
Conversions between Midly Context Sensitive Grammars

Matthieu Guillaumin

Abstract
This document is a report for my internship for the �rst year at the MMFAI. The goal of

this internship was to implement an e�cient translation between grammars belonging to the
same complexity class, but involving di�erent formalisms and perspectives, in order to use
for all of them the same state-of-the-art parser. The conversion algorithms will be presented
as well as the implementations in Ocaml. Finally, we will show with chosen examples the
bene�ts of these conversions for faster parsing.

Contents

1 The place of midly context sensitive languages in language complexity 2

2 Di�erent weak-equivalent forms of MCSG 2
2.1 Multiple Context-Free Grammars (MCFG) . 2
2.2 Minimalist Grammars (MG) . 4
2.3 Minimalist Grammars with head movement, a�x hopping and adjunction (hMG) . 5
2.4 minimalist Tupled Pregroup Grammars (mTPG) 6

3 Examples and conversion into MCFG 7
3.1 MG . 7
3.2 hMG . 11
3.3 mTPG . 18

4 Implementations 25
4.1 mg2mcfg . 25
4.2 hmg2mcfg . 28
4.3 mtpg2mcfg . 28

5 Comparison with existing parsers 32
5.1 MG and hMG . 32
5.2 mTPG . 33

Acknowledgments 33

References 34

1

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

1 The place of midly context sensitive languages in language

complexity

In the attempt to capture natural language structure into a computational formalism, it is of
primary importance to evaluate natural language complexity. Noam Chomsky has proposed in
1956 a containment hierarchy of classes of formal grammars that generate formal languages. The
Chomsky hierarchy consists in the following levels:

• Type-0 grammars (unrestricted grammars) include all formal grammars. They generate
exactly all languages that can be recognized by a Turing machine. The language that is
recognized by a Turing machine is de�ned as all the strings on which it halts. These languages
are also known as the recursively enumerable languages. Note that this is di�erent from the
recursive languages which can be decided by an always halting Turing machine.

• Type-1 grammars (context-sensitive grammars) generate the context-sensitive languages.
These grammars have rules of the form αAβ → αγβ with A a nonterminal and α, β and γ
strings of terminals and nonterminals. The strings α and β may be empty, but γ must be
nonempty. The rule S → ε is allowed if S does not appear on the right side of any rule. The
languages described by these grammars are exactly all languages that can be recognized by
a non-deterministic Turing machine whose tape is bounded by a constant times the length
of the input.

• Type-2 grammars (context-free grammars) generate the context-free languages. These are
de�ned by rules of the form A → γ with A a nonterminal and γ a string of terminals
and nonterminals. These languages are exactly all languages that can be recognized by a
non-deterministic pushdown automaton.

• Type-3 grammars (regular grammars) generate the regular languages. These languages are
exactly all languages that can be decided by a �nite state automaton.

As explained in [10] and [4], natural languages are strictly more expressive than context-
free languages, and context-sensitive languages do capture them. On the other hand, context-
sensitive languages include languages like {a2n |n ∈ N}, which is a scheme never occuring in natural
language. With the idea that the more general parsing is, the slower, many other formalisms
properly included between context-free and context-sensitive languages have been proposed, almost
all of them being part of a class introduced by Joshi in 1987 and also in [5] under the name of
�midly context sensitive languages�. This class includes languages derived from grammars like
multiple context free grammars (MCFG, introduced by Seki et al. in [7]), minimalist grammars
(MG, Stabler's formalization [8] of Chomsky's minimalist program [2]), tree adjoining grammars
(TAG, Joshi), and others.

2 Di�erent weak-equivalent forms of MCSG

2.1 Multiple Context-Free Grammars (MCFG)

As introduced in Seki et al., MCFGs are de�ned as a particular case of generalized multiple
context-free grammar (form Pollard, 1984). Let's give a direct de�nition of a m-MCFG: A 5-tuple
G = (N,O,F, P, S) is a m-MCFG if

1. N is a �nite set of nonterminal symbols.

2. O is a set of n-tuples of strings (n ≥ 1) over an alphabet T disjoint with N .

3. F is a �nite set of partial functions from �nite dimensional direct products Oq to O (de�ning
F as a

⋃
q∈N Fq).

2

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

4. P is a �nite subset of
⋃

q(Fq×Nq+1). An element of P is called a rule and if (f,A0, A1, . . . , Aq) ∈
P then we write A0 → f(A1, . . . , Aq).

5. S ∈ N is the initial symbol.

Terminal rules are those where q = 0, i.e where f ∈ O. The following conditions must also be met

1. O =
⋃m

i=1(T
∗)i.

2. If a(f) is the arity of f ∈ F , then for each f ∈ F , positive integers r(f) and di(f) (for
1 ≤ i ≤ a(f)) are given and f is a function from (T ∗)d1(f) × . . .× (T ∗)da(f)(f) to (T ∗)r(f).

3. if fh is the h-th component of f , then fh is a concatenation of some string constant in T ∗ and
some variables in X = {xij |1 ≤ i ≤ a(f), 1 ≤ j ≤ di(f)} in an order de�ned by fh. (More for-
mally, if xi = (xi1, . . . , xidi(f)) then fh(x1, . . . , xa(f)) = αh0zh1αh1 . . . zhvh(f)αhvh(f) where
αhk ∈ T ∗ and zhk ∈ X).

4. A positive integer d(A) is given to every nonterminal symbol A ∈ N . If A0 → f(A1, . . . , Aq)
is a rule, then r(f) = d(A0) and di(f) = d(Ai) for 1 ≤ i ≤ a(f).

5. For the �nal symbol S, d(S) = 1

6. For each h (1 ≤ h ≤ r(f)) and each variable xij ∈ X, the total number of occurences of xij

in the right-hand side of fh is at most one (meaning that there is no copy).

Seki et al. also proves in [7] the following results about MCFG:

Theorem 2.1 CFL = 1−MCFL (2−MCFL (. . .MCFL (CSL

Theorem 2.2 CLF = 1−MCFG (TAL ⊂ 2−MCFG

Lemma 2.3 For any m, {a2n |n ∈ N} does not belong to m−MCFL

The parser (by Dan Albro, UCLA, 2000, presented in [1]) we are willing to use is limited to a
�binary normal form� of m-MCFGs:

• F =
⋃2

q=0, so a(f) ≤ 2

• The xhk variables are used exactly once in f

• There are no constant strings αhk

They are therefore 4 types of rules in this system:

1. Terminating: T �> <string>

2. Empty: T �> ��

3. Chain: NT �> NT1 <map>

4. Binary: NT �> NT1 NT2 <map>

Where <map> represents the function f as a sequence of a(f) sequences of coordinates of com-
ponents of NT1 and NT2. For example, if NT1 is of arity 4, NT2 is of arity 5 and NT of arity 3 (note
that the constraints entails that this arity is between 1 and 9), the following rule is valid:

NT �> NT1 NT2 [0,1;1,1;1,4;0,3][1,0;0,0;1,2][0,2;1,3]

Meaning that if (a, b, c, d) is a string matched by NT1 and (e, f, g, h, i) by NT2 then (bfid, eag, ch)
is recognized as a NT.

Our e�orts is section 3 will be aimed at this system.

3

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

2.2 Minimalist Grammars (MG)

Minimalist grammars (Stabler, 1997, [8]) are inspired by the minimalist program by Chomsky
(1995; [2]) and is one of the simplest approach to natural language formalisation. For linguists,
it has the advantage to make it easy to write rules close to X-bar theory and keep interesting
properties like movements. Given a �nite set of symbols B and a set of starting categories I ⊂ B,
a 5-tuple G = (Σ, F, T, L,F) is a MG if:

1. Σ is a nonempty alphabet

2. A set F of features

F = B (a nonempty set of basic features)
∪{= f |f ∈ B} (selection features)
∪{+f |f ∈ B} (licensor features)
∪{−f |f ∈ B} (licensee features)

3. T = {::, :} (types: lexical, derived)

4. L ⊂ (Σ∗ × {::} × F ∗) is the lexicon
If we de�ne the set E of expressions (nonempty sequences of chains) with E = (Σ∗×T×F ∗)+

then

5. F = {merge,move} is a set of generating functions, which are partial functions from E∗ to
E

6. The corresponding language is L(G) = closure(L,F), and we look only at the strings of
category in I: SI(G) = {s|s · f ∈ L(G), f ∈ I, · ∈ T}

We still have to de�ne the merge and move functions.

The merge function: merge : E × E → E is the union of the following 3 functions, for s,
t ∈ Σ∗, for · ∈ T , for f ∈ B, γ ∈ F ∗, δ ∈ F+ and for chains α1, . . . , αk, β1, . . . , βl (0 ≤ k, l)

s ::= fγ t · f, α1, . . . , αk

st : γ, α1, . . . , αk
: merge1 (lexical item selects a non-mover)

s := fγ, α1, . . . , αk t · f, β1, . . . , βl

ts : γ, α1, . . . , αk, β1, . . . , βl
: merge2 (derived item selects a non-mover)

s· = fγ, α1, . . . , αk t · fδ, β1, . . . , βl

s : γ, α1, . . . , αk, t : δ, β1, . . . , βl
: merge3 (any item selects a mover)

The move function: move : E → E is the union of the following 2 functions, for s, t ∈ Σ∗, for
f ∈ B, γ ∈ F ∗, δ ∈ F+ and for chains α1, . . . , αk (0 ≤ k) satisfying the condition: ∃i, αi has −f
as its �rst feature and none of αj for i, j ∈ [1, k], j 6= i has −f as its �rst feature,

s : +fγ, α1, . . . , αi−1, t : −f, αi+1, . . . , αk

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk
: move1 (�nal move of licensee phrase)

s : +fγ, α1, . . . , αi−1, t : −fδ, αi+1, . . . , αk

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk
: move2 (non�nal move of licensee phrase)

As proved combining results from [3] and [6]:

Theorem 2.4 : Minimalist Grammars and Multiple Context-Free Grammars are weakly equiva-
lent

We are only going to use the fact that from each MG, we can �nd a MCFG recognizing exactly
the same strings, but both ways are true.

