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abstract Within Linguistics the semantic analysis of natural languages (English, Swahili,...)
has drawn extensively on semantical concepts first formulated and studied within classical logic,
principally first order logic. Nowhere has this contribution been more substantive than in the
domain of quantification and variable binding. As studies of these notionsin natura language have
developed they have taken on alife of their own, resulting in refinements and generalizations of the
classical quantifiers aswell asthe discovery of new types of quantification which exceed the
expressive capacity of the classical quantifiers. We refer the reader to Keenan & Westerstahl
(1997) for an overview of resultsin thisarea. Here we focus on one property quantification in
natural language — itsinherently sortal nature —which distinguishes it from quantificationin logic.

81 From Logic to Linguistic Analysis

Within Linguistics a primary goal of semanticsisto formulate acompositiona semantic
interpretation for the expressions of a given natural language. This of course presupposes a
grammar which defines the set of expressions pretheoretically judged grammatical by native
speakers. At time of writing grammars for English that have been proposed are incomplete — they
fail to generate some expressions which speakers judge grammatical, and unsound — they generate
some expressions not judged grammatical by native speakers. Nonetheless our understanding of
the syntax of certain smple fragments of English is clear enough that it makes senseto ask for a
compositional semantics for those fragments. We focus here on issues concerning the semantic
analysis of quantificational structuresin natura language.

Classical Logic (CL) provides semantic representations like (1b) and (2b) for the English
sentences (Ss) in (1a) and (2a) respectively.

(1) a All poets daydream b. Ox(Poet(x) — Daydream(x))

(2) a Some poets daydream b. [x(Poet(x) & Daydream(x))

|gnoring the semantic properties associated with tense (present, past, ...) and aspect (generic,
perfective, ...), this semantic analysisis correct in the sense that systematic use of such
representations correctly captures certain judgements of semantic relatedness given by native

speakers. E.g. an English sentence P is understood to entail a sentence Q iff their semantic
representations P and Q' are such that Q' isinterpreted as True in al modelsin which P is.

Moreover this semantic analysis enables linguists to represent a variety of semantic distinctions

which are difficult to understand and represent in the absence of a systematic representation of
quantification. Here arethree cases:

First, English Sslike (3) are semantically ambiguous; they can be understood in two logically
distinct ways, as represented in (3a) and (3b), using some obvious abbreviations.
(3) Each student in the class read some play over the vacation

a [Ox(Sx - y(Py & xRy)) b. (y(Py & Ox(SX - XRy))



Of course (3a) can be true if no two students read a play in common, as long as for each student
there is some play that that student read. 1n (3b) by contrast there must be at least one play whichis
such that each student read that play. Thus using representations which differ with respect to the
relative scope of the quantifiers [x and [y permits a natural representation of the two ways of
understanding (3).

Second, in early work in generative grammar verb phrase (VP) coordination was derived from
coordinate Ss by eliminating repeated occurrences of Noun Phrases (NPs) in the later conjuncts. It
was understood that the derived Ss had the same meaning as those they were derived from, thus
satisfying Compositionality. For example, (4b) was to be derived from (4a), with whichiitis
logically synonymous.

(4) a John laughed and John cried b. John laughed and cried

But obviously such a Conjunction Reduction transformation fails to be paraphrastic when the NPs
are quantified and an appropriate coordinate conjunction is selected. Thus (5a) and (5b) are not
logical paraphrases, asis clear from their CL representations.

(5) a Some student laughed and some student cried
(IX(SX & LX) & [X(Sx & CX))
b. Some student laughed and cried
[X(SX & Lx & CX)

Of courseif and isreplaced by or in (5a,b) the resulting Ss are logically equivalent. Analogous
clamshold for Either every student came early or every student left late and Every student either
came early or left late. Thetwo Ssare not paraphrases, though the results of replacing or by and
are. Again, these semantic facts are clearly accounted for using standard CL representations.

Thus CL helps usto see that the naive linguistic analysis of expressionslike (5b) is
problematic for Compositionality, as the semantic interpretation of the derived expression does not
stand in aregular semantic relation to the one it is derived from. Sometimesit islogically
equivaent to it and sometimes not. To get the correct truth conditions for the non-paraphrastic
cases we need to see not only the identity of the conjunction used (and vs or) but also the choice of
NP (every student vs some student).

Third, inasmilar vein, early work in generative grammar sometimes purported to derive
expressions by replacing full (= non-pronominal) NPs by appropriate pronouns when the full NP
was identical to another appropriate NP occurrence. But semantic problems comparable to those
for Conjunction Reduction above arose. (6a,b) are not paraphrases, asis clear from their CL
representations.

(6) a All poetsadmireal poets b. All poets admire themselves
OxOy((Px & Py) — xAy) Ox(Px — XAX)

So again, if agrammar of English generates (6b) by replacing the second occurrence of all poetsin
(6a) by the reflexive pronoun themselves we find that Compositionality is hard to satisfy. Merely
knowing the models that satisfy (6a) is not sufficient to identify those that satisfy (6b) asthe latter
isaproper subset of the former.



