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abstract  Within Linguistics the semantic analysis of natural languages (English, Swahili,...)
has drawn extensively on semantical concepts first formulated and studied within classical logic,
principally first order logic.  Nowhere has this contribution been more substantive than in the
domain of quantification and variable binding.  As studies of these notions in natural language have
developed they have taken on a life of their own, resulting in refinements and generalizations of the
classical quantifiers as well as the discovery of new types of quantification which exceed the
expressive capacity of the classical quantifiers.  We  refer the reader to Keenan & Westerståhl
(1997) for an overview of results in this area.  Here we focus on one property quantification in
natural language – its inherently sortal nature – which distinguishes it from quantification in logic.  

§1  From Logic to Linguistic Analysis

Within Linguistics a primary goal of semantics is to formulate a compositional semantic
interpretation for the expressions of a given natural language.  This of course presupposes a
grammar which defines the set of expressions pretheoretically judged grammatical by native
speakers.  At time of writing grammars for English that have been proposed are incomplete – they
fail to generate some expressions which speakers judge grammatical, and unsound – they generate
some expressions not judged grammatical by native speakers.  Nonetheless our understanding of
the syntax of certain simple fragments of English is clear enough that it makes sense to ask for a
compositional semantics for those fragments.  We focus here on issues concerning the semantic
analysis of quantificational structures in natural language.  

Classical Logic (CL) provides semantic representations like (1b) and (2b) for the English
sentences (Ss) in (1a) and (2a) respectively.  

(1) a. All poets daydream b. ∀ x(Poet(x) → Daydream(x))

(2) a. Some poets daydream b. ∃ x(Poet(x) & Daydream(x))

Ignoring the semantic properties associated with tense (present, past, ...) and aspect (generic,
perfective, ...), this semantic analysis is correct in the sense that systematic use of such
representations correctly captures certain judgements of semantic relatedness given by native
speakers.  E.g. an English sentence P is understood to entail a sentence Q iff their semantic
representations P' and Q' are such that Q' is interpreted as True in all models in which P' is.

Moreover this semantic analysis enables linguists to represent a variety of semantic distinctions
which are difficult to understand and represent in the absence of a systematic representation of
quantification.  Here are three cases:  

First, English Ss like (3) are semantically ambiguous; they can be understood in two logically
distinct ways, as represented in (3a) and (3b), using some obvious abbreviations.

(3) Each student in the class read some play over the vacation

a. ∀ x(Sx → ∃ y(Py & xRy)) b. ∃ y(Py & ∀ x(Sx → xRy))



Of course (3a) can be true if no two students read a play in common, as long as for each student
there is some play that that student read.  In (3b) by contrast there must be at least one play which is
such that each student read that play.  Thus using representations which differ with respect to the
relative scope of the quantifiers ∀ x and ∃ y permits a natural representation of the two ways of
understanding (3).

Second, in early work in generative grammar verb phrase (VP) coordination was derived from
coordinate Ss by eliminating repeated occurrences of Noun Phrases (NPs) in the later conjuncts.  It
was understood that the derived Ss had the same meaning as those they were derived from, thus
satisfying Compositionality.  For example, (4b) was to be derived from (4a), with which it is
logically synonymous.  

(4) a. John laughed and John cried b. John laughed and cried

But obviously such a Conjunction Reduction transformation fails to be paraphrastic when the NPs
are quantified and an appropriate coordinate conjunction is selected.  Thus (5a) and (5b) are not
logical paraphrases, as is clear from their CL representations.

(5) a. Some student laughed and some student cried

(∃ x(Sx & Lx)  &  ∃ x(Sx & Cx))

b.Some student laughed and cried

∃ x(Sx & Lx & Cx)

Of course if and is replaced by or in (5a,b) the resulting Ss are logically equivalent.  Analogous
claims hold for Either every student came early or every student left late and Every student either
came early or left late.  The two Ss are not paraphrases, though the results of replacing or by and
are.  Again, these semantic facts are clearly accounted for using standard CL representations.

Thus CL helps us to see that the naive linguistic analysis of expressions like (5b) is
problematic for Compositionality, as the semantic interpretation of the derived expression does not
stand in a regular semantic relation to the one it is derived from.  Sometimes it is logically
equivalent to it and sometimes not.  To get the correct truth conditions for the non-paraphrastic
cases we need to see not only the identity of the conjunction used (and vs or) but also the choice of
NP (every student vs some student).  

Third, in a similar vein, early work in generative grammar sometimes purported to derive
expressions by replacing full (= non-pronominal) NPs by appropriate pronouns when the full NP
was identical to another appropriate NP occurrence.  But semantic problems comparable to those
for Conjunction Reduction above arose.  (6a,b) are not paraphrases, as is clear from their CL
representations.

(6) a. All poets admire all poets b. All poets admire themselves

∀ x∀ y((Px & Py) → xAy) ∀ x(Px → xAx)

So again, if a grammar of English generates (6b) by replacing the second occurrence of all poets in
(6a) by the reflexive pronoun themselves we find that Compositionality is hard to satisfy.  Merely
knowing the models that satisfy (6a) is not sufficient to identify those that satisfy (6b) as the latter
is a proper subset of the former.



