiion — should be considered
statistically indistinguishable from the others.

’In particular, this tells against the hypothesis that pgrtints’ understanding ehostrequired
them to verify a stricter truth condition than that assunrethis paper, something along the lines
of “significantly more than half” of the dots being yellow. n8e the graph in Figure 7 shows the
percentage of responses which agreed with the condB®T N YELLOW)| > |DOT — YELLOW|,

a verification procedure for a stricter “significantly motedith condition would also show “poor
accuracy” for ratios close to 1:1, because this is where tfiltl values determined by) the two
truth conditions diverge. But the responses closely mak¢he function predicted by the model
on the assumption that participants were attempting tdyéne truth of DOTNYELLOW| >
|IDOT — YELLOW/|, as opposed to any other truth condition; note that the stirvEigure 8 predict
better than chance accuracy for Weber ratios even slightty@ 1. For further elaboration of this
point, and other evidence against the “significantly moenthalf” hypothesis, see Pietroski et al.
(2008).
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Figure 8: The data from Figure 7 displayed (as points) for ganson with the
predictions of the standard model of ANS performance (agss)r

for each individual trial, as the third hypothesis in Sect82 suggests: in the Scat-
tered Pairs and Column Pairs conditions, where the facthleatellow dots and the
non-yellow dots were in the OneToOnePlus relation was mas@auos (and per-
ceptible by participants in our control studies (Halbertlale2007)), participants
showed exactly the same ANS-based pattern of responsedras $tattered Ran-
dom condition. Speakers’ reluctance to take advantagesgbairing of dots in the
display is unexplained if the meaning of the sentekost of the dots are yellovg

a verification-agnostic truth condition. It is more consigtwith the view that the
meaning of a sentence comes with some bias towards certais ki verification
procedures.

In beginning to describe the precise nature of this bias, avetead only
very carefully. Clearly we do not want to deny that a sentdik@Most of the
dots are yellowcan be verified using procedures which are not ANS-based. If pre-
sented with a Scattered Random display with a “hard” ratay,(ten yellow dots
and nine non-yellow dots) for an unlimited amount of timepaaker would prob-
ably determine the truth of the sentence by counting dotscangparing precise
cardinalities (8a), never making use of the ANS at all. E¥e¢ing only information
provided about a scene is that the yellow dots and the ndavyelots are in the
OneToOnePlus relation, a speaker may well be able to deterthat the sentence
is true (8b). But the results of this experiment suggest tifiexte is at least some
asymmetry between the range of possible procedures; teaNts-based proce-
dures, despite being less accurate, are in some sense mectdydavailable for
verification of amostsentence than correspondence-based procedures. For more
detailed discussion of the nature of this asymmetry, seedBla et al. (2008).



4. Finer-grained Distinctions Among ANS-Based Verificatioo Procedures

The results from Experiment 1 indicate that participanesduSNS representations
to perform some stochastic version of the comparison inelitan this expression
of the relevant truth condition:

(10) |DOTNYELLOW| > |DOT— YELLOW|

We can now ask more detailed questions about exactly hovednigparison is car-
ried out. In particular, we focus on the (approximate) repreation of the cardi-
nality |DOT — YELLOW/|.

To investigate more closely how a representation of thidinatity is con-
structed, we need to turn to displays containing dots of rtitaa two colours. We
can identify two distinct procedures which could in prifeipe used in this sce-
nario to construct a representation of the numerosity ohttre yellow dots. The
first, the Subtraction Procedure involves attending to the “superset” containing
all dots, attending to the set of yellow dots, and perfornarsgibtraction on the two
generated ANS representations. The secondStiection Procedure involves
attending to each of the non-yellow colour sets individgahd summing the rep-
resentations of the cardinalities of these sets in casesvwhere is more than one
non-yellow colour present.

However, some constraints on the parallel visual perceptiosets have
been identified that bear on the psychological plausibdftthese two procedures.
Halberda et al. (2006) found that when adults are briefly garesxd with a scene
containing dots of between two and six colours, they can his&NS to estimate
the cardinality of up to three sets in parallel. One of theseecessarily the “super-
set” containing all the dots in the display, so this amoumts¢onstraint that at most
two subsets can be selected. The property of having a particolour is a salient
“early visual feature” (Treisman and Gormican 1988), so ceng, for example, at-
tend to all the yellow dots and construct an ANS represemtaif the cardinality
of this set (Halberda et al. 2006). However, inist possible to select dots on the
basis of a disjunction or negation of such properties (Wb#88). So one can not,
in a scene with, say, yellow dots as well as dots of four otloéwurs, atomically
attend to the set of all non-yellow dots — this would requigkesting dots on the
basis of a disjunction like “red or blue or ...”, or the negati'not yellow”. In sum-
mary, when briefly presented with an array of dots of a numbdifi@rent colours,
humans can generate (at most) three ANS representaticsiby, fine for the set of
all dots present; secondly, one for the set of dots of a paaticolour, say, yellow;
and thirdly, one for the set of dots of another colour, sayebl