4

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

2.3 Minimalist Grammars with head movement, a�x hopping and ad-
junction (hMG)

This de�nition of minimalist grammars is unfortunetaly not pratical when linguists want to add
to these grammars such observations as �head movement�, �a�x hopping� and �adjunction�, which
happen for example respectively in inversion of subject, presence of �-s� at the third person in non
auxiliary verbs, and adding prepositional phrases to a sentence (more details for head movement
and a�x hopping in [9]). The MGs above can be extended all these sorts of movements while
keeping a concise grammar. As the �head movement� suggests, we have to keep several separated
strings for a unique category. The head lies in the middle of the string, we split it in three: left of
the head (speci�er), the head, right of the head (complement).

Instead of expression of the form s1 · γ1, s2 · γ2, . . . , sn · γn, we will now handle s, h, c · γ1, s2 ·
γ2, . . . , sn · γn. We have to modify all the above de�nitions of MG, and in particular the lexicon
L, with elements containing now a triple of string but only the head can be nonempty. We also
have to add elements to F , in order to trigger head movement: let R = {<= f |f ∈ B} be the
right-incorporators and L = {=> f |f ∈ B} be the left-incorporators. For a�x hopping, we have
to add two new kind of features, still to be able to trigger the movement: R′ = {<== f} and
L′ = {==> f} for any f ∈ B will be respectively left and right a�x hopping, this is somehow
the inverse operation of head movement. F is now F = B ∪S ∪M ∪N ∪R∪L∪R′ ∪L′. All this
implies to rede�ne the merge and move function, adding more cases.

The merge function is now the union of 11 functions:

ε, s, ε ::= fγ ts, th, tc · f, α1, . . . , αk

ε, s, tsthtc : γ, α1, . . . , αk
: r1’

ε, s, ε ::<= fγ ts, th, tc · f, α1, . . . , αk

ε, sth, tstc : γ, α1, . . . , αk
: r1right

ε, s, ε ::=> fγ ts, th, tc · f, α1, . . . , αk

ε, ths, tstc : γ, α1, . . . , αk
: r1left

ss, sh, sc := fγ, α1, . . . , αk ts, th, tc · f, β1, . . . , βl

tsthtcss, sh, sc : γ, α1, . . . , αk, β1, . . . , βl
: r2’

ss, sh, sc· = fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ss, sh, sc : γ, α1, . . . , αk, tsthtc : δ, β1, . . . , βl
: r3’

ss, sh, sc· <= fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ss, shth, sc : γ, α1, . . . , αk, tstc : δ, β1, . . . , βl
: r3right

ss, sh, sc· <= fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ss, thsh, sc : γ, α1, . . . , αk, tstc : δ, β1, . . . , βl
: r3left

ε, s, ε ::==> fγ ts, th, tc · f, α1, . . . , αk

ε, ε, tsthstc : γ, α1, . . . , αk
: r1hopright

ε, s, ε ::<== fγ ts, th, tc · f, α1, . . . , αk

ε, ε, tssthtc : γ, α1, . . . , αk
: r1hopleft

ε, s, ε ::==> fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ε, ε, ε : γ, α1, . . . , αk, tsthstc : δ, β1, . . . , βl
: r3hopright

ε, s, ε ::<== fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ε, ε, ε : γ, α1, . . . , αk, tssthtc : δ, β1, . . . , βl
: r3hopleft

5

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

The move function changes only in a trivial way:

ss, sh, sc : +fγ, α1, . . . , αi−1, t : −f, αi+1, . . . , αk

tss, sh, sc : γ, α1, . . . , αi−1, αi+1, . . . , αk
: m1’

ss, sh, sc : +fγ, α1, . . . , αi−1, t : −fδ, αi+1, . . . , αk

ss, sh, sc : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk
: m2’

Adding adjunction requires to add two other sets to the grammar. There are two types of
adjunction: left and right. Each of them is a relation between categories or more generally
between chains beginning with a category. Such a relation is noted with � (for right adjunction)
and � (for left). For example: a� N or D − k � D − k. We have to add a new function to our
F set: adjoin, which is the union of the following 4 functions:

ss, sh, sc · fγ, α1, . . . , αk ts, th, tc · gην, β1, . . . , βl

ssshscts, th, tc : gην, α1, . . . , αk, β1, . . . , βl
: left-adjoin1 if fγ � gη

ss, sh, sc · fγ, α1, . . . , αk ts, th, tc · gην, β1, . . . , βl

ts, th, tcssshsc : gην, α1, . . . , αk, β1, . . . , βl
: right-adjoin1 if gη � fγ

ss, sh, sc · fγδ, α1, . . . , αk ts, th, tc · gην, β1, . . . , βl

ts, th, tc : gην, ssshsc : δ, α1, . . . , αk, β1, . . . , βl
: left-adjoin2 if fγ � gη

ss, sh, sc · fγδ, α1, . . . , αk ts, th, tc · gην, β1, . . . , βl

ts, th, tc : gην, ssshsc : δ, α1, . . . , αk, β1, . . . , βl
: right-adjoin2 if gη � fγ

The resulting hMGs are weakly-equivalent to MGs, as Michaelis showed in [6], so it is also to
MCFG.

2.4 minimalist Tupled Pregroup Grammars (mTPG)

Stabler proposed in [11] an extension to Lambek's Pregroup Grammars called minimalist Tu-
pled Pregroup Grammar: G = 〈Σ, P,≤, I, S〉 is a mTPG if:

1. Σ is a nonempty alphabet

2. P is a set of simple types partially ordered by ≤

3. I is a subset of (T× (Σ ∪ {ε}))∗ where T = (P ∪ {ar|a ∈ P} ∪ {al|a ∈ P})∗

4. S ∈ P is the �start� type

Before giving more constraints, we need to de�ne two operators on T: merge and move; and
functions on tuples.

(merge)
(

t1 . . . tk−1

s1 . . . sk−1

)
•

(
tk . . . tn
sk . . . sn

)
=

(
t1 . . . tn
s1 . . . sn

)

(move)
(

t1 . . . tn
s1 . . . sn

)
−i−j

=
(

titj
sisj

)
•

(
t1 . . . ti−1 ti+1 . . . tn
s1 . . . si−1 si+1 . . . sn

)
Then we de�ne two functions: GCON and GEXP (the latter will not be used in what follows)

(GCON1)
(

. . . xalby . . .
s

)
→

(
. . . xy . . .

s

)
only if b ≤ a

(GCON2)
(

. . . xabry . . .
s

)
→

(
. . . xy . . .

s

)
only if a ≤ b

(GEXP1)
(

. . . xy . . .
s

)
→

(
. . . xalby . . .

s

)
for b ≤ a

6

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

(GEXP1)
(

. . . xy . . .
s

)
→

(
. . . xabry . . .

s

)
for a ≤ b

As in [11], we add �performance restriction�: We say that a tuple is proper i�:

• every type in it has exactly one atom

• no two types have the same atom

• GCON does not apply to it or to any result of applying Move to it.

and a tuple is saturated i� every type in it is saturated (i.e no adjoint types occur in it).
Then, the constraints are:

• (merge) applies to a pair of tuples only if both are proper and at least one is saturated

• (move) applies to a pair of typed strings in a tuple only if the types are both proper and at
least one of them is saturated

The lexicon also has to be proper.
Finally, we get the following result (Theorem 3 in [11]):

Theorem 2.5 : mTPG and MCFG are weakly-equivalent

3 Examples and conversion into MCFG

3.1 MG

To better understand the way the conversion will be operated, it is interesting to see how
derivations occur with a minimalist grammar. Consider the following lexicon, with C being the
start category:

Mary :: D

John :: D

likes :: =D =D V

who :: D -wh

:: =V C

:: =V +wh C

Consider the sentences �John likes Mary�, �who likes Mary� and �who John likes�. They are all
recognized by the grammar, with the following derivation trees:

John likes Mary : C

(merge1)

���
���

���

HHH
HHH

HHH

:: =V C John likes Mary : V

(merge2)

��
����

HH
HHHH

likes Mary : =D V

(merge1)

�
����

H
HHHH

likes :: =D =D V Mary :: D

John :: D

7

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

who likes Mary : C

(move1)

likes Mary : +wh C, who : -wh

(merge1)

���
���

����

HHH
HHH

HHHH

:: =V +wh C likes Mary : V, who : -wh

(merge3)

��
����

HH
HHHH

likes Mary : =D V

(merge1)

���
��

HHH
HH

likes :: =D =D V Mary :: D

who :: D -wh

And �nally:

who John likes : C

(move1)

John likes : +wh C, who : -wh

(merge1)

���
���

����

HH
HHHH

HHHH

:: =V +wh C John likes : V, who : -wh

(merge2)

���
���

HHH
HHH

likes : =D V, who : -wh

(merge3)

�
����

H
HHHH

likes :: =D =D V who :: D -wh

John :: D

The remarkable facts are:

• The nodes have one or two branches: this is comforting considering the binary form of
m-MCFG we want to produce.

• We do see tuples and mapping function appear, and we observe that the possibility of
branching depends only on the involved expressions and the type of operation.