In all these ways then the representations of Classical Logic have proven insightful in the
semantic analysis of natural language expressions.  It might then seem surprising that the, often
informally presented, semantic representations used by linguists for quantificational expressions in
natural language differ from those of CL.  

some linguistic objections to the CL analysis  All approaches to English syntax agree that in
(1) the sequence all poets forms a syntactic constituent.  It consists of the Determiner (Det) all and
the (plural marked) noun poets. The VP daydream forms the other constituent of (1).  We expect
by Compositionality then that the semantic interpretation of the entire S is given in terms of the
interpretation of all poets and that of daydream, and thus that these constituents have a semantic
interpretation.  But in (1b), the CL translation of (1a), there is no syntactic constituent which
represents the meaning of the NP all poets.  Rather the noun poet is ripped away from its Det all
and is treated as a one place predicate.

Moreover, tied to the linguist's respect for syntactic constituency here is the intuition that the
semantic roles of the noun poet and that of the VP daydream are quite different.  We can think of
both as denoting properties that individuals may or may not have.  But the noun property serves to
limit the range of objects we are talking about, specifically those we are quantifying over, whereas
the VP presents the property we are predicating of those objects (in accordance with the constraints
determined by the Det all).  By contrast in (1b) the variable x is understood to range over all the
individuals in the universe of discourse.  We may fairly read it in rough English as "For all
individuals x, if x is a poet then x daydreams".  

So (1a) and (1b) differ in that in (1a) we are just talking about poets, whereas in (1b) we are
talking about everything, though what we predicate of those objects is now expressed by a boolean
compound of formulas built from the original noun and the original VP.  It is something of an
embarassment to this intuitive difference in meaning that, modulo tense and aspect, (1b) does
adequately represent the truth conditions and entailment relations of (1a).  But perhaps this is an
accident of the example.  (2a,b) suggest this may be the case.  (2b), like (1b), quantifies over all
objects in the universe of the model, but it incorporates the noun into its predicate differently, by
using and rather than if - then.  Will yet different Determiners require yet further boolean
connectives in combining the noun and the VP?  Are there enough boolean connectives to
accomodate the variety of English Dets?  We see below that the answer is negative, and thus that
natural languages, in distinction to standard first order languages, are inherently sortal.  But we
anticipate.  Let us consider first the direct interpretation of NPs of the form Det+Noun.

§2  From Linguistics to Logic

Traditionally we think of subject-predicate Ss such as John daydreams as ones in which the
predicate daydreams is the general term and the subject John the specific one.  This is captured
extensionally by treating a possible predicate denotation as a set of possible subject denotations,
and we represent the truth in a model of John daydreams by saying that the object John denotes is
an element of the set of objects daydreams denotes.  

But, as Frege realized, this general-specific distinction is cut the other way when we consider
quantified NP subjects such as all poets, some poets, no poets, etc., rather than simple proper
names.  Now it is the subject phrase which denotes the general term and the predicate the more
specific one.  That is, extensionally, the set of possible quantified NP denotations corresponds to
sets of one place predicate denotations.  

To see the idea behind this claim we take a simple example and show how to construct
2n extensionally distinct NP denotations, where n is the number of extensionally distinct VP



denotations.  In fact we can take the NPs to be proper nouns and just consider their logically
distinct boolean compounds in and, or, not, and neither...nor....  Consider for example a universe
with just 3 elements, a,b,c denoted say by Adam, Bill, and Chris.  Now, adjusting number marking
on the verb appropriately, consider the 8 Ss that result when X in (7a) is replaced by one of the 8
NPs in (7b).

(7) a. X daydreams b. 1  Adam and Bill and Chris
2 Adam and Bill but not Chris
3 Adam and Chris but not Bill
4 Adam but neither Bill nor Chris
5 Bill and Chris but not Adam
6 Bill and neither Chris nor Adam
7 Chris and Adam but not Bill
8 Neither Adam nor Bill nor Chris

For X = (b.1) we compute that (7a) is true iff daydreams denotes {a,b,c}.  When X is (b.2) it is true
iff daydreams denotes {a,b}, and so on to (b.8), where (7a) is true iff daydreams denotes the empty
set.  In this way then we see that the 8 NPs in (7b) are logically distinct, each one corresponding a
single possible VP denotation.  But now take any subset of the NPs in (7b) and form their
disjunction:  E.g. either Adam and Bill but not Chris, or both Bill and Chris but not Adam, or
neither Adam nor Bill nor Chris.  Clearly when X is such a disjunction (7a) is true iff daydreams
denotes one of the sets denoted by one of the disjuncts.  So disjunctions of distinct subsets of these
NPs determine logically distinct NPs, so the number of logically distinct NPs corresponds to the
number of sets of extensionally distinct VP denotations.  In the case at hand we build 28 logically
distinct NPs.  (Note we are really just constructing NPs in disjunctive normal form, in analogy to
the way this is done in propositional logic; see Keenan & Faltz, 1985)1

Of course in forming logically distinct NPs we can have recourse to ones that are not boolean
compounds of proper nouns.  Consider the NP like every student and no non-student.  Setting X to
be this NP, (7a) above is true iff the objects who daydream are exactly the students.  So this NP can
denote any of the eight possible denotations given by (b.1) – (b.8) above according to the set
student denotes.  Moreover interpreting student as {a,b,c} in the example above we can again form
8 logically distinct NPs using quantifiers and exception phrases, as in every student, every student
but Adam, every student except Adam and Chris, ..., no student but Chris,..., no student.