In all these ways then the representations of Classical Logic have proven insightful in the
semantic analysis of natural language expressions. It might then seem surprising that the, often
informally presented, semantic representations used by linguists for quantificational expressionsin
natural language differ from those of CL.

some linguistic objectionsto the CL analysis All approaches to English syntax agree that in
(2) the sequence all poets forms a syntactic constituent. 1t consists of the Determiner (Det) all and
the (plural marked) noun poets. The VP daydream forms the other constituent of (1). We expect
by Compositionality then that the semantic interpretation of the entire Sis given in terms of the
interpretation of all poets and that of daydream, and thus that these constituents have a semantic
interpretation. But in (1b), the CL trandation of (1a), thereis no syntactic constituent which
represents the meaning of the NP all poets. Rather the noun poet is ripped away fromits Det all
and istreated as a one place predicate.

Moreover, tied to the linguist's respect for syntactic constituency hereis the intuition that the
semantic roles of the noun poet and that of the VP daydream are quite different. We can think of
both as denoting properties that individuals may or may not have. But the noun property servesto
limit the range of objects we are talking about, specifically those we are quantifying over, whereas
the VP presents the property we are predicating of those objects (in accordance with the constraints
determined by the Det all). By contrast in (1b) the variable x is understood to range over al the
individualsin the universe of discourse. We may fairly read it in rough English as "For all
individuals x, if x isa poet then x daydreams’.

So (1a) and (1b) differ in that in (1a) we are just talking about poets, whereasin (1b) we are
talking about everything, though what we predicate of those objectsis now expressed by a boolean
compound of formulas built from the original noun and the original VP. It is something of an
embarassment to thisintuitive difference in meaning that, modul o tense and aspect, (1b) does
adequately represent the truth conditions and entailment relations of (1a). But perhapsthisisan
accident of the example. (2a,b) suggest this may be the case. (2b), like (1b), quantifies over all
objectsin the universe of the model, but it incorporates the noun into its predicate differently, by
using and rather than if - then. Will yet different Determiners require yet further boolean
connectivesin combining the noun and the VP? Are there enough boolean connectivesto
accomodate the variety of English Dets? We see below that the answer is negative, and thus that
natural languages, in distinction to standard first order languages, are inherently sortal. But we
anticipate. Let usconsider first the direct interpretation of NPs of the form Det+Noun.

82 From Linguisticsto Logic

Traditionally we think of subject-predicate Ss such as John daydreams as ones in which the
predicate daydreams is the general term and the subject John the specific one. Thisis captured
extensionally by treating a possible predicate denotation as a set of possible subject denotations,
and we represent the truth in amodel of John daydreams by saying that the object John denotesis
an element of the set of objects daydreams denotes.

But, as Frege redized, this general-specific distinction is cut the other way when we consider
quantified NP subjects such as all poets, some poets, no poets, etc., rather than ssimple proper
names. Now it isthe subject phrase which denotes the genera term and the predicate the more
specificone. That is, extensionaly, the set of possible quantified NP denotations corresponds to
sets of one place predicate denotations.

To see the idea behind this claim we take a ssimple example and show how to construct
2n extensionally distinct NP denotations, where nis the number of extensionally distinct VP



denotations. In fact we can take the NPsto be proper nouns and just consider their logically
distinct boolean compounds in and, or, not, and neither...nor.... Consider for example auniverse
with just 3 elements, a,b,c denoted say by Adam, Bill, and Chris. Now, adjusting number marking
on the verb appropriately, consider the 8 Ssthat result when X in (7a) is replaced by one of the 8
NPsin (7b).

(7) a X daydreams b. 1 AdamandBill and Chris
2 Adam and Bill but not Chris
3 Adam and Chris but not Bill
4 Adam but neither Bill nor Chris
5 Bill and Chris but not Adam
6 Bill and neither Chris nor Adam
7 Chrisand Adam but not Bill
8 Neither Adam nor Bill nor Chris

For X = (b.1) we compute that (7a) istrue iff daydreams denotes{a,b,c}. When X is(b.2) itistrue
iff daydreams denotes {a,b}, and so on to (b.8), where (7a) istrue iff daydreams denotes the empty
set. Inthisway then we see that the 8 NPsin (7b) arelogically distinct, each one corresponding a
single possible VP denotation. But now take any subset of the NPsin (7b) and form their
digunction: E.g. either Adam and Bill but not Chris, or both Bill and Chris but not Adam, or
neither Adam nor Bill nor Chris. Clearly when X is such adigunction (7a) istrue iff daydreams
denotes one of the sets denoted by one of the diguncts. So digunctions of distinct subsets of these
NPs determine logically distinct NPs, so the number of logically distinct NPs corresponds to the
number of sets of extensionally distinct VP denotations. In the case at hand we build 28 logically
distinct NPs. (Notewe areredly just constructing NPs in digunctive normal form, in analogy to
the way thisis donein propositional logic; see Keenan & Faltz, 1985)1

Of course in forming logically distinct NPs we can have recourse to ones that are not boolean
compounds of proper nouns. Consider the NP like every student and no non-student. Setting X to
bethis NP, (7a) above istrueiff the objects who daydream are exactly the students. So this NP can
denote any of the eight possible denotations given by (b.1) — (b.8) above according to the set
student denotes. Moreover interpreting student as{a,b,c} in the example above we can again form
8 logically distinct NPs using quantifiers and exception phrases, asin every student, every student
but Adam, every student except Adam and Chris, ..., no student but Chris,..., no student.

