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Abstract. The Minimalist Grammars (MGs) proposed by Stabler(1997)
have tree-shaped derivations (Harkema, 2001b; Michaelis, 2001a). As in
categorial grammars, each lexical item is an association between a vocab-
ulary element and complex of features, and so the “yields” or “fringes”
of the derivation trees are sequences of these lexical items, and the string
parts of these lexical items are reordered in the course of the derivation.
This paper shows that while the derived string languages can be am-
biguous and non-context-free, the set of yields of the derivation trees is
always context-free and unambiguous. In fact, the derivation yield lan-
guages are strictly deterministic context-free languages, which implies
that they are LR(0), and that the generation of derivation trees from a
yield language string can be computed in linear time. This result sug-
gests that the work of MG parsing consists essentially of guessing the
lexical entries associated with words and empty categories.

1 Introduction

A derivation is a witness to the fact that a string is generated by a grammar. A
derivation says how a string is generated, or, equally, what that string’s analysis
is in terms of the grammar. Derivations are, in this sense, authoritative about a
grammar’s view of a well-formed sentence. From the perspective of a grammar,
a generated string is just one facet of the full story: its derivation.

So for any purpose where the structure of a string matters, it is desirable to
work with the full story, the derivation – or some needed subset of the informa-
tion it encodes. In computational linguistics, such work might involve drawing
pictures of a sentence’s structure, or generating other sentences, for instance, in
other languages. These kinds of applications benefit from the efficient coding of
derivations.

This paper shows that, for a particular grammar formalism, the Minimal-
ist Grammars (Stabler, 1997; Stabler and Keenan, 2003) there exists an en-
coding of derivations that is highly restricted: they can be coded by the se-
quence of lexical entries as it appears along the fringe of any well-formed
derivation tree. This is the same unique readability property familiar from
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the syntax of logical languages (Enderton, 2001, 40,108), (Shoenfield, 1967, 15),
(Ebbinghaus, Flum, and Thomas, 1994, 22). Not only does this lexical sequence
determine the derivation, it is also structured in such a way that such deter-
mination can be carried out in linear time by a shift-reduce automaton. This
kind of operation on lexical sequences is useful for drawing dependency graphs,
X-bar trees annotated with traces, and other kinds of diagrams. The compact
representation provided by lexical sequences could have other uses as well. If
lexical entries contain “semantic” information, such lexical sequences might in-
deed represent meanings, constituting a “logical form” for sentences in mini-
malist languages. These logical forms might be combinable with other (perhaps
real-world) knowledge in a natural language understanding system. Similarly,
such lexical sequences might be useful in a transfer-based machine translation
system.

For all these reasons, and also to gain a deeper understanding of the formalism
itself, the simplicity of MG yield languages is of interest. The main result in this
paper is that for every MG grammar, the language of MG lexical sequences
is a strict deterministic language in the sense of Harrison and Havel (1973)
This property is defined in section 2. Then in section 3, MGs are presented
as an instance of the more general class of “bare grammars” which includes
other formalisms. Section 4 presents a context-free grammar (CFG) for the tree-
shaped MG derivations, and shows how this CFG can always be extended to be
a strict deterministic grammar. Because any strict deterministic grammar is also
an LR(0) grammar in the sense of Kunth (1965), this shows that the language
of MG lexical sequences is an LR(0) language.

2 Definitions

To indicate the relationship of the central result about MGs to more familiar
grammars, it will be helpful to fix some auxiliary definitions. These stipulations
“if, and only if, by definition” are abbreviated by ≡̇ and “equals, by definition”
by .=.