Now to say that NPs determine sets of VP denotations says that we can treat NPs semantically
as functions mapping VP denotations into {True, False}.  Call such functions generalized
quantifiers.  Consider for example all poets.  Semantically it maps a set B, which we sometimes call
the predicate set, to True iff each object in the set of poets is in B.  That is, writing denotations in
upper case, (ALL POET)(B) = True iff POET ⊆  B.  More generally, for A,B any sets, (ALL A)(B)
=  True iff A ⊆  B.  And this in turn says that we can interpret all as a function ALL which maps a
set A to the generalized quantifier ALL(A).  In this way we give a compositional interpretation to
(1a) as in (8).

(8) All poets daydream

ALL POET DAYDREAM

     1The analogy is exact.  Possible NP denotations will shortly be taken to be generalized
quantifiers, which constitute a complete, atomic boolean algebra.  The set of possible proper noun
denotations, the individuals, is a set of complete, free generators for this set, just as the set of
denotations of so called atomic formulas in sentential logic is a set of free generators for boolean
algebra of logical equivalence classes of formulas.



ALL(POET)

ALL(POET)(DAYDREAM)

Note that this compositional interpretation dispenses with variable binding and does not introduce
the extraneous connective "if-then".  And this remains true when all is replaced by any of the other
Dets whose denotations are given transparently in (9).

(9) a. (ALL BUT ONE)(A)(B) = True iff |A–B| = 1
b.SOME(A)(B) = True iff A∩B ≠ Ø
c. NO(A)(B) = True iff A∩B = Ø
d.(MORE THAN TEN)(A)(B) = Trueiff |A∩B| > 10
e. (THE TEN)(A)(B) = True iff |A| = 10 and A ⊆  B
f. MOST(A)(B) = True iff 2·|A∩B| > |A|
g.(MORE THAN TWO OUT OF THREE)(A)(B) = True iff 3·|A∩B| > 2·|A|

These results are linguistically very satisfying:  Ss which differ syntactically just by a lexical
item (all for some, etc.) differ semantically just by the denotations of those lexical items.  So the
difference in interpretation between All poets daydream and Some poets daydream is obtained by
replacing ALL by SOME in (8).  In addition, directly interpreting NPs as generalized quantifiers
eliminates the problem of introducing different boolean connectives for different Dets – if-then for
all and and for some.  

But the linguistic advantages of interpreting NPs as generalized quantifiers run much deeper
than uniformity and simplicity of interpretation.  We now have a format in which to present and
study denotations of natural language Determiners.  We can study what properties they have in
common, we can discern linguistically natural classes, and we can formulate and test whether
English Dets are sortally reducible.  

Some semantic classes of English Dets  For simplicity of presentation we assume we are given
an arbitrarily chosen non-empty universe E of objects held fixed throughout the discussion unless
stated otherwise.  GQ(E), the set of generalized quantifiers over E, is the set of functions from P(E),
the set of subsets of E, into {True, False}; and the Dets under discussion denote functions from
P(E) into GQ(E).  Functions from P(E) into GQ(E) will be called possible Determiner denotations.
We claim later that not all of these are actual; there are some denotation constraints that all English
Dets satisfy.

Let us see first how the distinction between universal and existential quantifiers shows up in
our generalized quantifier format.  While we no longer translate all and some in such a way as to
introduce distinct boolean connectives, the semantic difference that those connectives represented
still exists as a condition on the functions which universal and existential Dets satisfy. 

Generalized Existential Dets in English  The existential Det some in English is intersective in
the sense that whether Some As are Bs is True is decided just by checking A∩B, the set of As that
are Bs.  We don't have to know anything about As that are not Bs or Bs that are not As.  We just
check that the set of As that are Bs is non-empty.  If so the S is true; if not it is false.  Equally NO
is intersective:  whether NO(A)(B) = True is decided just by checking whether A∩B is empty.  

Def 1 A possible Det denotation D is intersective iff for all subsets A,A',B,B' of E,

if  A∩B = A'∩B'  then  D(A)(B) = D(A')(B')



So an intersective D cannot distinguish among arguments which have the same intersection.  
Here are two groups of intersective Dets in English (an intersective Det being one whose denotation
in every model is an intersective function as per Def 1).

(10)  i.  some, no, a/an, not a, not a single, hardly any, practically no, almost no, a dozen,
more than ten, fewer than ten, exactly/at least/nearly/approximately ten, a few, several,
between five and ten, not more than ten, at least ten and not more than twenty, either
fewer then ten or else more than a hundred, just finitely many, infinitely many

ii. no...but John, more male than female, at least two male

The Dets in (10i) are not merely intersective they are cardinal in the sense that whether a function
D they denote maps a pair A,B of sets to True just depends on the cardinality of A∩B.  D doesn't
have to know what the elements of A∩B are, it merely checks how many elements it has.  E.g. fewer
than ten is cardinal since (FEWER THAN 10)(A)(B) = True iff |A∩B| < 10.  Formally,

Def 2 A possible Det denotation D is cardinal iff for all subsets A,A',B,B' of E,

if |A∩B| = |A'∩B'| then D(A)(B) = D(A')(B')

Cardinal Dets are studied in Keenan & Moss (1985).  Here we note two points used later:  First,
boolean compounds of cardinal (intersective) Dets are themselves cardinal (intersective).  E.g. not
more than ten is cardinal since more than ten is; at least two and not more than ten is cardinal
since each conjunct is.  In general boolean compounds in and, or, and not of Dets, of whatever sort,
not just intersective ones, are given pointwise as follows, where we write ∧  for the interpretation of
and, ∨  for that of or, and ¬ for that of not:

(11) a. (F ∧  G)(A)(B)  =  F(A)(B) ∧  G(A)(B)
b. (F ∨  G)(A)(B)  =  F(A)(B) ∨  G(A)(B)
c. (¬F)(A)(B)  =  ¬(F(A)(B))

The objects on the right of the = sign in (11) are truth values, and the ∧ , ∨ , and ¬ operations have
their usual truth functional meaning.  So from (11a) we see that (12a,b) are logically equivalent:

(12) a. Most but not all students read the Times
b. Most students read the Times but it is not the case that all students read the Times

And second, the cardinal Dets include the two constant functions:  T, which maps all A,B to True,
and F, which maps all A,B to False.  Note that these functions are denotable:

(13) a. At least zero = T b. Fewer than zero  = F

(13a) holds since (AT LEAST ZERO)(A)(B) = True for all sets A,B.  And (13b) holds since
(FEWER THAN ZERO)(A)(B) = False, all A,B.  One checks directly that T and F are both
intersective, in fact both cardinal.

The expressions in (10ii) have a different character from those in (10i)2.  One might doubt

     2The expressions in (10i) lack both the "constant" and the "logical" properties of logical
constants, and classical quantifiers have both.  A succinct way to capture the essential idea is to note
that the possible denotations of these expressions fail to respect permutations of the underlying
universe.  This is a notion that can be used to characterize the "logical" elements of any type.  For



whether they should be considered Determiners at all.  But before rejecting them out of hand let us
see just what is intended.  Here are some Ss illustrating their uses.

(14) a. No student but John jogs during lunch
b. More male than female students play football
c. At least two male and not more than five female students won prizes

(14a) says in effect that the students who came early consist just of John.  Treating no...but John as
a discontinuous Det we obtain the correct truth conditions using

Def 3 (NO...BUT JOHN)(A)(B) = Trueiff A∩B = {John}.

Clearly no...but John is intersective – it yields the same value at pairs A,B and A',B' which have the
same intersection.  But it is not cardinal.  If A∩B = {John} and A'∩B' = {Bill} then the two
intersections have the same cardinality but (NO...BUT JOHN) is true in the first case and false in
the second.  

So if we treat no...but John as a Det it is intersective but not cardinal.  But should we treat it as
a Det?  There are in fact some linguistic reasons for doing so.  Suppose for example that we
thought of but John in no student but John as forming a constituent with student to the exclusion of

the Det case at hand:  Let π be a permutation of the universe E.  Extend π to a function π* from
P(E) to P(E) by setting

π*(A) = {π(a)|a ∈  A}.

Observe, omitting the straightforward proofs, that (1) π* is a bijection of P(E), whence for all A ⊆
E, |π*(A)| = |A|, and (2) π* commutes with the boolean operations on P(E).  That is, π*(A∩B) =
π*(A) ∧  π*(B) and π*(¬A) = ¬(π*(A)), where of course ∧  and ¬ on the right hand side of these
equations refers to the relevant operations in the truth value algebra.  Then

Def A possible Det denotation D over a universe E is permutation invariant (PI) iff for all
permutations π of E, all subsets A,B of E,  D(π*(A))(π*(B)) = D(A)(B).

Then one shows by example that the Dets in (10ii) may denote D that fail to be PI.  Moreover,
being PI + intersective characterizes the property of being cardinal (over finite universes).  

Theorem:  For E finite, a possible Det denotation D is cardinal iff D is intersective and PI.

⇒   That D is intersective is immediate from the definition of cardinal.  Let π be a permutation of
E.  We must show that for A,B arbitrary, D(π*(A))(π*(B)) = D(A)(B).  But since  |A∩B| = 
|π*(A∩B)| = |π*(A) ∩ π*(B)| the result follows since D is cardinal.  Note that this direction does
require that E be finite.

⇐   Let D be PI and intersective, with E finite.  Suppose |A∩B| = |A'∩B'|.  We must show that
D(A)(B) = D(A')(B').  Since D is intersective and X∩Y = E∩(X∩Y) for all X,Y ⊆  E, we have that
D(X)(Y) = D(E)(X∩Y), all X,Y ⊆  E.  And since E is finite, |¬(A∩B)| = |¬(A'∩B')|.  Let π1 be a
bijection: A∩B n  A'∩B' and let π2 be a bijection: ¬(A∩B) n  ¬(A'∩B').  Then π = π1∪π 2 is a
bijection of E with π*(A∩B) = A'∩B'.  Thus D(A)(B) = D(E)(A∩B) = Dπ*(E)π*(A∩B) =
D(E)(A'∩B') = D(A')(B'), as was to be shown. •



the Det no.  Then student but John would be a syntactic unit of the sort that Dets would combine
with to form full NPs.  But this yields massively incorrect predictions, as most choices of Det are
ungrammatical here (as indicated by *):  

(15) *two students but John, *most students but John, *the ten students but John

Essentially only no and every are grammatical here.  Thus the prenominal Det and the exception
phrase but John do not occur independently, which is predicted if we treat them as forming a
syntactic unit into which the noun student is infixed.  We favor then treating  no...but John and
every...but John as (discontinuous) Determiners.  