Now to say that NPs determine sets of VP denotations says that we can treat NPs semantically
as functions mapping VP denotationsinto { True, False}. Call such functions generalized
guantifiers. Consider for example all poets. Semantically it maps a set B, which we sometimes call
the predicate set, to True iff each object in the set of poetsisin B. That is, writing denotationsin
upper case, (ALL POET)(B) = Trueiff POET O B. More generdly, for A,B any sets, (ALL A)(B)
= Trueiff A O B. Andthisin turn saysthat we can interpret all asafunction ALL which mapsa
st A to the generalized quantifier ALL(A). Inthisway we give acompositional interpretation to
(1a) asin (8).

(8) Al poets daydream
ALL POET DAY DREAM

1IThe analogy is exact. Possible NP denotations will shortly be taken to be generalized
quantifiers, which constitute a complete, atomic boolean algebra. The set of possible proper noun
denotations, theindividuals, is aset of complete, free generatorsfor this set, just as the set of
denotations of so called atomic formulasin sentential logic is a set of free generators for boolean
algebraof logical equivaence classes of formulas.



ALL(POET)
ALL(POET)(DAYDREAM)

Note that this compositional interpretation dispenses with variable binding and does not introduce
the extraneous connective "if-then". And this remains true when all is replaced by any of the other
Dets whose denotations are given transparently in (9).

(9) a(ALL BUT ONE)(A)(B) =True iff JA-B|=1
b.SOME(A)(B) = True iff AnB# @
c.NO(A)(B) =True iff AnB=0
d.(MORE THAN TEN)(A)(B) = Trueiff |[AnB|>10
e.(THE TEN)(A)(B) = True iff |A|=10and A OB
f.MOST(A)(B) = True iff 2|AnB|>]A|
g.(MORE THAN TWO OUT OF THREE)(A)(B) = True iff 3:|AnB|> 2A|

These results are linguistically very satisfying: Sswhich differ syntactically just by alexical
item (all for some, etc.) differ semantically just by the denotations of those lexical items. So the
difference in interpretation between All poets daydream and Some poets daydream is obtained by
replacing ALL by SOME in (8). In addition, directly interpreting NPs as generalized quantifiers
eliminates the problem of introducing different boolean connectives for different Dets—if-then for
all and and for some.

But the linguistic advantages of interpreting NPs as generalized quantifiers run much deeper
than uniformity and simplicity of interpretation. We now have aformat in which to present and
study denotations of natural language Determiners. We can study what properties they havein
common, we can discern linguistically natural classes, and we can formulate and test whether
English Dets are sortally reducible.

Some semantic classes of English Dets For simplicity of presentation we assume we are given
an arbitrarily chosen non-empty universe E of objects held fixed throughout the discussion unless
stated otherwise. GQ(E), the set of generalized quantifiers over E, isthe set of functions from P(E),
the set of subsets of E, into { True, False} ; and the Dets under discussion denote functions from
P(E) into GQ(E). Functions from P(E) into GQ(E) will be called possible Determiner denotations.
We claim later that not all of these are actual; there are some denotation constraints that all English
Dets satisfy.

Let us seefirst how the distinction between universal and existential quantifiers showsup in
our generalized quantifier format. While we no longer trandate all and some in such away asto
introduce distinct boolean connectives, the semantic difference that those connectives represented
still exists as a condition on the functions which universal and existential Dets satisfy.

Generalized Existential Detsin English The existential Det some in English isintersectivein
the sense that whether Some As are Bsis Trueis decided just by checking An B, the set of Asthat
are Bs. Wedon't have to know anything about Asthat are not Bs or Bsthat are not As. We just
check that the set of Asthat are Bsisnon-empty. If sothe Sistrue; if notitisfalse. Equally NO
isintersective: whether NO(A)(B) = True is decided just by checking whether AnB is empty.

Def 1 A possible Det denotation D isintersective iff for al subsets A,A',B,B' of E,
if AnB=A'nB' then D(A)(B) = D(A")(B")



So anintersective D cannot distinguish among arguments which have the same intersection.
Here are two groups of intersective Detsin English (an intersective Det being one whose denotation
in every model isan intersective function as per Def 1).

(10) i. some, no, aan, not a, not asingle, hardly any, practicaly no, amost no, adozen,
more than ten, fewer than ten, exactly/at |east/nearly/approximately ten, afew, severa,
between five and ten, not more than ten, at least ten and not more than twenty, either
fewer then ten or el'se more than a hundred, just finitely many, infinitely many

ii. no...but John, more male than female, at least two male

The Detsin (10i) are not merely intersective they are cardinal in the sense that whether afunction
D they denote mapsapair A,B of setsto True just depends on the cardinality of AnB. D doesn't
have to know what the elements of AnB are, it merely checks how many elementsit has. E.g. fewer
than tenis cardina since (FEWER THAN 10)(A)(B) = Trueiff |JAnB| < 10. Formaly,

Def 2 A possible Det denotation D is cardinal iff for all subsets A,A',B,B' of E,
if AnB|=|A'"nB’|then D(A)(B) = D(A")(B"