We therefore know that the Subtraction Procedure is pspgicdlly plau-
sible, no matter how many non-yellow colours are presembge it only requires
two ANS representations to be generated from the visualstisn one for the “su-
perset” of all dots, and one for the set of yellow dots. Thee&&n Procedure
is plausible in cases where there is only one non-yellowwogtwesent, say, blue,
because it is sufficient to attend to the set of blue dots aad¢h of yellow dots
(in addition to the “superset”). In cases with more than oonae-yellow colour



present, however, the Selection Procedure becomes inymsisecause it would
require attending to more than two colour subsets of thdaliqimn addition to the
“superset”): the set of yellow dots, and more than one ndlowecolour set.

There is another significant distinction between these trdigation pro-
cedures. In cases where it is possible to use the Selectome@ure (that is, when
there are only two colours of dots present), it will give maceurate results than
the Subtraction Procedure. This is because in these caseagphesentation of
|IDOT — YELLOW| is atomically detected by the Selection Procedure, butfis-co
puted indirectly by the Subtraction Procedure. Therefoeebise inherent to ANS
representations is magnified by the use of the Subtractiocedure.

The combined implications of varying the number of non-gwlicolours
present in a display for the two verification procedures m#red here are sum-
marised in Table 2.

Number of colours present 2 3 4 5
Subtraction Procedure good good good good
Selection Procedure better impossible impossible impossible

Table 2: The effects of varying the number of non-yellow cotopresent in a scene
on two possible procedures for verifying the statenMaost of the dots are yellow

5. Experiment 2

This experiment is also reported in Lidz et al. (2008).

5.1. Design and Procedure

On each trial, participants saw a 150ms display containioig of at least two
colours and at most five colours (chosen from yellow, blud, ggeen, cyan, ma-
genta). Yellow dots were present on every tfidarticipants were asked to judge
Most of the dots are yellowue or false for each trial. The number of yellow dots
and the number of non-yellow dots varied between five anddega. Whether the
yellow set or the non-yellow set was larger (and hence, vérdtte correct answer
was “true” or “false”) was randomised. Participants an®aetrue” or “false” by
pressing buttons on a keyboard.

Within each of the four conditions (two to five colours), thaio of the
cardinality of the smaller set (yellow or non-yellow) to tiud the larger set ranged
over 1:2, 2:3, 3:4, 5:6 and 7:8 (a subset of the ratios usecxpefment 1). Each
participant received fifteen trials in each ratio bin forleat the four conditions.
The total number of trials for each participant was thereforatiosx 4 conditions
x 15 trials = 300. These were presented in randomised order.

8For irrelevant technical reasons, the target colour wasadlgtblue in this experiment rather
than yellow as in Experiment 1. We abstract away from thisigledor ease of exposition.



Half of the trials for each condition were “area-controltethdividual dot
sizes varied, but the number of yellow pixels was equal tothmaber of non-yellow,
non-background pixels (that is, the average yellow dot waaller than the average
non-yellow dot whenever there were more yellow dots thanyellow dots). This
prevented using the total area covered by a colour as a paxget cardinality.
The other half of the trials for each condition for each ratere “size-controlled”:
while individual dot sizes varied, the size of the averagkoyedot was equal to
the size of the average non-yellow dot, so the set with mote would also have
a larger total area on the screen (that is, more yellow pikels non-yellow, non-
background pixels whenever there were more yellow dots tiemyellow dots).
This avoided confounding average dot size with set cariynalecause if all trials
were area-controlled then one could determine the set WweHarger cardinality
by comparing dot sizes across colours. On both area-ctadrahd size-controlled
trials, individual dot sizes varied randomly by up to 35% lué set average, such
that dots from the same set were not all of the same size.

5.2. Predictions

We can identify three distinct hypotheses about the vetifingprocedures used
by participants. Note that we can expect responses on tleaHctrials to pattern
identically to those in Experiment 1, and so the hypothesesgke only in their
predictions of how this pattern will or will not change as thanber of colours in
the display increases.

Firstly, participants might use the Subtraction Procedurall trials. In this
case we predict responses to be unaffected by the numbeloofrsan the display,
and pattern identically to those in Experiment 1 throughout

Secondly, participants might use the Selection Procednralldrials. In
this case we predict responses to be at chance when the nofdmours present
is greater than two, because this verification procedul® fai

Thirdly, participants might adopt the most suitable veaifion procedure
for each individual trial. In this case the Selection Pragedwill be used on two-
colour trials and the Subtraction Procedure elsewherecsoracy on trials with
more than two colours should be above chance but lower thauraxy on two-
colour trials.