In the case of (14b), more male than female (and infinitely many variants thereof:  many more
male than female, ten more male than female, twice as many male as female, fewer male than
female, exactly as many male as female...) we treat adjectives like male and female as absolute
functions from sets (common noun extensions) to sets, as follows:

Def 4  A function F from P(E) to P(E) is absolute iff for all A ⊆  E,

F(A) = A ∩ F(E)

So to say that male is absolute is to say that the male artists are the artists who are male individuals,
which is correct.  And we interpret more male than female by

(16) (MORE MALE THAN FEMALE)(A)(B) = True  iff  |MALE(A)∩B| > |FEMALE(A)∩B|

So More male than female students play ball is True iff the number of male students who play ball
is greater than the number of female students who play ball.  Observe that this Det is intersective.  If
A∩B = A'∩B' then the two sets whose cardinality we compare on the right in (16) are the same
using A,B throughout or using A',B' throughout, replacing A,B with A',B' respectively preserves
cardinality, so the inequality holds in one case iff it holds in the other.  Observe, for F absolute and
A∩B = A'∩B', that

(17) F(A) ∩ B = (A ∩ F(E)) ∩ B F is absolute
= (A ∩ B) ∩ F(E) Associativity & Commutativity of ∩
= (A' ∩ B') ∩ F(E) Assumption A∩B = A'∩B'
= (A' ∩ F(E)) ∩ B' Associativity & Commutativity of ∩
= F(A') ∩ B' F is absolute •

But more male than female may denote a function which fails to be cardinal.  With John male and
Mary female set A = B = {John} and A' = B' = {Mary}.  Then |A∩B| = |A'∩B'| but (MORE
MALE THAN FEMALE)(A)(B) = True and (MORE MALE THAN FEMALE)(A')(B') = False. 
So MORE MALE THAN FEMALE IS NOT cardinal.  Similar arguments show that TWO MALE
in (14c) is intersective but not cardinal.

There is then a prima facie case that English presents syntactically complex Dets which are
intersective but not cardinal.  And in any case intersectivity is a property of many English Dets, both
simplex and complex.  Observe now the following Proposition which is the reflection at the level of
Generalized Quantifiers of the introduction of and in the classical translation of the existential
quantifier.  It also leads to the result that intersective Dets are sortally reducible (a notion we define
shortly).

Proposition 1  For D a possible Det denotation over a universe E,



D is intersective iff for all A,B ⊆  E,  D(A)(B) = D(E)(A∩B)

proof:  ⇒ Clearly A∩B = E∩(A∩B) so D(A)(B) = D(E)(A∩B) by the intersectivity of D.
⇐ Let X,X',Y,Y' be arbitrary subsets of E with X∩Y = X'∩Y'.  Show D(X)(Y) =

D(X')(Y').  Now

D(X)(Y) = D(E)(X∩Y) ⇐
= D(E)(X'∩Y') assumption
= D(X')(Y') ⇐

•
Prop 1 guarantees the logical equivalence of (18a,b) below, given that more than ten is intersective. 
Moreover more than ten can be replaced by any intersective Det, including "unexpected" ones like
exactly as many male as female, preserving logical equivalence (though singular and plural marking
may have to be adjusted).

(18) a. More than ten students are talking
b. More than ten individuals are students and are talking

Now Prop 1 tells us that when D is intersective, the use of the noun argument A to restrict the
set of objects quantified over is not essential in the sense that we can replace A by E, thus
quantifying over all elements of the universe, and compensate for the original restriction by
incorporating the noun property into the predicate in some boolean way.  For intersective Dets the
compensation is simply by intersection.  Let us now formulate the notion of sortal reducibility and
see that intersective Dets have this property.

Def 5 Let D be a possible Det denotation over a universe E.  We say that D is sortally
reducible iff there is a two place boolean function h satisfying:

for all A,B ⊆  E, D(A)(B)  =  D(E)h(A,B)

Clearly all intersective Dets are sortally reducible:  just choose h to be intersection.  Thus in  Ss of
the form [[Det N] VP] with Det intersective, we see that restricting the domain of quantification to
the set denoted by the N is not an essential restriction.  We can replace the N denotation by the
entire universe, that is we can quantify over everything, and compensate by building a new predicate
property as a boolean function of the original N denotation and the original predicate property
(denoted by the VP). 

We turn now to the generalized universal quantifiers in English.  We show that they are also
sortally reducible.  Then we show that given a certain very general constraint on natural language
Determiner denotations, the only sortally reducible Dets in English are the generalized existential
and the generalized universal ones.  For the many other cases which we show exist we see that the
restriction of the domain of quantification to the set denoted by the noun argument of Det is
essential; it cannot be paraphrased away by quantifying over all individuals and compensating in
some boolean way by enriching the original predicate with that determined by the original noun
argument.  

Generalized Universal Dets in English  Our development here parallels that of the Generalized
Existential Dets in English.  Recall first that we have interpreted English all by that possible Det
denotation ALL given by:  ALL(A)(B) = True iff A ⊆  B.  An equivalent statement, which makes the
parallel with intersective Dets more apparent, is:

(19) ALL(A)(B) = True  iff  A–B = Ø



(Clearly A is a subset of B if removing all the Bs from the As leaves nothing, and conversely). 
Now (19) makes it clear that the value ALL assigns to a pair A,B of sets is decided by a property of
A–B.  We define:

Def 6 A possible Det denotation D is co-intersective iff for all subsets A,A',B,B' of E,

if A–B  =  A'–B'  then  D(A)(B) = D(A')(B')
•

And we shall take co-intersectivity as the defining property of the generalized universal Dets, just as
we took intersectivity as the defining property of the generalized existential Dets. Clearly ALL is
co-intersective.  So are the denotations of the following:

(20)  a. every, each, nearly all, all but ten, all but at most ten, all but finitely many
 b. every...but John, almost every...but John, every ... except John and Bill, 

Denotations for the a-group above are easy to state (modulo vagueness, and treating every and each
as synonyms of all).  Here are some examples, which show that they are co-intersective.