Cardinal Dets are studied in Keenan & Moss (1985). Here we note two points used later: First,
boolean compounds of cardinal (intersective) Dets are themselves cardinal (intersective). E.g. not
more than ten is cardina since morethan tenis; at least two and not more than ten is cardinal
since each conjunct is. In genera boolean compoundsin and, or, and not of Dets, of whatever sort,
not just intersective ones, are given pointwise as follows, where we write [Ifor the interpretation of
and, Ofor that of or, and = for that of not:

(1D)a (FOG)A)B) = KA)(B) UG(A)B)
b.(FOG)(A)(B) = F(A)(B) OG(A)(B)
c. (=R)(A)(B) = ~(F(A)B))

The objects on theright of the=signin (11) are truth values, and the [], [J, and - operations have
their usua truth functional meaning. So from (11a) we see that (12a,b) are logically equivalent:

(12) a Most but not all students read the Times
b. Most students read the Times but it is not the case that all students read the Times

And second, the cardina Dets include the two constant functions: T, which mapsal A,B to True,
and F, which mapsal A,B to False. Note that these functions are denotable:

(13)a Atleastzero=T b. Fewer than zero = F

(13a) holdssince (AT LEAST ZERO)(A)(B) = Truefor all setsA,B. And (13b) holds since
(FEWER THAN ZERO)(A)(B) = Fase, al A,B. One checksdirectly that T and F are both
intersective, in fact both cardinal.

The expressionsin (10ii) have a different character from those in (10i)2. One might doubt

2The expressionsin (10i) lack both the "constant” and the "logical™ properties of logical
congtants, and classical quantifiers have both. A succinct way to capture the essentia ideaisto note
that the possible denotations of these expressions fail to respect permutations of the underlying
universe. Thisisanotion that can be used to characterize the "logical” elements of any type. For



whether they should be considered Determinersat all. But before regjecting them out of hand let us
seejust what isintended. Here are some Ssillustrating their uses.

(14) a No student but John jogs during lunch
b. More male than female students play football
c. At least two male and not more than five femal e students won prizes

(14a) saysin effect that the students who came early consist just of John. Treating no...but John as
adiscontinuous Det we obtain the correct truth conditions using

Def 3 (NO...BUT JOHN)(A)(B) = Trueiff AnB = {John}.

Clearly no...but John isintersective — it yields the same value at pairs A,B and A',B' which have the
sameintersection. Butitisnot cardinal. If AnB ={John} and A'nB' ={Bill} then the two
intersections have the same cardinality but (NO...BUT JOHN) istruein thefirst case and falsein
the second.

So if wetreat no...but John asa Det it isintersective but not cardinal. But should we tresat it as
aDet? Therearein fact some linguistic reasons for doing so. Suppose for example that we
thought of but John in no student but John as forming a constituent with student to the exclusion of

the Det case at hand: Let 1tbe apermutation of the universe E. Extend 1tto afunction 1t from
P(E) to P(E) by setting

™ (A) ={n(@lalA}.

Observe, omitting the straightforward proofs, that (1) Tt is abijection of P(E), whencefor all A [
E, [*(A)| =|A|, and (2) Tt* commutes with the boolean operationson P(E). That is, *(AnB) =
1 (A) O1*(B) and 1t* (-A) = =(1t* (A)), where of course [Jand - on the right hand side of these
equations refersto the relevant operationsin the truth value algebra. Then

Def A possible Det denotation D over auniverse E is permutation invariant (P1) iff for all
permutations Ttof E, all subsets A,B of E, D(1t*(A))(1t*(B)) = D(A)(B).

Then one shows by example that the Detsin (10ii) may denote D that fail to be Pl. Moreover,
being Pl + intersective characterizes the property of being cardina (over finite universes).

Theorem: For E finite, a possible Det denotation D is cardind iff D isintersective and PI.

[0 That D isintersective isimmediate from the definition of cardinal. Let tbe a permutation of
E. We must show that for A,B arbitrary, D(1t* (A))(1*(B)) = D(A)(B). But since |JAnB| =
[t (AnB)| = |r*(A) n 1 (B)| the result follows since D is cardinal. Note that this direction does
require that E befinite.

[0 Let D bePl and intersective, with E finite. Suppose |JAnB|=|A'nB’|. We must show that
D(A)(B) =D(A")(B"). SinceD isintersectiveand XnY =En(XnY) for al X,Y [0 E, we have that
D(X)(Y) =D(E)(XnY), dl X,Y OE. AndsinceEisfinite, |[/(AnB)|=|-(A'nB")|. Let Ty bea
bijection: AnBn A'nB'andlet Tp beabijection: «(AnB)n -(A'nB'). ThenTt=T1yr 2 isa
bijection of E with *(AnB) = A'nB'. ThusD(A)(B) = D(E)(AnB) = D*(E)1* (AnB) =
D(E)(A'nB") = D(A")(B"), aswasto be shown.



the Det no. Then student but John would be a syntactic unit of the sort that Dets would combine
with to form full NPs. But thisyields massively incorrect predictions, as most choices of Det are
ungrammatical here (asindicated by *):

(15) *two students but John, * most students but John, *the ten students but John

Essentialy only no and every are grammatical here. Thusthe prenomina Det and the exception
phrase but John do not occur independently, which is predicted if we treat them asforming a
syntactic unit into which the noun student isinfixed. We favor then treating no...but John and
every...but John as (discontinuous) Determiners.