5.3. Results and Discussion

Percentage of correct responses for each participant wasednnto a 4 condi-
tion (2, 3, 4, 5 colours)k 2 trial type (size-controlled, area-controlled)5 ratio

Repeated Measures ANOVA. There was a significant effecttf, ras participants
did better with easier ratio§(4,44) = 109.092,p < 0.001), and no effect of condi-
tion (number of colours in the stimulugj (3,33) = 7.326,p = 0.842). This pattern
of results can be seen in Figure 9. As in Figure 7, we have gs#id across trial
type to construct this graph; though here there was a mawfieat of trial type, as



participants did slightly better on size-controlled tsithan on area-controlled trials
(F(1,11) = 7.326,p < 0.05).
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Figure 9: Percentage of responses correct for each trialdagpa function of ratio.
The ratio referred to as 1:2 in the main text appears at 2 ox-thas; the ratio
referred to as 7:8 appears%%m 1.14.

These results favour the first hypothesis presented in@ebtR, on which
participants use the Subtraction Procedure on all trialartid®ants’ responses
showed the same pattern as in Experiment 1 in all conditiowiécating that one
verification procedure is used throughout which is impeaursito the heterogeneity
(or otherwise) of the non-yellow dots.

Furthermore, the results again matched those predictdustandard psy-
chophysical model of the ANS extremely closely, as showraild 3. Note that the
estimations of internal Weber fractiow) are close to those in Experiment 1 in all
four conditions, around.B (see Table 1). If the more accurate Selection Procedure
had been used on two-colour trials, we would have expectéghéisantly lower
value forw in the two-colour condition than in the other three conditigindicating
a less noisy computatioh.

As in Experiment 1, we have not only identified which parteswerifica-
tion procedure was used, but also found more evidence tbathbice of verifi-
cation procedure is not as unconstrained as a truth-condittheory of sentence
meanings would predict. Participants didt adopt the most suitable verification
procedure for each individual trial, as the third hypotkésiSection 5.2 suggests:
accuracy was no better in the two-colour trials than in othals, indicating that
participants did not use the Selection Procedure even vihveasi psychologically

9The use of the Subtraction Procedure provides one possiplaration for the relatively high
values ofw; see footnote 5. If participants had been using the Sele®iwmcedure, they would
have presumably been carrying out a procedure equivalénataf theThere are more yellow dots
than blue dotgask in which a value ofv around 0.14 is typically found. Indeed, one might have
considered the high value of in Experiment 1 to be evidence that the Subtraction Proeedas
being used there, even before the findings of Experiment &athdhe same accuracy with more
colours present.



Condition Correlation(R?) | Internal Weber Fractiofw)
2 Colours Present 0.9480 0.29
3 Colours Present 0.9586 0.32
4 Colours Present 0.9813 0.28
5 Colours Present 0.9625 0.32

Table 3: The high values d® (close to 1) indicate a high correlation between the
predictions of the ANS model, for the given value of the int#rWeber fraction
(w), and the pattern of results for each condition.

feasible, despite its being more accurate than the alteen@tibtraction Procedure.
Not only the does meaning dost of the dots are yelloappear to have a bias to-
wards ANS-based verification procedures over corresparedbased procedures,
but even within the range of ANS-based procedures that wonrdpute the appro-
priate truth condition (albeit stochastically) there agpte be asymmetries. Partici-
pants insisted on approximating the cardinality of the $abo-yellow dots as “the
dots minus the yellow dots”, despite the availability of arendirect and more accu-
rate alternative procedure, suggesting that the sulbdrastgn in the conventional
expression of the relevant truth condition should be takeratry some “verifica-
tional weight”. Subtleties abound here concerning the exature of this “verifica-
tional weight”, given the relationship between set suliitbamcand cardinality sub-
traction and the equivalence | @OT— YELLOW/| and|DOT— (DOTNYELLOW))|
and|DOTNYELLOW|; for more detailed discussion see Lidz et al. (2008). But the
main point is that no asymmetry between verification procesiat all is predicted
if sentence meanings are verification-agnostic truth dad, unstructured func-
tions from worlds to truth values.

6. Conclusion

In this paper we have argued against the claim that a conpspeaker’'s under-

standing of a sentence is exhaustively characterised hyttadondition. To do so

we have presented evidence of asymmetries in speakergigviéiss to use vari-
ous verification procedures: in Experiment 1, an appareas tw use algorithms
approximating a cardinality comparison rather than th@sed on one-to-one cor-
respondence, and in Experiment 2, an insistence on an ahanethod of approxi-

mation. These asymmetries would be surprising if the onhst@int on the choice
of verification procedures for a sentence was the requirethen the procedure
must implement the sentence’s truth condition.
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