So we can easily imagine a rewriting system corresponding to every step of derivation. Let's
assume we have a one-to-one function σ associating to every expression e a symbol σ(e), then we
can �nd MCFG rules for every function merge1, merge2, merge3, move1 and move2:

merge1
s ::= fγ t · f, α1, . . . , αk

st : γ, α1, . . . , αk

8

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

corresponds to the following rule (with the convention that if k = 0, the arity of the map function
is 1):

σ(γ, α1, . . . , αk)→ σ(= fγ) σ(f, α1, . . . , αk) [0, 0; 1, 0][0, 1] . . . [0, k] (a binary 2-MCFG rule)

Of course, we have to add rules to specify the string values in the lexicon:

s :: δ

becomes
σ(δ)→ s (a terminating 2-MCFG rule)

Similarly:

merge2
s := fγ, α1, . . . , αk t · f, β1, . . . , βl

ts : γ, α1, . . . , αk, β1, . . . , βl

⇓

σ(γ, α1, . . . , αk, β1, . . . , βl)→ σ(= fγ, α1, . . . , αk) σ(f, β1, . . . , βl) [1, 0; 0, 0][0, 1] . . . [0, k][1, 0] . . . [1, l]

merge3
s· = fγ, α1, . . . , αk t · fδ, β1, . . . , βl

s : γ, α1, . . . , αk, t : δ, β1, . . . , βl

⇓

σ(γ, α1, . . . , αk, δ, β1, . . . , βl)→ σ(= fγ, α1, . . . , αk) σ(fδ, β1, . . . , βl) [0, 0] . . . [0, k][1, 0] . . . [1, l]

move1
s : +fγ, α1, . . . , αi−1, t : −f, αi+1, . . . , αk

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk

⇓

σ(γ, α1, . . . , αi−1, αi+1, . . . , αk)→ σ(+fγ, α1, . . . , αi−1,−f, αi+1, . . . , αk)

[0, i; 0, 0][0, 1] . . . [0, i− 1][0, i + 1] . . . [0, k]

move2
s : +fγ, α1, . . . , αi−1, t : −fδ, αi+1, . . . , αk

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

⇓

σ(γ, α1, . . . , αi−1, δ, αi+1, . . . , αk)→ σ(+fγ, α1, . . . , αi−1,−fδ, αi+1, . . . , αk) [0, 0] . . . [0, k]

Finally, for any start symbol C, we need to add the rule

S → σ(C) [0, 0]

Overall, converting a MG lexicon to a MCFG is closing this lexicon with the merge and the
move functions, producing at each successful inference step the corresponding MCFG rule, and
�nally adding the terminating rules as well as the starting rules.

Applying this closure to our example gives us:

9

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

S --> t12 [0,0]

t12 --> t11 [0,1;0,0] (* move *)

t11 --> t4 t7 [0,0;1,0][1,1] (* merge1 *)

t4 --> ""

t7 --> t5 t3 [0,0][1,0] (* merge3 *)

t5 --> t1 t0 [0,0;1,0] (* merge1 *)

t1 --> "likes"

t0 --> "Mary"

t0 --> "John"

t3 --> "who"

t7 --> t6 t0 [1,0;0,0][0,1] (* merge2 *)

t6 --> t1 t3 [0,0][1,0] (* merge3 *)

t12 --> t2 t8 [0,0;1,0] (* merge1 *)

t2 --> ""

t8 --> t5 t0 [1,0;0,0] (* merge2 *)

Where the symbols correspond to:

t0 : (:: D)

t1 : (:: =D =D V)

t2 : (:: =V C)

t3 : (:: D -wh)

t4 : (:: =V +wh C)

t5 : (: =D V)

t6 : (: =D V;: -wh)

t7 : (: V;: -wh)

t8 : (: V)

t11 : (: +wh C;: -wh)

t12 : (: C)

If we try to derive the same sentences as above, we obtain:

S

John likes Mary

t12

(John likes Mary)

��
���

HH
HHH

t2

()
t8

(John likes Mary)

�
���

H
HHH

t5

(likes Mary)
�

��
H

HH

t1

(likes)

likes

t0

(Mary)

Mary

t0

(John)

John

10

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

S

who likes Mary

t12

(who likes Mary)

t11

(likes Mary, who)

�
����

H
HHHH

t4

()
t7

(likes Mary, who)

��
��

HH
HH

t5

(likes Mary)
��� HHH

t1

(likes)

likes

t0

(Mary)

Mary

t3
(who)

who

And �nally:

S

who John likes

t12

(who John likes)

t11

(John likes, who)

��
��

HH
HH

t4

()
t7

(John likes, who)

�
��

H
HH

t6

(likes, who)
�� HH

t1

(likes)

likes

t3

(who)

who

t0

(John)

John

Except for the leaves and the root, we follow exactly the derivations of the MG system.

3.2 hMG

Dealing with hMG is similar. To satisfy the normal form requirements of our target MCFGs,
we need to be careful though with lexical items: for a rule like John :: D a scheme like

E --> ""

D'' --> "John"

D' --> D'' E [0,0][1,0]

D --> E D' [0,0][1,0][1,1]

creates the good symbol D of arity 3, containing only a non-empty head, but empty �rst and third
components. In the general case, and instead of D, we use σ(D).

11

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

D

(, John,)

��� HHH

E

()
D'

(John,)
�� HH

D�

(John)

John

E

()

Other change, for starting rules, we have to concatenate the 3-tuple: (example where C is a start
category)

S → σ(C) [0, 0; 0, 1; 0, 2]

We can now give the MCFG rules corresponding to each of the 17 partial functions of the hMG
framework.

r1’
ε, s, ε ::= fγ ts, th, tc · f, α1, . . . , αk

ε, s, tsthtc : γ, α1, . . . , αk

⇓

σ(γ, α1, . . . , αk)→ σ(= fγ) σ(f, α1, . . . , αk) [0, 0][0, 1][0, 2; 1, 0; 1, 1; 1, 2][1, 3] . . . [1, k + 2]

r1right
ε, s, ε ::<= fγ ts, th, tc · f, α1, . . . , αk

ε, sth, tstc : γ, α1, . . . , αk

⇓

σ(γ, α1, . . . , αk)→ σ(<= fγ) σ(f, α1, . . . , αk) [0, 0][0, 1; 1, 1][0, 2; 1, 0; 1, 2][1, 3] . . . [1, k + 2]

r1left
ε, s, ε ::=> fγ ts, th, tc · f, α1, . . . , αk

ε, ths, tstc : γ, α1, . . . , αk

⇓

σ(γ, α1, . . . , αk)→ σ(=> fγ) σ(f, α1, . . . , αk) [0, 0][1, 1; 0, 1][0, 2; 1, 0; 1, 2][1, 3] . . . [1, k + 2]

r2’
ss, sh, sc := fγ, α1, . . . , αk ts, th, tc · f, β1, . . . , βl

tsthtcss, sh, sc : γ, α1, . . . , αk, β1, . . . , βl

⇓

σ(γ, α1, . . . , αk, β1, . . . , βl)→ σ(= fγ, α1, . . . , αk) σ(f, β1, . . . , βl)

[1, 0; 1, 1; 1, 2; 0, 0][0, 1][0, 2][0, 3] . . . [0, k + 2][1, 3] . . . [1, l + 2]

r3’
ss, sh, sc· = fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ss, sh, sc : γ, α1, . . . , αk, tsthtc : δ, β1, . . . , βl

⇓

σ(γ, α1, . . . , αk, δ, β1, . . . , βl)→ σ(= fγ, α1, . . . , αk) σ(fδ, β1, . . . , βl)

[0, 0] . . . [0, k + 2][1, 0; 1, 1; 1, 2][1, 3] . . . [1, l + 2]

12

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

r3right
ss, sh, sc· <= fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ss, shth, sc : γ, α1, . . . , αk, tstc : δ, β1, . . . , βl

⇓
σ(γ, α1, . . . , αk, δ, β1, . . . , βl)→ σ(<= fγ, α1, . . . , αk) σ(fδ, β1, . . . , βl)

[0, 0][0, 1; 1, 1][0, 2] . . . [0, k + 2][1, 0; 1, 2][1, 3] . . . [1, l + 2]

r3left
ss, sh, sc· <= fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ss, thsh, sc : γ, α1, . . . , αk, tstc : δ, β1, . . . , βl

⇓
σ(γ, α1, . . . , αk, δ, β1, . . . , βl)→ σ(<= fγ, α1, . . . , αk) σ(fδ, β1, . . . , βl)

[0, 0][1, 1; 0, 1][0, 2] . . . [0, k + 2][1, 0; 1, 2][1, 3] . . . [1, l + 2]

r1hopright
ε, s, ε ::==> fγ ts, th, tc · f, α1, . . . , αk

ε, ε, tsthstc : γ, α1, . . . , αk

⇓
σ(γ, α1, . . . , αk)→ σ(==> fγ) σ(f, α1, . . . , αk)

[0, 0][0, 2][1, 0; 1, 1; 0, 1; 1, 2][1, 3] . . . [1, k + 2]

r1hopleft
ε, s, ε ::<== fγ ts, th, tc · f, α1, . . . , αk

ε, ε, tssthtc : γ, α1, . . . , αk

⇓
σ(γ, α1, . . . , αk)→ σ(<== fγ) σ(f, α1, . . . , αk)

[0, 0][0, 2][1, 0; 0, 1; 1, 1; 1, 2][1, 3] . . . [1, k + 2]

r3hopright
ε, s, ε ::==> fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ε, ε, ε : γ, α1, . . . , αk, tsthstc : δ, β1, . . . , βl

⇓
σ′(γ, α1, . . . , αk, δ, β1, . . . , βl)→ σ(==> fγ, α1, . . . , αk) σ(fδ, β1, . . . , βl)

[0, 0][0, 2] . . . [0, k + 2][1, 0; 1, 1; 0, 1; 1, 2][1, 3] . . . [1, l + 2]

as well as

σ(γ, α1, . . . , αk, δ, β1, . . . , βl)→ E σ′(γ, α1, . . . , αk, δ, β1, . . . , βl) [0, 0][1, 0] . . . [1, k + l + 2]

where σ′ is another coding function whose range is disjoint from the range of σ

r3hopleft
ε, s, ε ::<== fγ, α1, . . . , αk ts, th, tc · fδ, β1, . . . , βl

ε, ε, ε : γ, α1, . . . , αk, tssthtc : δ, β1, . . . , βl

⇓

σ′′(γ, α1, . . . , αk, δ, β1, . . . , βl) → σ(<== fγ, α1, . . . , αk) σ(fδ, β1, . . . , βl)
[0, 0][0, 2] . . . [0, k + 2][1, 0; 0, 1; 1, 1; 1, 2][1, 3] . . . [1, l + 2]

σ(γ, α1, . . . , αk, δ, β1, . . . , βl) → E σ′(γ, α1, . . . , αk, δ, β1, . . . , βl) [0, 0][1, 0] . . . [1, k + l + 2]

where σ′′ is a coding function whose range is disjoint from the ranges of σ and σ′