In the case of (14b), more male than female (and infinitely many variants thereof: many more
mal e than female, ten more male than female, twice as many male as female, fewer male than
female, exactly as many male as female...) we treat adjectives like male and femal e as absolute
functions from sets (common noun extensions) to sets, as follows:

Def 4 A function F from P(E) to P(E) is absoluteiff for al A [ E,
F(A) =A n FE)

S0 to say that maleis absolute isto say that the male artists are the artists who are male individuals,
whichiscorrect. And we interpret more male than female by

(16) (MORE MALE THAN FEMALE)(A)(B) = True iff [MALE(A)nB|> [FEMALE(A)nB|

So More male than femal e students play ball is True iff the number of male students who play ball
is greater than the number of female studentswho play ball. Observe that this Det isintersective. If
AnB =A'nB' then the two sets whose cardinality we compare on theright in (16) are the same
using A,B throughout or using A',B' throughout, replacing A,B with A',B' respectively preserves
cardinality, so the inequality holdsin one caseiff it holdsin the other. Observe, for F absolute and
AnB=A'nB', that

A@7nFA)NnB = (AnKFE)NnB F is absolute
= (AnB)nFKE) Associativity & Commutativity of n
= (A'nB)n KE) Assumption AnB =A'nB'
= (A'nKE)nB Associativity & Commutativity of n
= FA)Nn B Fisabsolute

But more male than female may denote a function which fails to be cardina. With John male and
Mary female set A = B = {John} and A' = B' = {Mary}. Then |AnB|=|A'nB'| but (MORE
MALE THAN FEMALE)(A)(B) = True and (MORE MALE THAN FEMALE)(A")(B'") = False.
So MORE MALE THAN FEMALE ISNOT cardinal. Similar arguments show that TWO MALE
in (14c) isintersective but not cardinal.

Thereisthen aprimafacie case that English presents syntactically complex Dets which are
intersective but not cardinal. And in any case intersectivity is a property of many English Dets, both
smplex and complex. Observe now the following Proposition which is the reflection at the level of
Generalized Quantifiers of the introduction of and in the classical trandation of the existential
quantifier. It also leadsto the result that intersective Dets are sortally reducible (a notion we define
shortly).

Proposition 1 For D apossible Det denotation over auniverse E,



D isintersectiveiff for all A,B O E, D(A)(B) =D(E)(AnB)

proof: [0 Clearly AnB=En(AnB)soD(A)(B) =D(E)(AnB) by theintersectivity of D.
O Let X,XY,Y'bearhbitrary subsetsof Ewith XnY = X'nY". Show D(X)(Y) =
D(X)(Y"). Now

D(X)(Y) = D(E)(XnY) 0
= DE)X'NY) assumption
= DX)(Y" 0

Prop 1 guaranteesthe logical equivalence of (18a,b) below, given that more than ten isintersective.
Moreover more than ten can be replaced by any intersective Det, including "unexpected" oneslike
exactly as many male as female, preserving logical equivaence (though singular and plural marking
may have to be adjusted).

(18) a More than ten students are talking
b. More than ten individual s are students and are talking

Now Prop 1 tellsusthat when D isintersective, the use of the noun argument A to restrict the
set of objects quantified over is not essential in the sense that we can replace A by E, thus
quantifying over al elements of the universe, and compensate for the original restriction by
incorporating the noun property into the predicate in some boolean way. For intersective Dets the
compensation issimply by intersection. Let us now formulate the notion of sortal reducibility and
see that intersective Dets have this property.

Def 5 Let D be apossible Det denotation over auniverse E. We say that D is sortally
reducible iff there is atwo place boolean function h satisfying:

for dl A,B OE, D(A)(B) = D(E)h(A,B)

Clearly al intersective Dets are sortally reducible: just choose h to beintersection. Thusin Ssof
the form [[Det N] VP] with Det intersective, we see that restricting the domain of quantification to
the set denoted by the N is not an essential restriction. We can replace the N denotation by the
entire universe, that is we can quantify over everything, and compensate by building a new predicate
property as a boolean function of the original N denotation and the original predicate property
(denoted by the VP).

We turn now to the generalized universal quantifiersin English. We show that they are also
sortally reducible. Then we show that given a certain very genera constraint on natural language
Determiner denotations, the only sortally reducible Detsin English are the generalized existentia
and the generalized universal ones. For the many other cases which we show exist we see that the
restriction of the domain of quantification to the set denoted by the noun argument of Det is
essential; it cannot be paraphrased away by quantifying over al individuals and compensating in
some boolean way by enriching the original predicate with that determined by the original noun
argument.

Generalized Universal Detsin English Our development here parallels that of the Generalized
Exigtential Detsin English. Recall first that we have interpreted English all by that possible Det
denotation ALL givenby: ALL(A)(B) = Trueiff A 00 B. Anequivaent statement, which makesthe
paralel with intersective Dets more apparent, is:

(19) ALL(A)(B) = True iff A-B=Q



(Clearly A isasubset of B if removing all the Bs from the Asleaves nothing, and conversely).
Now (19) makesit clear that the value ALL assignsto apair A,B of setsis decided by aproperty of
A-B. Weddfine:

Def 6 A possible Det denotation D is co-intersective iff for al subsets A,A',B,B' of E,
if A-B = A'-B' then D(A)(B) =D(A")(B"

And we shall take co-intersectivity as the defining property of the generalized universal Dets, just as
we took intersectivity as the defining property of the generalized existentia Dets. Clearly ALL is
co-intersective. So are the denotations of the following:

(20) a. every, each, nearly dl, all but ten, al but at mogt ten, al but finitely many
b. every...but John, dmost every...but John, every ... except John and Bill,

Denotations for the a-group above are easy to state (modulo vagueness, and treating every and each
as synonyms of all). Here are some examples, which show that they are co-intersective.