(21) a. (ALL BUT TEN)(A)(B) = True  iff  |A–B| = 10

b. (ALL BUT AT MOST TEN)(A)(B) = True  iff  |A–B| ≤ 10

c. (ALL BUT FINITELY MANY)(A)(B) = True  iff  A–B is finite

(Note:  we might think of the universal quantifier all as all but zero).  We observe that the Dets in
the a-group are not only co-intersective, they are co-cardinal in the sense that the value they assign
to a pair A,B of sets is decided just by checking the cardinality of A–B.  We leave the definition of
co-cardinal to the reader.  And we observe that the expressions in the b-group are co-intersective
(but not co-cardinal), as in:  

(22) a. Every student but John plays football

b. (EVERY...BUT JOHN)(S)(P) = True  iff  S–P = {John}.

And clearly (EVERY...BUT JOHN) is co-intersective, as whether it maps a pair S,P to True is
decided just by looking at S–P.  But since it must see more than just the number of elements in
S–P, it must know what they are, it is not co-cardinal.

We note in passing that the trivial Det denotations T and F are co-intersective, in fact co-
cardinal (as well as intersective and cardinal).  In fact they are the only functions that are both
intersective and co-intersective.

Observe now that the co-intersective Dets are reducible, but not by and (intersection), as was
the case for the generalized existential Dets, but by if-then, which we write in the booleanly more
familiar form ¬A ∪  B rather than A → B. 

Proposition 2A possible Det denotation D is co-intersective iff for sets A,B

D(A)(B) = D(E)(¬A ∪  B)

proof:  ⇒ . E –(¬A ∪  B) = E ∩(¬¬A ∩ ¬B) = A–B, whence by the co-intersectivity of D,
D(E)(¬A ∪  B) = D(A)(B)



⇐ . Let D satisfy the equation above for all A,B.  We show that D is co-intersective.
Let A,A',B,B' such that A–B = A'–B'.  Then D(A)(B) = D(E)(¬A ∪  B) = 
D(E)¬¬(¬A ∪  B)) = D(E)¬(A ∩ ¬B) = D(E)¬(A – B) = D(E)¬(A'–B') = ...
= D(A')(B'), the missing steps being those used in the previous steps, in reverse,
replacing A by A', B by B'. •

Corollary 3 Prop 2 entails immediately that co-intersective Dets are reducible via the
function h which maps each (A,B) = (¬A ∪  B). •

Non-classical quantifiers in English  We have taken the properties of intersectivity and co-
intersectivity as the basis for identifying classes of English Dets which have the existential and
universal quantifiers as special cases.  Note that even if we limit ourselves to the cardinal and co-
cardinal elements of these classes we still go beyond the expressive power of first order logic.  For
example simple compactness arguments show that the intersective just finitely many and the co-
intersective all but finitely many are not first order definable3.

English however presents a great many Determiner expressions which are neither intersective
nor co-intersective.  Here are three types, of which the last is the most convincing.

First, non-trivial boolean compounds of intersective with co-intersective Dets typically form
complex Dets which are neither intersective (int) nor co-intersective (co-int).  For example, some
but not all (As are Bs) is not int, since it requires knowledge of A–B to check that not all As are Bs.
And it is not co-int since it requires knowledge of A∩B to verify that some As are Bs.  

Second, presuppositional Dets like both, neither, the ten, the ten or more, John's ten (or more)
given below are neither int. nor co-ints.  

(23) a. BOTH(A)(B) = True iff |A| = 2 and A ⊆  B

b. NEITHER(A)(B) = True iff |A| = 2 and A∩B = Ø

c. (THE TEN)(A)(B) = True  iff |A| = 10 and A ⊆  B

d. (JOHN's TEN)(A) = (THE TEN)(A ∩ {x∈ E|JOHN HAS x})

Clearly the ten is not int, since if we just know which As are Bs we cannot tell how many As there
are.  Nor can we if we just know which As are not Bs, so the ten is not co-int.

Third, and highly productive in English, are the proportional Dets.  They look at a pair A,B of
sets and make claims about the proportion of As that are Bs.  Here are two fairly simple examples
(interpreting most in the sense of more than half and seven out of ten in the sense of at least seven
out of ten):

(24) a. MOST(A)(B) = True  iff  2·|A ∩ B| > |A|

b. (SEVEN OUT OF TEN)(A)(B) = True  iff  10·|A∩B| ≥ 7·|A|

     3For example, assuming that each positive integer n has a name in English, let K be the set
of Ss of the form "There are at least n cats on the mat", each positive integer n, together with the S
"There are just finitely many cats on the mat".  Clearly each finite subset of K has a model, and
equally clearly K itself has no model.  Hence compactness fails, so any language including these Ss
interpreted in the intended way fails to be first order.



most fails to be int since if all we know is which As are Bs, and hence how many As are Bs,  we still
don't know whether that number comes to more than half the number of As.  Similarly MOST is
not co-int since merely knowing which, and so how many, As are not Bs does not suffice to tell us
the As that are Bs constitute more than half the As4.  We define:

Def 7 A possible Det denotation D is proportional5 iff for all A,A',B,B' ⊆  E,

if |A∩B|/|A|  =  |A'∩B'|/|A'|  then  D(A)(B) = D(A')(B')

Here are some examples of proportional Dets in English.  They include mundane fractional and
percentage expressions.