13

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

m1’
ss, sh, sc : +fγ, α1, . . . , αi−1, t : −f, αi+1, . . . , αk

tss, sh, sc : γ, α1, . . . , αi−1, αi+1, . . . , αk

⇓

σ(γ, α1, . . . , αi−1, αi+1, . . . , αk)→ σ(+fγ, α1, . . . , αi−1,−f, αi+1, . . . , αk)

[0, i; 0, 0][0, 1] . . . [0, i− 1][0, i + 1] . . . [0, k + 2]

m2’
ss, sh, sc : +fγ, α1, . . . , αi−1, t : −fδ, αi+1, . . . , αk

ss, sh, sc : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

⇓

σ(γ, α1, . . . , αi−1, δ, αi+1, . . . , αk)→ σ(+fγ, α1, . . . , αi−1,−fδ, αi+1, . . . , αk) [0, 0] . . . [0, k + 2]

left-adjoin1 if fγ � gη

ss, sh, sc · fγ, α1, . . . , αk ts, th, tc · gην, β1, . . . , βl

ssshscts, th, tc : gην, α1, . . . , αk, β1, . . . , βl

⇓

σ(gην, α1, . . . , αk, β1, . . . , βl)→ σ(fγ, α1, . . . , αk) σ(gην, β1, . . . , βl)

[0, 0; 0, 1; 0, 2; 1, 0][1, 1][1, 2][0, 3] . . . [0, k + 2][1, 3] . . . [1, l + 2]

right-adjoin1 if gη � fγ

ss, sh, sc · fγ, α1, . . . , αk ts, th, tc · gην, β1, . . . , βl

ts, th, tcssshsc : gην, α1, . . . , αk, β1, . . . , βl

⇓

σ(gην, α1, . . . , αk, β1, . . . , βl)→ σ(fγ, α1, . . . , αk) σ(gην, β1, . . . , βl)

[1, 0][1, 1][1, 2; 0, 0; 0, 1; 0, 2][0, 3] . . . [0, k + 2][1, 3] . . . [1, l + 2]

left-adjoin2 if fγ � gη

ss, sh, sc · fγδ, α1, . . . , αk ts, th, tc · gην, β1, . . . , βl

ts, th, tc : gην, ssshsc : δ, α1, . . . , αk, β1, . . . , βl

⇓

σ(gην, δ, α1, . . . , αk, β1, . . . , βl)→ σ(fγδ, α1, . . . , αk) σ(gην, β1, . . . , βl)

[1, 0][1, 1][1, 2][0, 0; 1, 0; 2, 0][0, 3] . . . [0, k + 2][1, 3] . . . [1, l + 2]

14

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

right-adjoin2 if gη � fγ

ss, sh, sc · fγδ, α1, . . . , αk ts, th, tc · gην, β1, . . . , βl

ts, th, tc : gην, ssshsc : δ, α1, . . . , αk, β1, . . . , βl

⇓

σ(gην, δ, α1, . . . , αk, β1, . . . , βl)→ σ(fγδ, α1, . . . , αk) σ(gην, β1, . . . , βl)

[1, 0][1, 1][1, 2][0, 0; 1, 0; 2, 0][0, 3] . . . [0, k + 2][1, 3] . . . [1, l + 2]

To convert a hMG to a MCFG, we proceed the same way than for MG: we close the hMG with
all the functions and at each step we obtain a MCFG rule which is to add to the destination set
of MCFG rules.

Consider the following example for french clitics:

/start symbol/

C;

/rules/

:: =T C;

:: =Refl12 +k T;

:: =Acc3 +k T;

:: =Dat3 +k T;

:: =v +k T;

se :: =Acc3 +F Refl12;

se :: =Dat3 +F Refl12;

se :: =v +F Refl12;

le :: =Dat3 +G Acc3;

le :: =v +G Acc3;

lui :: =v +F Dat3;

:: <=vacc =D v;

:: <=vdat =D +k vacc;

:: <=V =p vdat;

montrera :: V;

:: <=P p;

a :: =D +k P;

:: p -F;

Jean :: D -k;

Marie :: D -k;

le :: =N D -k;

:: D -k -F;

:: D -k -G;

roi :: N;

livre :: N;

The closure of this grammar gives:

S --> t172 [0,0;0,1;0,2] (* concatenation *)

t172 --> t0 t168 [0,0][0,1][0,2;1,0;1,1;1,2] (* r1' *)

t0 --> E t0_tmp2 [0,0][1,0][1,1]

t0_tmp2 --> t0_tmp1 E [0,0][1,0]

t0_tmp1 --> ""

t168 --> t129 [0,3;0,0][0,1][0,2] (* move' *)

t129 --> t2 t169 [0,0][0,1][0,2;1,0;1,1;1,2][1,3] (* r1' *)

t2 --> E t2_tmp2 [0,0][1,0][1,1]

t2_tmp2 --> t2_tmp1 E [0,0][1,0]

t2_tmp1 --> ""

15

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

t169 --> t138 [0,3;0,0][0,1][0,2][0,4] (* move' *)

t138 --> t9 t96 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4] (* r1' *)

t9 --> E t9_tmp2 [0,0][1,0][1,1]

t9_tmp2 --> t9_tmp1 E [0,0][1,0]

t9_tmp1 --> "le"

t96 --> t90 t18 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t90 --> t11 t63 [0,0][0,1;1,1][0,2;1,0;1,2][1,3] (* r1right *)

t11 --> E t11_tmp2 [0,0][1,0][1,1]

t11_tmp2 --> t11_tmp1 E [0,0][1,0]

t11_tmp1 --> ""

t63 --> t47 [0,0][0,1][0,2][0,3] (* move' *)

t47 --> t45 t21 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t45 --> t12 t39 [0,0][0,1;1,1][0,2;1,0;1,2] (* r1right *)

t12 --> E t12_tmp2 [0,0][1,0][1,1]

t12_tmp2 --> t12_tmp1 E [0,0][1,0]

t12_tmp1 --> ""

t39 --> t27 t35 [1,0;1,1;1,2;0,0][0,1][0,2] (* r2' *)

t27 --> t13 t14 [0,0][0,1;1,1][0,2;1,0;1,2] (* r1right *)

t13 --> E t13_tmp2 [0,0][1,0][1,1]

t13_tmp2 --> t13_tmp1 E [0,0][1,0]

t13_tmp1 --> ""

t14 --> E t14_tmp2 [0,0][1,0][1,1]

t14_tmp2 --> t14_tmp1 E [0,0][1,0]

t14_tmp1 --> "montrera"

t35 --> t15 t29 [0,0][0,1;1,1][0,2;1,0;1,2] (* r1right *)

t15 --> E t15_tmp2 [0,0][1,0][1,1]

t15_tmp2 --> t15_tmp1 E [0,0][1,0]

t15_tmp1 --> ""

t29 --> t25 [0,3;0,0][0,1][0,2] (* move' *)

t25 --> t16 t26 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t16 --> E t16_tmp2 [0,0][1,0][1,1]

t16_tmp2 --> t16_tmp1 E [0,0][1,0]

t16_tmp1 --> "a"

t26 --> t19 t22 [0,0][0,1][0,2;1,0;1,1;1,2] (* r1' *)

t19 --> E t19_tmp2 [0,0][1,0][1,1]

t19_tmp2 --> t19_tmp1 E [0,0][1,0]

t19_tmp1 --> "le"

t22 --> E t22_tmp2 [0,0][1,0][1,1]

t22_tmp2 --> t22_tmp1 E [0,0][1,0]

t22_tmp1 --> "livre"

t22_tmp1 --> "roi"

t25 --> t16 t18 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t18 --> E t18_tmp2 [0,0][1,0][1,1]

t18_tmp2 --> t18_tmp1 E [0,0][1,0]

t18_tmp1 --> "Marie"

t18_tmp1 --> "Jean"

t21 --> E t21_tmp2 [0,0][1,0][1,1]

t21_tmp2 --> t21_tmp1 E [0,0][1,0]

t21_tmp1 --> ""

t63 --> t49 [0,4;0,0][0,1][0,2][0,3] (* move' *)

t49 --> t44 t18 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t44 --> t12 t40 [0,0][0,1;1,1][0,2;1,0;1,2][1,3] (* r1right *)

t40 --> t27 t33 [1,0;1,1;1,2;0,0][0,1][0,2][1,3] (* r2' *)

t33 --> t15 t31 [0,0][0,1;1,1][0,2;1,0;1,2][1,3] (* r1right *)

16

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

t31 --> t23 [0,0][0,1][0,2][0,3] (* move' *)

t23 --> t16 t21 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t49 --> t44 t26 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t96 --> t90 t26 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t138 --> t8 t113 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4] (* r1' *)

t8 --> E t8_tmp2 [0,0][1,0][1,1]

t8_tmp2 --> t8_tmp1 E [0,0][1,0]

t8_tmp1 --> "le"

t113 --> t153 [0,4;0,0][0,1][0,2][0,3][0,5] (* move' *)

t153 --> t10 t93 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4][1,5] (* r1' *)

t10 --> E t10_tmp2 [0,0][1,0][1,1]

t10_tmp2 --> t10_tmp1 E [0,0][1,0]

t10_tmp1 --> "lui"

t93 --> t92 t18 [0,0][0,1][0,2][0,3][0,4][1,0;1,1;1,2] (* r3' *)

t92 --> t11 t61 [0,0][0,1;1,1][0,2;1,0;1,2][1,3][1,4] (* r1right *)

t61 --> t51 [0,0][0,1][0,2][0,3][0,4] (* move' *)

t51 --> t44 t20 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t20 --> E t20_tmp2 [0,0][1,0][1,1]

t20_tmp2 --> t20_tmp1 E [0,0][1,0]

t20_tmp1 --> ""

t93 --> t92 t26 [0,0][0,1][0,2][0,3][0,4][1,0;1,1;1,2] (* r3' *)

t113 --> t70 [0,3;0,0][0,1][0,2][0,4][0,5] (* move' *)

t70 --> t10 t55 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4][1,5] (* r1' *)

t55 --> t53 t18 [0,0][0,1][0,2][0,3][0,4][1,0;1,1;1,2] (* r3' *)

t53 --> t11 t42 [0,0][0,1;1,1][0,2;1,0;1,2][1,3][1,4] (* r1right *)