(21) a (ALL BUT TEN)(A)(B) = True iff |A-B|=10

b.(ALL BUT AT MOST TEN)(A)(B) = True iff |A-B|<10

C. (ALL BUT FINITELY MANY)(A)(B) = True iff A-B isfinite
(Note: we might think of the universal quantifier all asall but zero). We observe that the Detsin
the a-group are not only co-intersective, they are co-cardinal in the sense that the value they assign
toapair A,B of setsisdecided just by checking the cardinality of A—B. We leave the definition of
co-cardinal to the reader. And we observe that the expressions in the b-group are co-intersective
(but not co-cardina), asin:
(22) a. Every student but John plays football

b. (EVERY...BUT JOHN)(S)(P) = True iff S-P={John}.
And clearly (EVERY ...BUT JOHN) is co-intersective, as whether it mapsapair SPto Trueis
decided just by looking at S-P. But since it must see more than just the number of elementsin
S-P, it must know what they are, it isnot co-cardinal.

We notein passing that the trivial Det denotations T and F are co-intersective, in fact co-
cardinal (aswell asintersective and cardinal). In fact they are the only functionsthat are both
intersective and co-intersective.

Observe now that the co-intersective Dets are reducible, but not by and (intersection), as was

the case for the generalized existential Dets, but by if-then, which we write in the booleanly more
familiar form -A [ B rather than A — B.

Proposition 2A possible Det denotation D is co-intersective iff for sets A,B
D(A)(B) = D(E)(-A O B)

proof: I. E—-A 0B)=E n(—-—A n =B) = A-B, whence by the co-intersectivity of D,
D(E)(-A O B) =D(A)(B)



(. Let D satisfy the equation abovefor al A,B. We show that D is co-intersective.
Let A,A'B,B' suchthat A-B = AB'. Then D(A)(B) =D(E)(-A O B) =
D(E)-—(-A O B)) = D(E)~(A n -B) =D(E)~(A —B) = D(E)~(A'-B") =...
= D(A")(B"), the missing steps being those used in the previous steps, in reverse,
replacing Aby A, BbyB'.

Corollary 3 Prop 2 entailsimmediately that co-intersective Dets are reducible viathe
function h which maps each (A,B) = (-A I B).

Non-classical quantifiersin English We have taken the properties of intersectivity and co-
intersectivity asthe basisfor identifying classes of English Dets which have the existential and
universal quantifiers as specia cases. Note that even if we limit ourselvesto the cardinal and co-
cardina elements of these classes we still go beyond the expressive power of first order logic. For
example smple compactness arguments show that the intersective just finitely many and the co-
intersective all but finitely many are not first order definabl es.

English however presents a great many Determiner expressions which are neither intersective
nor co-intersective. Here are three types, of which the last is the most convincing.

First, non-trivial boolean compounds of intersective with co-intersective Dets typically form
complex Dets which are neither intersective (int) nor co-intersective (co-int). For example, some
but not all (Asare Bs) isnot int, sinceit requires knowledge of A—B to check that not all Asare Bs.
And it isnot co-int sinceit requires knowledge of AnB to verify that some As are Bs.

Second, presuppositional Dets like both, neither, the ten, the ten or more, John'sten (or more)
given below are neither int. nor co-ints.

(23)a BOTH(A)(B) = Trueiff |A|=2and A OB
b. NEITHER(A)(B) = Trueiff |A|=2and AnB = @
c. (THE TEN)(A)(B) = True iff |A|]=10and A O B
d. (JOHN's TEN)(A) = (THE TEN)(A n {XOEJJOHN HAS x})

Clearly thetenisnot int, sinceif wejust know which As are Bs we cannot tell how many Asthere
are. Nor canweif we just know which Asare not Bs, so the ten is not co-int.

Third, and highly productivein English, are the proportional Dets. They look at apair A,B of
sets and make claims about the proportion of Asthat are Bs. Here are two fairly ssimple examples
(interpreting most in the sense of more than half and seven out of ten in the sense of at least seven
out of ten):

(24) a MOST(A)(B) = True iff 21]A n B|>|A]

b. (SEVEN OUT OF TEN)(A)(B) = True iff 10 /AnB|= 7-|A|

3For example, assuming that each positive integer n has anamein English, let K be the set
of Ssof theform "There are at |east n cats on the mat", each positive integer n, together with the S
"There arejust finitely many cats on themat”. Clearly each finite subset of K hasamodel, and
equally clearly K itself hasno model. Hence compactnessfails, so any language including these Ss
interpreted in the intended way failsto be first order.



most failsto beint sinceif al we know iswhich As are Bs, and hence how many Asare Bs, we till
don't know whether that number comes to more than half the number of As. Similarly MOST is
not co-int since merely knowing which, and so how many, As are not Bs does not sufficeto tell us
the Asthat are Bs congtitute more than half the Ast. We define:

Def 7 A possible Det denotation D is proportional5 iff for all A,A"',B,B' O E,
if AnBJ/JA| = |A'nB'[/]A"] then D(A)(B) = D(A")(B")

Here are some examples of proportional Detsin English. They include mundane fractional and
percentage expressions.