(25) most, more/less than half the, exactly/almost half the, at least a third of the, between one
third and two thirds of the, a majority of the

at least/at most/exactly/less than ten per cent of the, between ten and twenty per cent of
the, about/nearly ten per cent of the

at least/more than/exactly/almost/about seven out of ten

We note that with only a few exceptions proportionality Dets are not (co-)int6.  The reason is that
given the noun set A and the predicate set B evaluating D(A)(B) requires knowledge of both A and
A∩B (from which A–B is computable as A–(A–B)).  But English Dets do not seem to require more
knowledge than this.  The statement that for each universe E, a possible Det denotation need know
at most which objects are As and which of those are Bs, is known as Conservativity:

     4In attempting to sortally reduce most speakers I've consulted tend to try to assimilate it to
the co-intersective class, rendering Most As are Bs as For most x, if x is an A then x is a B.  But this
is clearly incorrect.  In a model with 100 individuals, 10 of whom are students and just 3 of whom
are vegetarians, the S Most students are vegetarians is clearly false, as at most 3 of the ten are.  But
the sentence For most x, if x is a student then x is a vegetarian is clearly true, as it holds for sure,
vacuously, for 90 of the 100 individuals in the universe.

     5It is preferable (though it clouds the underlying intuition) to avoid the use of division in the
statement since we want to consider the case where A or A' is Ø.  So just write n·m' > n'·m instead
of n/m > n'/m'.

     6The non-trivial exceptions include (and perhaps are limited to) the traditional square of
opposition:  no, expressible as less than 1/|E|, and its complement some, both intersective; and all,
and its complement, not all.  We do not have an exact count of the non-trivial proportional Det
denotations over a given (even finite) universe.  But most Det denotations are not (co)-intersective. 
The map sending each intersective D to D(E) is provably an isomorphism from INT(E), the set of
intersective functions over E, to GQ(E), any E.  Since GQ(E) is the set of functions from P(E) into
{True,False} its cardinality is 2 raised to the power 2|E|.  Similarly CO-INT(E) is isomorphic to
GQ(E) by the map sending each co-intersective D to D(E).  As only T and F are both intersective
and co-intersective |INT(E)∪ CO-INT(E)| = 2 raised to the power 2|E|+1, less the 2 elements that
were counted twice.  But Keenan & Stavi (1986) show not only that the total number of
conservative Det denotations (see later) is 2 raised to the power 3|E|, they show that for E finite, each
of these functions is denotable by some English Determiner (usually syntactically complex).  For
example in a universe with just 3 elements there are just 510 possible Det denotations that are either
intersective or co-intersective.  There are 227 or over 60 million that are conservative.  So most
possible Det denotations lie outside the (co)-intersective classes.



Def 8    A possible Det denotation D is conservative iff for all A,B,B' ⊆  E,

if  A∩B = A∩B'  then  D(A)(B) = D(A)(B').  

Thus when D is conservative then for any A the generalized quantifier D(A) can't see the difference
between predicate properties B and B' that have the same intersection with A.  And we claim that all
natural language Dets are conservative.  To test whether a Det is conservative use Proposition 4
(usually taken as the definition of Conservativity).

Proposition 4  A possible Det denotation D is conservative iff  

for all A,B ⊆  E,  D(A)(B) = D(A)(A∩B)
•

We leave the proof to the reader.  Using Prop 4 one checks that an arbitrary Det blik is conservative
by checking that Blik As are Bs is true in the same conditions as Blik As are As that are Bs.  So the
conservativity of properly proportional Dets such as seven out of ten is illustrated by observing the
logical equivalence of Seven out of ten students are vegetarians and Seven out of ten students are
students who are vegetarians.  Even a tortured expression such as more of John's than of Bill's
passes the conservativity test, as Ss like (26a) are clearly true in the same conditions as (26b).

(26) a. More of John's than of Bill's cats are black
b. More of John's than of Bill's cats are cats that are black

Conservativity holds since the predicates of the two Ss differ just in that one repeats information
already contained in the noun property, and so doesn't add anything new.  Indeed, presented as in
Prop 4 Conservativity may seem trivial.  Are there possible Det denotations that fail to have this
property?  The answer is a resounding "Yes!".  Here is one example.

(27) Let E have at least two elements a,b; let D be that possible Det denotation given by

D(A)(B) = True iff |A| = |B|.

Then D is not conservative.  D({a})({b}) = True but D({a})({a}∩{b}) = D({a})(Ø) = False. 
And more generally (see Keenan & Stavi 1986) one computes that for any E, the total number of
possible Det denotations is 2 raised to the power 4|E|, whereas the number of those which are
conservative is 2 raised to the power 3|E|.  So in a model with just two elements there will be 216 =
65,536 possible Det denotations, only 29 = 512 of which are conservative.  

Despite the strength of Conservativity however most conservative functions, even over a finite
universe, are not definable in first order logic:

Proposition 5  Dets of the form more than n/m, for 1 ≤  n < m ≤ |E| are not first order
definable even over finite universes E.