t42 --> t37 [0,0][0,1][0,2][0,3][0,4] (* move' *)

t37 --> t32 t21 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t32 --> t12 t28 [0,0][0,1;1,1][0,2;1,0;1,2][1,3] (* r1right *)

t28 --> t27 t34 [1,0;1,1;1,2;0,0][0,1][0,2][1,3] (* r2' *)

t34 --> t15 t30 [0,0][0,1;1,1][0,2;1,0;1,2][1,3] (* r1right *)

t30 --> t24 [0,0][0,1][0,2][0,3] (* move' *)

t24 --> t16 t20 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t28 --> t27 t17 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t17 --> E t17_tmp2 [0,0][1,0][1,1]

t17_tmp2 --> t17_tmp1 E [0,0][1,0]

t17_tmp1 --> ""

t55 --> t53 t26 [0,0][0,1][0,2][0,3][0,4][1,0;1,1;1,2] (* r3' *)

t129 --> t4 t99 [0,0][0,1][0,2;1,0;1,1;1,2][1,3] (* r1' *)

t4 --> E t4_tmp2 [0,0][1,0][1,1]

t4_tmp2 --> t4_tmp1 E [0,0][1,0]

t4_tmp1 --> ""

t99 --> t89 t18 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t89 --> t11 t64 [0,0][0,1;1,1][0,2;1,0;1,2] (* r1right *)

t64 --> t46 [0,3;0,0][0,1][0,2] (* move' *)

t46 --> t45 t18 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t46 --> t45 t26 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t99 --> t89 t26 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t129 --> t3 t116 [0,0][0,1][0,2;1,0;1,1;1,2][1,3] (* r1' *)

t3 --> E t3_tmp2 [0,0][1,0][1,1]

t3_tmp2 --> t3_tmp1 E [0,0][1,0]

t3_tmp1 --> ""

t116 --> t67 [0,3;0,0][0,1][0,2][0,4] (* move' *)

t67 --> t10 t58 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4] (* r1' *)

t58 --> t52 t18 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

17

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

t52 --> t11 t43 [0,0][0,1;1,1][0,2;1,0;1,2][1,3] (* r1right *)

t43 --> t48 [0,0][0,1][0,2][0,3] (* move' *)

t48 --> t45 t20 [0,0][0,1][0,2][1,0;1,1;1,2] (* r3' *)

t43 --> t36 [0,4;0,0][0,1][0,2][0,3] (* move' *)

t36 --> t32 t18 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t36 --> t32 t26 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t58 --> t52 t26 [0,0][0,1][0,2][0,3][1,0;1,1;1,2] (* r3' *)

t129 --> t1 t110 [0,0][0,1][0,2;1,0;1,1;1,2][1,3] (* r1' *)

t1 --> E t1_tmp2 [0,0][1,0][1,1]

t1_tmp2 --> t1_tmp1 E [0,0][1,0]

t1_tmp1 --> ""

t110 --> t79 [0,3;0,0][0,1][0,2][0,4] (* move' *)

t79 --> t5 t119 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4] (* r1' *)

t5 --> E t5_tmp2 [0,0][1,0][1,1]

t5_tmp2 --> t5_tmp1 E [0,0][1,0]

t5_tmp1 --> "se"

t119 --> t156 [0,3;0,0][0,1][0,2][0,4][0,5] (* move' *)

t156 --> t9 t93 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4][1,5] (* r1' *)

t119 --> t76 [0,4;0,0][0,1][0,2][0,3][0,5] (* move' *)

t76 --> t9 t55 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4][1,5] (* r1' *)

t79 --> t7 t58 [0,0][0,1][0,2;1,0;1,1;1,2][1,3][1,4] (* r1' *)

t7 --> E t7_tmp2 [0,0][1,0][1,1]

t7_tmp2 --> t7_tmp1 E [0,0][1,0]

t7_tmp1 --> "se"

E --> ""

3.3 mTPG

Considering the constraints discussed in section 2.4, mTPG can be considered as having only
two functions: Conc and Gcon, having the following behavior:

(Conc)
(

t1 . . . tk−1

s1 . . . sk−1

)
•

(
tk . . . tn
sk . . . sn

)
=

(
t1 . . . tn
s1 . . . sn

)

(Gcon)←i,j

(
t1 . . . ti . . . tj . . . tn
s1 . . . si . . . sj . . . sn

)
→

(
t1 . . . titj . . . tn
s1 . . . sisj . . . sn

)
(Gcon)→i,j

(
t1 . . . ti . . . tj . . . tn
s1 . . . si . . . sj . . . sn

)
→

(
t1 . . . tjti . . . tn
s1 . . . sjsi . . . sn

)
Where i, j ∈ [1, n], and:

• In the case �←�, tj is saturated and ti = t′iδ
l with tj ≤ δ

• In the case �→�, tj is saturated and ti = δrt′i with tj ≤ δ

We can therefore operate GCON1 and GCON2 immediately, and that operation becomes trans-
parent (←: titj = t′i.δ

l.tj = t′i and →: tjti = tj .δ
r.t′i = t′i).

Let's see how derivations are done in this system. Consider the following grammar (from [11]),
with S the starting type, and with ≤ being equality union D3s ≤ D:(

D3s.N
l

a

) (
N
boy

) (
N
girl

) (
Dr.D.Dl

and

) (
Dr

3s.S
laughs

) (
Dr.S.Dl

praised

) (
Dr.S.P l

spoke

) (
P.Dl

to

)
Sentences like �a boy laughs�, �a girl praised a boy� or �a boy spoke to a boy and a girl� are
recognized with the following trees:

18

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

(
S

a boy laughs

)
Gcon→1,2(

Dr
3s.S D3s

laughs a boy

)
Conc

��
���

HH
HHH(

Dr
3s.S

laughs

) (
D3s

a boy

)
Gcon←1,2(

D3s.N
l N

a boy

)
Conc

���
HHH(

D3s.N
l

a

) (
N
boy

)

(
S

a girl praised a boy

)
Gcon→1,2(

Dr.S D3s

praised a boy a girl

)
Conc

��
���

���

HH
HHH

HHH

(
Dr.S

praised a boy

)
Gcon→1,2(

Dr.S.Dl D3s

praised a boy

)
Conc

���
��

HHH
HH(

Dr.S.Dl

praised

) (
D3s

a boy

)
Gcon←1,2(

D3s.N
l N

a boy

)
Conc

���
HHH(

D3s.N
l

a

) (
N
boy

)

(
D3s

a girl

)
Gcon←1,2(

D3s.N
l N

a girl

)
Conc

�
��

H
HH(

D3s.N
l

a

) (
N
girl

)

19

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

„
S

a boy spoke to a boy and a girl

«
Gcon→1,2„

Dr.S D3s

spoke to a boy and a girl a boy

«
Conc

�
���

���
���

���
��

H
HHH

HHH
HHH

HHH
HH

„
Dr.S

spoke to a boy and a girl

«
Gcon←1,2„

Dr.S.P l P
spoke to a boy and a girl

«
Conc

�
���

���

H
HHH

HHH

„
Dr.S.P l

spoke

« „
P

to a boy and a girl

«
Gcon←1,2„

P.Dl D
to a boy and a girl

«
Conc

���
���

��

HHH
HHH

HH

„
P.Dl

to

« „
D

a boy and a girl

«
Gcon→1,2„

Dr.D D3s

and a girl a boy

«
Conc

���
����

HHH
HHHH

„
Dr.D

and a girl

«
Gcon←1,2„

Dr.D.Dl D3s

and a girl

«
Conc

����

HHHH

„
Dr.D.Dl

and

« „
D3s

a girl

«
Gcon←1,2„

D3s.N l N
a girl

«
Conc

�
��

H
HH„

D3s.N l

a

« „
N
girl

«

„
D3s

a boy

«
Gcon←1,2„

D3s.N l N
a boy

«
Conc

��� HHH„
D3s.N l

a

« „
N
boy

«

„
D3s

a boy

«
Gcon←1,2„

D3s.N l N
a boy

«
Conc

��� HHH„
D3s.N l

a

« „
N
boy

«

20

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

Of course, we still have trees with a maximum of two branches, so the binary normal form of
m-MCFG is still well adapted. The property that derivation do not depend on the strings but
only the types is the echo of the same property with categories in (h)MGs. Then, considering
that (Conc) can only apply to two proper tuples creating a a priori non proper tuple, and that
(Gcon) applies only to a non-proper tuple, the global operation of �fusion� between two proper
tuples is the successive application of (Conc) and the closure of the resulting tuple with (Gcon).
If the result is proper, then we can add the new tuple to the set of proper tuples. Otherwise, the
path was a dead-end and we can forget all the preceeding operations.

One of the main remarks to do here is that these derivations are absolutely not unique. In
fact, many inputs are highly ambiguous (meaning that there often exist a lot of derivations for
the same sentence), and it is important for us to keep all of them. It will be important when we
will implement the (Gcon) closure, because there will be sometimes many ways to do that.

We can also notice that the order in the tuple is not important, and because there can be only
one occurrence of each atom in a proper tuple, proper tuples are more or less sets. Instead of using
sets (which are not well suited when the tuples are not proper anymore), we will prefer keeping
the atoms sorted in the tuple. This will lead to a great increase of speed in the �nal program, and
a huge decrease of needed space to compute the conversion, thanks to many collisions. But that
implies to keep record of the permutations done while sorting the tuple resulting of a (Conc).

Converting a mTPG to a MCFG is therefore also made during the closure of the mTPG lexicon
with �fusion�:

(Conc) (
t1 . . . tk−1

s1 . . . sk−1

)
•

(
tk . . . tn
sk . . . sn

)
=

(
t1 . . . tn
s1 . . . sn

)
⇓

σ(τ(t1 . . . tn))→ σ(t1 . . . tk−1) σ(tk . . . tn) Π(t1 . . . tk−1, tk . . . tn)

Where τ is the sorting function and Π the correct printing of the permutation associated to τ .
We assume here that the sequences t1 . . . tk−1 and tk . . . tn are already sorted.