(25) most, moref/less than half the, exactly/almost haf the, at least athird of the, between one
third and two thirds of the, amgjority of the
at least/at most/exactly/less than ten per cent of the, between ten and twenty per cent of
the, about/nearly ten per cent of the
at least/more than/exactly/a most/about seven out of ten

We note that with only afew exceptions proportionality Dets are not (co-)inté. The reason is that
given the noun set A and the predicate set B evaluating D(A)(B) requires knowledge of both A and
AnB (from which A-B is computable as A{A-B)). But English Dets do not seem to require more
knowledge than this. The statement that for each universe E, a possible Det denotation need know
at most which objects are As and which of those are Bs, is known as Conservativity:

4]n attempting to sortally reduce most speakers I've consulted tend to try to assmilate it to
the co-intersective class, rendering Most Asare Bsas For most x, if xisan Athen xisa B. But this
isclearly incorrect. Inamodd with 100 individuals, 10 of whom are students and just 3 of whom
are vegetarians, the S Most students are vegetariansis clearly false, asat most 3 of theten are. But
the sentence For most X, if x is a student then x is a vegetarian is clearly true, asit holds for sure,
vacuoudly, for 90 of the 100 individualsin the universe.

51t is preferable (though it clouds the underlying intuition) to avoid the use of divisionin the
statement since we want to consider the case where A or A'is@. So just write n-m’' > nminstead
of /m>n'/m’.

6The non-trivial exceptionsinclude (and perhaps are limited to) the traditional square of
opposition: no, expressible as lessthan 1/|E|, and its complement some, both intersective; and all,
and its complement, not all. We do not have an exact count of the non-trivial proportional Det
denotations over agiven (even finite) universe. But most Det denotations are not (co)-intersective.
The map sending each intersective D to D(E) is provably an isomorphism from INT(E), the set of
intersective functions over E, to GQ(E), any E. Since GQ(E) isthe set of functions from P(E) into
{True,Fase} its cardinality is 2 raised to the power 2[El. Similarly CO-INT(E) isisomorphic to
GQ(E) by the map sending each co-intersective D to D(E). Asonly T and F are both intersective
and co-intersective INT(E)LCO-INT(E)| = 2 raised to the power 2[El+1, |ess the 2 elements that
were counted twice. But Keenan & Stavi (1986) show not only that the total number of
conservative Det denotations (see later) is 2 raised to the power 3[El, they show that for E finite, each
of these functions is denotable by some English Determiner (usually syntactically complex). For
examplein auniverse with just 3 elements there are just 510 possible Det denotations that are either
intersective or co-intersective. There are 227 or over 60 million that are conservative. So most
possible Det denotations lie outside the (co)-intersective classes.



Def 8 A possible Det denotation D is conservativeiff for al A,B,B' 0 E,
if AnB=AnB' then D(A)(B) = D(A)(B".

Thuswhen D is conservative then for any A the generdized quantifier D(A) can't see the difference
between predicate properties B and B' that have the same intersection with A. And we claim that all
natural language Dets are conservative. To test whether a Det is conservative use Proposition 4
(usually taken asthe definition of Conservativity).

Proposition 4 A possible Det denotation D is conservative iff
foral A,B OE, D(A)(B)=D(A)(AnB)

We leave the proof to the reader. Using Prop 4 one checksthat an arbitrary Det blik is conservative
by checking that Blik As are Bsistrue in the same conditions as Blik As are As that are Bs. So the
conservativity of properly proportional Dets such as seven out of ten isillustrated by observing the
logical equivalence of Seven out of ten students are vegetarians and Seven out of ten students are
students who are vegetarians. Even atortured expression such as more of John's than of Bill's
passes the conservativity test, as Sslike (26a) are clearly true in the same conditions as (26b).

(26) a More of John's than of Bill's cats are black
b. More of John's than of Bill's cats are cats that are black

Conservativity holds since the predicates of the two Ssdiffer just in that one repeats information
already contained in the noun property, and so doesn't add anything new. Indeed, presented asin
Prop 4 Conservativity may seemtrivia. Arethere possible Det denotationsthat fail to have this
property? The answer isaresounding "Yes!". Hereisone example.

(27) Let E have at least two elements a,b; let D be that possible Det denotation given by
D(A)(B) = Trueiff |JA| = |B].

Then D isnot conservative. D({a})({b}) = Truebut D({a})({a} n{b}) = D({ &} )(D) = False.
And more generally (see Keenan & Stavi 1986) one computes that for any E, the total number of
possible Det denotations is 2 raised to the power 4El, whereas the number of those which are
conservativeis 2 raised to the power 3[El. Soin amode with just two elements there will be 216 =
65,536 possible Det denotations, only 29 = 512 of which are conservative.