Barwise and Cooper (1981) sketch the proof for more than 1/2; the techniques used in Westerståhl
(1989) enable one to handle the more general case (and many others) in Prop 5.

•
We are now in a position to show:

Theorem 6 Given a universe E, a conservative Det denotation D is sortally reducible iff 
D is intersective or D is co-intersective. 



proof sketch  A succinct but not very user friendly proof can be found in Keenan (1993)
Here we sketch a longer but more helpful one.  We have already shown the right to left direction of
the theorem.  So let D be conservative and sortally reducible.  We show that D is int or co-int.  Now
to say that D is sortally reducible is to say that for some two place boolean function h, D(A)(B) =
D(E)(h(A,B)), all A,B ⊆  E.  There are just 16 such functions, so we may give a proof by cases. 
Here first, in set notation, are 8 two place boolean functions.

(28) h1(A)(B) = E; h5(A)(B) = A–B
h2(A)(B) = A; h6(A)(B) = ¬A ∪  B
h3(A)(B) = B; h7(A)(B) = ¬A∪ ¬B
h4(A)(B) = A∩B h8(A)(B) = (A–B)∪ (B–A)

The other 8 are, in effect, the complements of these.  Formally, for 1 ≤ i ≤ 8, set
gi(A)(B) = ¬(h(A)(B)).  For example, g1(A)(B) = ¬E = Ø. •

case 1  Suppose that D reduces via h1.  That is, for all A,B  D(A)(B) = D(E)(h(A,B)) = D(E)(E). 
But this says that D is constant.  That is, D = T or D = F, according as D(E)(E) = True or D(E)(E)
= False.  And in each case D is int (also co-int).  Similarly if D reduces via g1.  Then D(A)(B) =
D(E)g1(A,B) = D(E)(Ø), so again D is constant and thus int.

case 2  Let D reduce via h2.  Then D(A)(B) = D(E)(h2(A,B)) = D(E)(A) = D(E)(h2(E,A)) =
D(E)(E); so again D is constant and thus int.  If D reduces via g2 then D(A)(B) = D(E)(g2(A,B)) =
D(E)(¬A) = D(E)(g2(E,¬A)) = D(E)(Ø), so D is constant and thus int.

case 3  Let D reduce via h3.  Then D(A)(B) = D(A)(A∩B), by conservativity,
= D(E)(h3(A,A∩B)) = D(E)(A∩B), whence D is int:  if A∩B = A'∩B' then D(A')(B') =
D(E)(A'∩B') = D(E)(A∩B) = D(A)(B).  Similarly if D reduces via g3 then D(A)(B) =
D(E)(g3(A,A∩B)) = D(E)¬(A∩B), so again D is int.

case 4  If D reduces via h4 or g4 then D is clearly intersective.

case 5  If D reduces via h5 or g5 then d is clearly co-intersective.

case 6  Let D reduce via h6.  So D(A)(B) = D(E)(h6(A,B)) = D(E)(¬A∩B) =
D(E)(h6(¬E∩(¬A∩B))) = D(E)(Ø), so D is constant and thus int.  Similarly one shows that if D
reduces via g6 then D(A)(B) = D(E)(E) and so again D is constant and thus int.

case 7  Similar to case 6.  Let D reduce via h7.  Then D(A)(B) = D(E)(h7(A,B)) = D(E)(¬A∩¬B)
= D(E)(h7(E,¬A∩¬B)) = D(E)(¬E∩(¬A∩¬B)) = D(E)(Ø), so D is constant, and so int.  Similarly
if D reduces via g7 then D(A)(B) = D(E)(E) and so is constant.

case 8  Let D reduce via h8.  Then D(A)(B) = D(A)(A∩B), by conservativity, =
D(E)(h8(A,A∩B)) = D(E)(A–(A∩B) ∪  (A∩B)–A) D(E)(A–B) ∪  Ø) = D(E)(A–B), whence D is
co-intersective.  And finally if D reduces via g8 then D(A)(B) = D(A)(A∩B) = D(E)(g8(A,A∩B)) =
D(E)¬h8(A,A∩B) = D(E)(¬(A–B)), whence again D is co-intersective.

This exhausts the cases proving the theorem.  Note that the conservativity of D was used only
in cases 3 and 8.  •

§3  Conclusion   We have shown here that quantification in English is inherently sortal, in the



sense that for many quantifiers Q, sentences of the form in (29a) are not logically equivalent to any
of the form in (29b), where the dots indicate some boolean compound and x ranges over the entire
universe of discourse:

(29) a. [[Q+N] + P] b. Qx(...Nx...Px...)

Specifically we have seen that logical equivalence obtains just when Q is either intersective or co-
intersective.  For properly proportional quantifiers, such as most, exactly half the, two out of three,
... the use of the Noun to restrict the domain of quantification to the set denoted by the N is
essential.  There is no logical paraphrase of the form in (29b), where it is understood that we are
quantifying over the entire universe of discourse.  

We conclude with a caveat:  whether a quantifier is sortally reducible and whether it is first
order definable are independent properties, though it happens that the properly proportional
quantifiers fail both conditions:  they are neither sortally reducible nor are they first order definable,
not even over finite universes.  But the quantifiers just finitely many and all but finitely many are
sortally reducible but not first order definable.  And the quantifiers both, neither, and the ten are
first order definable but not sortally reducible.  
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