(Gcon)←i,j
1 (

t1 . . . ti . . . tj . . . tn
s1 . . . si . . . sj . . . sn

)
→

(
t1 . . . t′i . . . tn
s1 . . . sisj . . . sn

)
⇓

σ(t1 . . . ti . . . tj . . . tn)→ σ(t1 . . . t′i . . . tn)

[0, 0] . . . [0, i− 1][0, i; 0, j][0, i + 1] . . . [0, j − 1][0, j + 1] . . . [0, n− 1]

(Gcon)→i,j (
t1 . . . ti . . . tj . . . tn
s1 . . . si . . . sj . . . sn

)
→

(
t1 . . . t′i . . . tn
s1 . . . sjsi . . . sn

)
⇓

σ(t1 . . . ti . . . tj . . . tn)→ σ(t1 . . . t′i . . . tn)

[0, 0] . . . [0, i− 1][0, j; 0, i][0, i + 1] . . . [0, j − 1][0, j + 1] . . . [0, n− 1]

It is noticeable that the output of (Gcon) is sorted if its input is.
The last thing to take care of is the building of the lexicon, where tuples with an arity greater

than 2 can be inputted while the binary normal form of m-MFCG cannot use them directly. For
each tuple, we therefore create a balanced binary tree to assemble the tuple (example taken from

[11]:
(

v Dr.s Rr.o
praises nom acc

)
):

1for reading convenience and conciseness, i is put before j in the tuples, but it is not required in the general case

21

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

α0 → "praises"
α1 → "nom"
α2 → "acc"
α3 → α0 α1 [0, 0][1, 0]
α4 → α3 α2 [0, 0][0, 1][1, 0]

σ((v,Dr.s, Rr.o)) → α4 [0, 0][0, 1][0, 2]

Where the αi are symbols uniquely associated to the given tuple (In particular, they are not in
the range of σ)

Applying the closure of (Conc) and (Gcon) on the grammar given above as an example, we
obtain:

S --> t17 [0,0]
t17 --> t33 [0,0;0,1]
t33 --> t15 t26 [1,0][0,0]
t15 --> t30 [0,1;0,0]
t30 --> t2 t26 [1,0][0,0]
t2 --> t2_2_0 [0,0]
t2_2_0 --> "praised"
t26 --> t35 [0,0;0,1]
t35 --> t20 t26 [1,0][0,0]
t20 --> t31 [0,1;0,0]
t31 --> t4 t26 [1,0][0,0]
t4 --> t4_4_0 [0,0]
t4_4_0 --> "and"
t26 --> t34 [0,1;0,0]
t34 --> t19 t26 [1,0][0,0]
t19 --> t31 [0,0;0,1]
t19 --> t18 [0,1;0,0]
t18 --> t4 t8 [0,0][1,0]
t8 --> t7 [0,0;0,1]
t7 --> t6 t5 [0,0][1,0]
t6 --> t6_7_0 [0,0]
t6_7_0 --> "a"
t5 --> t5_6_0 [0,0]
t5_6_0 --> "boy"
t5 --> t5_5_0 [0,0]
t5_5_0 --> "girl"
t26 --> t27 [0,1;0,0]
t27 --> t20 t8 [0,0][1,0]
t20 --> t18 [0,0;0,1]
t26 --> t25 [0,0;0,1]
t25 --> t19 t8 [0,0][1,0]
t15 --> t22 [0,1;0,0]
t22 --> t1 t10 [1,0][0,0]
t1 --> t1_1_0 [0,0]
t1_1_0 --> "spoke"
t10 --> t28 [0,1;0,0]
t28 --> t0 t26 [1,0][0,0]
t0 --> t0_0_0 [0,0]
t0_0_0 --> "to"
t10 --> t9 [0,0;0,1]
t9 --> t0 t8 [0,0][1,0]
t15 --> t13 [0,0;0,1]
t13 --> t2 t8 [0,0][1,0]
t17 --> t32 [0,1;0,0]
t32 --> t14 t26 [1,0][0,0]
t14 --> t30 [0,0;0,1]
t14 --> t13 [0,1;0,0]
t17 --> t24 [0,1;0,0]
t24 --> t15 t8 [0,0][1,0]
t17 --> t23 [0,0;0,1]

22

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

t23 --> t14 t8 [0,0][1,0]
t17 --> t21 [0,1;0,0]
t21 --> t12 t10 [1,0][0,0]
t12 --> t29 [0,0;0,1]
t29 --> t1 t26 [1,0][0,0]
t12 --> t11 [0,1;0,0]
t11 --> t1 t8 [0,0][1,0]
t17 --> t16 [0,1;0,0]
t16 --> t3 t8 [0,0][1,0]
t3 --> t3_3_0 [0,0]
t3_3_0 --> "laughs"

With these correspondances:

t0 : (P.D`)
t1 : (D'.S.P`)
t2 : (D'.S.D`)
t3 : (D3s'.S)
t4 : (D'.D.D`)
t5 : (N)
t6 : (D3s.N`)
t7 : (D3s.N`;N)
t8 : (D3s)
t9 : (P.D`;D3s)
t10 : (P)
t11 : (D'.S.P`;D3s)
t12 : (S.P`)
t13 : (D'.S.D`;D3s)
t14 : (S.D`)
t15 : (D'.S)
t16 : (D3s'.S;D3s)
t17 : (S)
t18 : (D'.D.D`;D3s)
t19 : (D.D`)
t20 : (D'.D)
t21 : (P;S.P`)
t22 : (P;D'.S.P`)
t23 : (S.D`;D3s)
t24 : (D'.S;D3s)
t25 : (D.D`;D3s)
t26 : (D)
t27 : (D'.D;D3s)
t28 : (D;P.D`)
t29 : (D;D'.S.P`)
t30 : (D;D'.S.D`)
t31 : (D;D'.D.D`)
t32 : (D;S.D`)
t33 : (D;D'.S)
t34 : (D;D.D`)
t35 : (D;D'.D)

Derivations of the sentences �a boy laughs� and �a girl praised a boy� in that grammar are:

23

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

S

a boy laughs

t17

(a boy laughs)

t16

(laughs, a boy)

��
��

HH
HH

t3

(laughs)

t3_3_0

(laughs)

laughs

t8

(a boy)

t7

(a, boy)

��� HHH

t6

(a)

t6_7_0

(a)

a

t5

(boy)

t5_6_0

(boy)

boy

S

a girl praised a boy

t17

(a girl praised a boy)

t24

(praised a boy, a girl)

��
���

��

HH
HHH

HH

t15

(praised a boy)

t13

(praised, a boy)

��
��

HH
HH

t2

(praised)

t2_2_0

(praised)

praised

t8

(a boy)

t7

(a, boy)

��� HHH

t6

(a)

t6_7_0

(a)

a

t5

(boy)

t5_6_0

(boy)

boy

t8

(a girl)

t7

(a, girl)

��� HHH

t6

(a)

t6_7_0

(a)

a

t5

(girl)

t5_6_0

(girl)

girl

24

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

4 Implementations

4.1 mg2mcfg

Another aspect of the limitations of the parser is that it is not possible to recognize idioms.
But it is very interesting for us to be able to have something like (example taken from the �le
examples/g10.mg distributed with the program mg2mcfg):

"it is not the case that" :: =v v

As we did in section 3.3 with tuples, we are going to build a balanced binary tree but now merging
strings:

α1 → "it"
α2 → "is"
α3 → "not"
α4 → "the"
α5 → "case"
α6 → "that"
α7 → α1 α2 [0, 0; 1, 0]
α8 → α3 α4 [0, 0; 1, 0]
α9 → α5 α6 [0, 0; 1, 0]

α10 → α7 α8 [0, 0; 1, 0]
α11 → α10 α9 [0, 0; 1, 0]

σ(= v v) → α11 [0, 0]

Where the α1 do not occur anywhere else.
From now on, we know that we need to compute the closure of a given MG lexicon with

the merge and move functions, but we have not yet discussed how. We will use the classical
chart/agenda scheme:

• a dynamic array of lists cat containing (with no duplicates) tuples where the �rst chain is
a simple feature (a category) with no licensee.

• a dynamic array of lists cat_move containing (with no duplicates) tuples where the �rst
chain has a category as �rst feature and licensees behind.

• a dynamic array of lists sel containing (with no duplicates) tuples where the �rst feature of
the �rst chain is a selecting feature.

• a dynamic array of lists lic containing (with no duplicates) tuples where the �rst feature of
the �rst chain is a licensor.

These tuples are stored at the index equal to the code corresponding to the string of the �rst
feature (we will call this integer the �key� of the tuple). Therefore, it makes it very easy to know
which operations are possible: if the category D has k ∈ N for a coding, elements like Mary ::

D, who :: D -wh and likes :: =D =D V are stored in the list in the (k + 1)-th cell of their
respective array (cat, cat_move and sel).

We also have a function for inserting in the right array the result of a merge or move function
(which we use at the beginning with the lexicon). Before inserting, we look if the array contained
the element, so that we don't insert elements twice. If the element is new, its key is also added to
an integer set used as a agenda. After every current possible function is applied, we look at the
agenda and if it is nonempty, we re-apply merges et moves only for the concerned keys.

The �dynamic arrays� mentioned above are implemented in a speci�c module (Dyn_array),
making it easier to share with the two other programs. They are arrays of lists of a given 'a type

25

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

and a counter p used to know how many elements the lists contain. The size of the array grows
with insertions: inserting an element in cell k when the array has size n < k resizes the array
to size min(2k + 1,Sys.max_array_length). Retrieving a list of elements having the same key is
performed in constant time, �nding a particular element is O(p) and so is insertion because we
don't want duplicates. Note that p complexity occurs only if all the elements have the same key
and that the array has size 1, which is far for the general case.

Attributing unique integers to various types of objects is another common issue in the three
programs. For that, I have created another module, but using a functor Dict.Make (thus adapting
to all the objects we need). The main requirement about the input module for the functor is that
the main type should be comparable, and contain that comparison. What I called a �dictionary�
is composed of a balanced binary tree used as a Map, an array of variable length and a counter
p. Starting from an empty Map and array, and a counter set to (-1), when we try to know which
integer is associated to a given object, we �nd out from the Map if an integer has already been
assigned to it. If not, we increase the counter, add the (object,integer) pair in the map, and the
object in the cell numbered by the integer in the array (doubling its size if necessary). Therefore,
the �object 7→ integer� translation is O(p + ln p) while the �integer 7→ object� one is made in
constant time. Note that the p is here only for taking consideration of array resizing (which only
occur every 2n + 1 new objets), so the function is usually signi�cantly faster. Of course, space
complexity is not optimal, but it is still O(p).