Despite the strength of Conservativity however most conservative functions, even over afinite
universe, are not definable in first order logic:

Proposition 5 Dets of the form more than n/m, for 1 < n<m < |E| are not first order
definable even over finite universes E.

Barwise and Cooper (1981) sketch the proof for more than 1/2; the techniques used in Westerstahl
(1989) enable one to handle the more general case (and many others) in Prop 5.

We are now in aposition to show:

Theorem 6 Given auniverse E, a conservative Det denotation D is sortally reducible iff
D isintersective or D is co-intersective.



proof sketch A succinct but not very user friendly proof can be found in Keenan (1993)
Here we sketch alonger but more helpful one. We have already shown the right to left direction of
the theorem. So let D be conservative and sortally reducible. We show that D isint or co-int. Now
to say that D is sortally reducibleisto say that for some two place boolean function h, D(A)(B) =
D(E)(h(A,B)), all A,B O E. Therearejust 16 such functions, so we may give a proof by cases.
Herefirgt, in set notation, are 8 two place boolean functions.

(28) m(A)(B) = E; hs(A)(B) = A-B
ha(A)(B) = A; hg(A)(B) =-A 0 B
hs(A)(B) = B; h/(A)(B) = -A[I-B
hy(A)(B) =AnB hg(A)(B) = (A-B)U(B-A)

The other 8 are, in effect, the complements of these. Formally, for 1<i <8, set
gi(A)(B) = =(h(A)(B)). For example, g1(A)(B) = -E=0.

case 1l Supposethat D reducesviah;. Thatis, for al A,B D(A)(B) = D(E)(h(A,B)) = D(E)(E).
But thissaysthat D isconstant. Thatis,D =T or D = F, according as D(E)(E) = True or D(E)(E)
=Fadse. AndineachcaseD isint (dso co-int). Similarly if D reducesviag;. Then D(A)(B) =
D(E)g1(A,B) = D(E)(9), so again D is constant and thus int.

case 2 Let D reduceviahy. Then D(A)(B) = D(E)(h2(A,B)) = D(E)(A) = D(E)(ho(E,A)) =
D(E)(E); so again D is constant and thusint. If D reducesviag, then D(A)(B) = D(E)(g2(A,B)) =
D(E)(-A) = D(E)(g2(E,—~A)) = D(E)(9), so D is constant and thus int.

case 3 Let D reduceviahz. Then D(A)(B) = D(A)(ANnB), by conservativity,
= D(E)(hs(A,AnB)) =D(E)(AnB), whenceDisint: if AnB =A'nB'then D(A")(B') =
D(E)(A'nB") =D(E)(AnB) =D(A)(B). Smilarly if D reducesviagsz then D(A)(B) =
D(E)(g3(A,AnB)) =D(E)-(AnB), soagain D isint.

case 4 If D reducesviah, or g4 then D is clearly intersective.
case5 If D reducesviahs or gs then dis clearly co-intersective.

case6 Let D reduceviahg. So D(A)(B) = D(E)(hg(A,B)) = D(E)(-ANnB) =
D(E)(hg(=En (-ANnB))) = D(E)(9D), so D is constant and thusint. Similarly one showsthat if D
reduces viagg then D(A)(B) = D(E)(E) and so again D is constant and thusiint.

case 7 Similar to case 6. Let D reduce viah;. Then D(A)(B) = D(E)(hz(A,B)) = D(E)(-An-B)
= D(E)(h7(E,~An-B)) = D(E)(-En (-An-B)) = D(E)(d), so D is constant, and so int. Similarly
if D reducesviagy then D(A)(B) = D(E)(E) and so is constant.

case 8 Let D reduceviahg. Then D(A)(B) = D(A)(AnB), by conservativity, =
D(E)(hs(A,AnB)) =D(E)(AH{AnB) O (AnB)-A) D(E)(A-B) U @) = D(E)(A-B), whence D is
co-intersective. Andfinaly if D reducesviagg then D(A)(B) = D(A)(AnB) = D(E)(gg(A,AnB)) =
D(E)-hg(A,AnB) = D(E)(-(A-B)), whence again D is co-intersective.

This exhausts the cases proving the theorem. Note that the conservativity of D was used only
incases 3 and 8. .

83 Concluson We have shown here that quantification in English isinherently sortal, in the



sense that for many quantifiers Q, sentences of the form in (29a) are not logically equivalent to any
of the form in (29b), where the dots indicate some boolean compound and x ranges over the entire
universe of discourse:

(29)a [[Q+N] + P] b. Qx(...Nx...Px...)

Specifically we have seen that logical equivaence obtainsjust when Q is either intersective or co-
intersective. For properly proportional quantifiers, such as most, exactly half the, two out of three,
... the use of the Noun to restrict the domain of quantification to the set denoted by the N is
essential. Thereisno logical paraphrase of the formin (29b), whereit is understood that we are
quantifying over the entire universe of discourse.

We conclude with a caveat: whether a quantifier is sortally reducible and whether it isfirst
order definable are independent properties, though it happens that the properly proportional
quantifiersfail both conditions: they are neither sortally reducible nor are they first order definable,
not even over finite universes. But the quantifiersjust finitely many and all but finitely many are
sortally reducible but not first order definable. And the quantifiers both, neither, and the ten are
first order definable but not sortally reducible.
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