Here are the objects that needed a �dictionary�:

• Features (the keys for the tuples)

• Tuples (hence de�ning σ and the symbols of the mcfg)

• Left parts of mcfg rules (keys for right parts)

• Right parts of mcfg rules

We also use a Dyn_array for mcfg rules, right parts being indexed by left parts of the rules.
Combined with a function associating to a right part the possible left parts (for example and
schematicaly, if LEFT(a) �> RIGHT(b c <map>) is a rule, then applied to that function, {
LEFT(b), LEFT(c) } would be the result), it makes it very e�cient to �lter the �nal mcfg collection
for accessibility from the start rule S (co-accessibility is assured in a natural manner by contruction
of that collection, the closure being operated �from the leaves to the root�). That operation also
gives us the accessible tuples, and that information is interesting since we want to produce a
�le containing correspondance between mcfg symbols and tuples as to verify and analyze mcfg
derivation trees more easily.

Correctness is assured by the theorems proving weak equivalency between these grammars, in
addition to the straight-forward proves that each mcfg rules (and in particular the map) corre-
sponds to the application of the given function.

We can also establish that the program terminates: being given a �nite lexicon, the number of
di�erent features is �nite, entailing that the maximum arity of a tuple is (you cannot have a tuple
with the same �rst feature at two di�erent coordinates). Moreover, the length of the sequences
of licensees in the lexicon is bound, and rules cannot increase them. Finally, every function (i.e
merge1, merge2, merge3, move1 and move2) makes the expression of the �rst coordinate of a tuple
decrease exactly of one (move even reduces the size of the tuple). The set of possible tuples entailed
by any �nite lexicon is therefore �nite, and the closure of this lexicon is included in that set. So in
the main loop of the closure, there exists a step when nothing changes anymore, and the program
terminates.2

For commidity, I added using ocamllex and ocamlyacc a lexer and a parser in order to facilitate
the input of MG. Here are the de�nitions:

mg → startlist lexrulelist ENDGRAMMAR

startlist → IDENT slist ENDRULE

2space and time complexity are more complex questions, and I have not had the time to solve them yet

26

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

slist → ∅ | IDENT slist

lexrulelist → ∅ | lexrule lexrulelist
lexrule → vocab sign featurelist category licenseelist ENDRULE

sign → DEFINE

vocab → IDENT

featurelist → ∅ | feat featurelist
feat → featmod IDENT

featmod → EQUAL | PLUS
category → IDENT

licenseelist → ∅ | licensee licenseelist
licensee → MINUS IDENT

where the lexemes (ENDGRAMMAR, IDENT, ENDRULE, DEFINE, EQUAL, PLUS, MINUS)
are de�ned mglexer.mll:

{

(** Returns a stream of lexemes defined in mglexer.mll

@author Matthieu Guillaumin

@see 'mglexer.mll' for lexemes used *)

open Mgparser;;

exception LexingError of int*string

}

rule token = parse

[' ' '\t' '\n' '\r'] {token lexbuf}

| ('/' [^'/']* '/') {token lexbuf} (* comments are between '/'s *)

| ('%' [^'\n']* '\n') {token lexbuf} (* or behind a % *)

| ';' {ENDRULE}

| "::" {DEFINE}

| '=' {EQUAL}

| '+' {PLUS}

| '-' {MINUS}

| (['a'-'z'] | ['A'-'Z'] | ['0'-'9'])+ {IDENT(Lexing.lexeme lexbuf)}

| ('\"' ([^'\"']* as idiom) '\"') {IDENT(idiom)}

| eof {ENDGRAMMAR}

| (_) {raise(LexingError(Lexing.lexeme_start lexbuf,Lexing.lexeme lexbuf))}

Some additional veri�cations about basic properties are made with semantic actions, and warn-
ings are printed (with rule number) when needed:

• The starting category symbols are used

• The �rst feature of a chain is not a licensor

• A selecting feature corresponds to a de�ned category

• A licensee has a de�ned corresponding licensor

• A licensor has a de�ned corresponding licensee

• A category is a starting category or is selected

The second one could have been easily implemented in the grammar, but as it is a common
mistake, a warning giving the location of the error is useful.

27

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

4.2 hmg2mcfg

Implementing hMG is basically the same as MG. We only do minor changes for lexical terms
and the starting rule, and of course we increase the number of functions, types of rules and
Dyn_array we use (because we have also more types of features):

• mcfg rules

• selectors

• categories

• categories with licensee features

• licensors

• right incorporators (head movements on the right)

• left incorporators

• right a�x hopping

• left a�x hopping

Finally, we need a way of dealing with relations for adjunction. Adjunctions are peculiar because
they are a sort of meta-rules. We create two sets for respectively left and right adjunctions, we
also have the functions left-adjoin1, right-adjoin1, left-adjoin2 and right-adjoin2. At the end of
each loop in the closure, we look for new elements that are concerned with an adjunction and
apply them if every complies.

The new types of features and the adjunctions lead us to modify the lexer and the parser. The
changes are minor though. In order to take advantage of the numerous example �les written for
a prolog parser for hMG, I added a new set of lexer/parser for those �les. Finally, we have to
change the veri�cations made, the new ones are:

• The starting category symbols are used

• The �rst feature of a chain is not a licensor

• A selecting feature corresponds to a de�ned category

• A licensee has a de�ned corresponding licensor

• A licensor has a de�ned corresponding licensee

• A category is a starting category, is selected or is an adjoin to a de�ned category

• The categories involved in an adjunction are de�ned

The correctness and the termination of this program is basically the same than for mg2mcfg,
there is just more cases due to additionnal functions.

4.3 mtpg2mcfg

We also have a lexer and a parser for this program:

mtpg → startlist orderlist lexrulelist ENDGRAMMAR

startlist → IDENT slist

slist → ∅ | slist
orderlist → ∅ | BEGINORDER IDENT SMALLER IDENT ENDORDER orderlist

| BEGIN ORDER IDENT GREATER IDENT ENDORDER orderlist

lexrulelist → ∅ | BEGINRULE lexrule ENDRULE lexrulelist

28

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

lexrule → couple | couple SEMICOLON lexrule

couple → typed COMA IDENT | typed COMA

typed → IDENT mode | IDENT mode DOT typed

mode → ∅ | LEFTINVERSE | RIGHTINVERSE

Where the lexer is:

{

(** Returns a stream of lexemes defined in mtpglexer.mll

@author Matthieu Guillaumin

@see 'mtpglexer.mll' for lexemes used *)

open Mtpgparser;;

exception LexingError of int*string

}

rule token = parse

[' ' '\t' '\n' '\r'] {token lexbuf}

| ('/' [^'/']* '/') {token lexbuf} (* ignoring things between '/'s *)

| ('%' [^'\n']* '\n') {token lexbuf} (* everything behind a % is ignored *)

| ')' {ENDRULE}

| '(' {BEGINRULE}

| '[' {BEGINORDER}

| ']' {ENDORDER}

| '<' {SMALLER}

| '>' {GREATER}

| '.' {DOT}

| ',' {COMA}

| ';' {SEMICOLON}

| '\'' {RIGHTINVERSE}

| '`' {LEFTINVERSE}

| (['a'-'z' 'A'-'Z' '0'-'9'])+ {IDENT(Lexing.lexeme lexbuf)}

| ('\"' ([^'\"' ';']* as idiom) '\"') {IDENT(idiom)}

| eof {ENDGRAMMAR}

| (_) {raise(LexingError(Lexing.lexeme_start lexbuf,Lexing.lexeme lexbuf))}

The basic veri�cations on the output of the parser are:

• The types are well formed (right inverses, atom, left inverses)

• The atoms are unique in a tuple

• The inverses correspond to an atom

• The right (resp. left) part of a < (resp. >) relation is a start symbol or correspond to an
inverse

• The atoms are start symbols or de�ned inverses or left (resp. right) part of a < (resp. >)
relation

• The start symbols are de�ned atoms or a right (resp. left) part of a < (resp. >) relation

As we mentioned earlier, the order of typed strings is not important inside a tuple. In order
to limit the number of di�erent possible tuples, keeping them sorted (numerically by the atom's
corresponding integer) is of great bene�t. First this property is conserved when applying (Gcon).
Let's study the e�ect with (Conc). Of course, when we concatenate two tuples, the result is not
sorted in general (like the inputted tuples for which we need a full merge sort), so instead of

29

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

concatenating them, we apply a slightly modi�ed single-step merge sorting (because we know that
the two tuples are sorted). It is modi�ed because we need to keep track of the permutation σ
associated to this sorting, in order to take it in consideration in the map function of the mcfg rule:
We begin by giving to each element in the tuple (of size n) its coordinate (that is done in O(n)).
Then we apply the merge step (O(n)). Finally, we split (O(n) again, so is the global operation)
the resulting list in two separate lists containing respectively the sorted elements and the list of
indexes of these elements (therefore, this list contains a representation of σ). For example:(

a b d f
) (

c e
)(

0 1 2 3
) (

4 5
)

↓ (Conc)(
a b c d e f

)(
0 1 4 2 5 3

)
We will apply this permutation when printing the mcfg rule:(

a b c d e f
)
→

(
a b d f

) (
c e

)
[0, 0][0, 1][1, 0][0, 2][1, 1][0, 3]

Of course, we will try to narrow our e�orts to only applying the (Conc)+(Gcon)-closure scheme
to two tuples that may at the end produce at least one proper tuple. Consider the following
necessary condition:

Lemma 4.1 If two tuples t1 and t2 produce a proper tuple after (Conc) and a (Gcon) closure,
then for any element a in the intersection of the sets of their atoms, there is an inverse of type b
for that a (i.e such as b ≥ a) in at least one tuple between t1 and t2.

The proof is straight forward, because if we obtain a proper tuple, there are no more duplicate
atom, so if the intersection of the sets of the atoms of the tuples was nonempty, at least one
occurrence of each duplicate atom has disappeared, and that is possible only if a corresponding
inverse (formally any inverse of type b such as b ≥ a or equivalently we can say that any c such
as c ≤ b has a corresponding inverse in the location of b) is present. For the implementation, the
fact that every tuple is sorted makes the process of computing the intersection of the atoms more
e�cient (O(n1 + n2)) than the general case.

Now, how are the (Gcon) function and the (Gcon) closure implemented? The function itself
is quite easy: knowing the indexes i and j of the concerned types we just need to remove the
j−th element from the tuple and remove the good adjoint-type appearing in the i−th coordinate.
(Gcon) closure is more tricky. We �rst need a function called analyze which will return every
possible association between a saturated type and an adjoint-type on the edge of a type in a given
tuple. In that operation, we need to keep the respective coordinates of the inverses and their
types. The output is made of two lists of same size: one containing couples of a saturated atom
and its position, the other containing the lists of complying inverses (in respect of the relation)
with their position and type.

With these functions, we can obtain a recursive de�nition of (Gcon) closure (tr is a function
of translation, lower returns the list of elements smaller than the given element, assoc_all is a
general function on association lists returning all the elements associated to the given one, gcon is
the (Gcon) function, complies_atom_unicity is a function deciding if a tuple is proper, unicize
is a function removing any duplicate element in list):

let rec gcon_closure tr lower (t,n,l) =
let (sat,unsat) = analyze lower 0 [] [] t
in let sat_dest = List.map (function (x,_) -> assoc_all x unsat) sat
in let possible_gcons = List.flatten

(List.map2 (fun (_,r) s -> List.map (function (p,q) -> (p,r,q)) s) sat sat_dest)
in let applied_gcons = List.map (function (x,y,z) -> gcon tr x y z (t,n,l)) possible_gcons
in
match applied_gcons with

30

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

| [] -> (if complies_atom_unicity t then [(t,n,l)] else []),[]
| l -> (let tuple_list,mcfg_list = List.split l

in let tuples,rules = List.split (List.map (gcon_closure tr lower) tuple_list)
in let full_list = List.combine tuples (List.map2 (fun a li -> a::li) mcfg_list rules)
in let good_list = List.filter (fun (x,_) -> x<>[]) full_list
in let new_t,new_r = List.split good_list
in unicize(List.flatten new_t), List.flatten new_r)

While keeping only the �nal results of the closure, we have in the mcfg rule list every separate
step that leads to each result.

Because the problem of closing a mTPG lexicon is in a certain sense a problem of more
complexity then for (h)MG, we will also have to be more subtle, and for example mark the
di�erence between tuples computed in the current loop and older ones. The data structures are:

• �Dictionaries� for types and tuples

• Two dyn_arrays for relations: one containing greater types, the other with smaller ones.

• Dictionaries for left and right parts of mcfg rules

• Dyn_arrays for all mcfg rules and another one for printed ones only

• A mutable set of integers containing old saturated tuples (their translation)

• A mutable set of integers containing new saturated tuples (the ones created in the last loop)

• A mutable temporary set of integers containing the saturated tuples created in this loop

• A dyn_array for old unsaturated tuples, present in every cell where they have an inverse
(we do not apply relations here, it is done elsewhere)

• Two other dyn_arrays for new and temporary unsaturated tuples

• A global boolean variable deciding if something has changed during the loop

At each loop, after computations, we add to the old elements the new ones, we replace the
�new� by the �temporary� ones and we empty the temporary sets and arrays. Now, inside a loop,
we look for application of the functions in:

• new unsaturated tuples on new saturated ones

• old unsaturated tuples on new saturated ones

• new unsaturated tuples on old saturated ones

For each one between these three cases, we associate saturated tuples with unsaturated ones
that have at least one compatible inverse on one �edge� of a complex type (applying relations),
check with has_a_chance if (Conc) and (Gcon) closure are a priori worth trying and �nally apply
(Conc) and (Gcon) closure. Then, we add the results, if they are not in the �new� or �old� sets,
to the �temporary� one, and the mcfg rules to the collection and set if needed the global boolean
to �true�.

As for mTPG, correctness is a consequence of the proof of weak-equivalency and termination
is assured by the �niteness of the set of possible tuples: indeed, there is only a �nite number of
simple types, so a �nite number of di�erent atoms, and the arity of tuples is bound. And because
operations can only decrease the number of inverses on the left or on the right of each atom, the
total number of possible proper tuples de�ned from a given �nite lexicon is �nite. And we compute
only a subset of that. Arrived at a certain point, there is no more new tuples that can be created,
so the program ends.

31

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

5 Comparison with existing parsers

5.1 MG and hMG

Before comparing the parsing between the di�erent existing parsers for (h)MGs and the MCFG
parser after using my programs, we should look at the time spend by them.3 Unfortunately, tests
have not been executed on a large scale, but on only 11 typical grammars for mg2mcfg and
approximatively 20 for hmg2mcfg. The biggest and slowest of all is the larsonian grammar (in �le
hmg2mcfg/examples/larsonian1.pl), and the computation takes about 1 second.

The existing parsers for (h)MG are:

• a CKY MG parser for SWI prolog (Stabler, UCLA)

• a CKY MG parser for SICSTUS prolog (Stabler, UCLA)

• a CKY MG parser written in Scheme (Nigoyi, MIT)

• a CKY MG parser written in OCaml (Hale, MSU) 4

And here are the results, due to Stabler, with the larsonian grammar (hmg2mcfg/examples/larsonian.pl)
and on the same machine:

• �they have -ed forget -en that the boy who tell -ed the story be -s so young�

Program milliseconds chart size
mgcky-swi 1,229,600 11559
mgcky-sicstus 1,530,630 11559
mgcky-ocaml (Hale) 75,810 11297
mg-mcfg (Guillaumin, Albro) 293 1317

• �the fact that the girl who pay -ed for the ticket -s be -s very poor doesnt matter�

Program milliseconds chart size
mgcky-sicstus 440,310 6466
mgcky-ocaml (Hale) 27,440 5913
mg-mcfg (Guillaumin, Albro) 597 1306

There are many other examples, but the two extremes are:

• �he remember -ed that the food which Chris pay -ed the bill for be -ed cheap�

Program milliseconds
mgcky-sicstus 44,020
mgcky-ocaml (Hale) 5,600
mg-mcfg (Guillaumin, Albro) 199

and �nally:

• �he remember -ed that the sweet -s which David give -ed Sally be -ed a treat�

Program milliseconds
mgcky-sicstus 234,101,050
mgcky-ocaml (Hale) 2,613,570
mg-mcfg (Guillaumin, Albro) 646

3This is not fundamental, though, because the translation between (h)MG and MCFG has to be done only once,
for a possibly in�nite number of parsing

4all references on http://www.humnet.ucla.edu/humnet/linguistics/people/stabler/epssw.htm

32

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

5.2 mTPG

Again, we have to see if running the program is acceptable, and again, we only have few (6)
relevant examples to try. For 4 of them, it takes less than a tenth of a second. For the �fth
(mtpg2mcfg/examples/g4.mtpg), it takes about 12 seconds (on my personnal computer), and the
sixth (mtpg2mcfg/examples/g4wh.mtpg, where wh-movements are added to the former grammar)
takes about half an hour but consumes a lot of memory, which can be problematic.

The existing parsers for mTPG are:

• a CKY mTPG parser for SICSTUS prolog (Stabler, UCLA)

• a CKY mTPG parser for SWI prolog (Stabler, UCLA) 5

The results using a simple grammar (mtpg2mcfg/examples/g0wg.mtpg and tpgcky-swi/grammars/g1.pl)
on the same machine are, for example:

• �the girl who praised a boy who laughs spoke to a boy who praised a girl�

Program milliseconds chart size
tpgcky-swi 232,230 3360
mtpg-mcfg (Guillaumin, Albro) 48 1567

Acknowledgments

I would like to thank Pr Edward Stabler, for his thoughts and always very enlightening views
on the problems raised during my internship, and on language complexity in general, and for his
availability and enthusiasm; Pr Dominique Sportiche, for introducing me to the �eld of linguistics,
for making this internship possible and for his concern; and the entire Department of Linguistics
at UCLA for having made my stay in Los Angeles very enjoyable and intellectually rich.

5all references on http://www.humnet.ucla.edu/humnet/linguistics/people/stabler/epssw.htm

33

Matthieu Guillaumin Conversions between Midly Context Sensitive Grammars

References

[1] Daniel M. Albro. An earley-style recognition algorithm for mcfgs. Not published, 2000.

[2] Noam Chomsky. The Minimalist Program. The MIT Press, Cambridge, Massachusetts, 1995.

[3] Hendrik Harkema. Parsing Minimalist Languages. PhD thesis, University of California, Los
Angeles, 2001.

[4] Edward Stabler Hilda Koopman, Dominique Sportiche. An introduction to syntactic analysis
and theory. University of California, Los Angeles.

[5] A. K. Joshi, K. Vijay-Shanker, and D. Weir. The convergence of midly context-sensitive
grammars. In S. M. Shieber and T. Wasow, editors, The Processing of Natural Language
Structure, pages 999�999. MIT Press, 1992.

[6] Jens Michaelis. Derivational minimalism is mildly context-sensitive. Lecture Notes in Com-
puter Science, 2014:179�??, 2001.

[7] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free grammars. The-
oretical Computer Science, 88(2):191�229, October 1991.

[8] Edward Stabler. Derivational minimalism. In Christian Retoré, editor, Proceedings of the
1st International Conference on Logical Aspects of Computational Linguistics (LACL-96),
volume 1328 of LNAI, pages 68�95, Berlin, September 23�25 1997. Springer.

[9] Edward P. Stabler. Recognizing head movement. Lecture Notes in Computer Science,
2099:245�??, 2001.

[10] Edward P. Stabler. Notes on computational linguistics, chapter 9 and 10. 2003. University
of California, Los Angeles.

[11] Edward P. Stabler. Tupled pregroup grammars. University of California, Los Angeles, 2004.

34