2.1 Trees

At issue most fundamentally are the derivations of linguistic expressions, which
are naturally regarded as trees. A tree is a function t : T → S whose domain
is a finite set of sequences T of the positive integers T ⊂ (N+)∗ such that, for
every n ∈ T :

1. if n = si for some s ∈ (N+)∗, i ∈ N, then s ∈ T ,
‘higher nodes are also in the domain’ and

2. if n = si for some s ∈ (N+)∗, i ∈ N, then if i > 1 and j = i − 1, tj ∈ T
‘lower-numbered sisters are also in the domain’

The elements of a tree domain T are often called nodes; ε is the root node,
and the values of t are often called labels.
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Given any tree t : T → S and any d ∈ T , the subtree of t at d is the function
t/d with domain {u| du ∈ dom(t)}, such that t/d(u) = a if and only if t(du) = a.
In later sections, trees will sometimes be represented with expression which are
sequences of labels, S and parentheses, as follows. By the previous definitions, for
any tree t : T → S, t(ε) = a is the root label and k = |N+ ∩ T | is the number of
daughters the root has, because intersecting the tree domain T with the positive
integers retrieves just the sequences of length 1. When k = 0 the expression of
t is a, and otherwise it is a(t1 . . . tk), where t1, . . . , tk are the expressions of the
subtrees t/1, . . . , t/k. For example, the tree with the conventional depiction here
has the tree domain indicated on the right:

∨

∧

p q

∨

¬

p

q

ε

1

11 12

2

21

211

22

The expression of this tree is ∨(∧(pq) ∨ (¬(p)q)). The yield of this tree, on the
left, is pqpq, where the yield of a tree t : T → S is the sequence of elements of S
defined as follows,

yield(t) =

{
a if dom(t) = {ε}, t(ε) = a

yield(a/1) . . . yield(a/k) otherwise, where k = |N+ ∩ T |.

2.2 Context-Free Grammars

Following Keenan and Stabler (2003), take a context-free grammar (CFG) to
be a triple G = 〈Σ,N, (→)〉 where Σ,N are nonempty and disjoint, the start
symbol S is an element of the nonterminal set N , and (→) ⊆ N × (Σ ∪ N)∗ is
finite. The immediate rewriting relation (→) is to be viewed as an infix operator
so that x → y is a shorthand for 〈x, y〉 ∈ (→). Similarly, the rewriting relation
⇒G

.= {〈x, y〉 ∈ (Σ∪N)∗×(Σ∪N)∗| ∃u, v, w ∈ (Σ∪N)∗, A ∈ N, such that x =
uAv, A → w, x = uwv} on sentential forms is abbreviated as x ⇒ y.

Let ⇒∗ be the reflexive transitive closure of ⇒. For any A ∈ N , the sequences
of category A, LA(G) = {x ∈ Σ∗| A ⇒∗ x}. For any A ∈ N , LA(G) is a context-
free language.

To set the stage for the following more general framework of subsection 3.1,
define the derivation trees Γ (G) of a CFG G as follows, labeling internal nodes
with elements of → rather than with just their left sides:

Γ (G)0 .= {a ∈ Σ∗| A → a},
Γ (G)k+1 .= Γ (G)k ∪ {A → a(a)| A → a and a ∈ (Γ (G)k)∗},
Γ (G) .=

⋃
k∈N

Γ (G)k.

Furthermore, for any A ∈ N ,

ΓA(G) .= {t ∈ Γ (G)| t(ε) = A → a, for some a ∈ (Σ ∪ N)∗}.
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Clearly, yield(ΓA(G)) = LA(G). G has ambiguous yields ≡̇ there are two
distinct trees in Γ (G) with the same yield. Typically, one just says that such a
grammar is “ambiguous.”

2.3 Strict Determinism

Strict determinism is a property that context-free grammars can have; it is a
technical notion that figures prominently in the theory of deterministic context-
free grammars, which is reviewed in (Harrison, 1978, §11). Most simply, a CFG
is strict deterministic if its symbols can be divided up into blocks in a certain
way. The formal definition uses Harrison’s notation (n)α for the prefix of α of
length min{n, |α|}.

For any CFG G, a partition π of N ∪ Σ is strict if and only if

i. Σ ∈ π
ii. for any A,A′ ∈ N , α, β, β′ ∈ (N ∪Σ)∗, if A → αβ and A′ → αβ′ and A ≡ A′

(mod π), then either
a. both β, β′ �= ε and (1)β ≡(1) β′ (mod π), or
b. β = β′ = ε and A = A′.

If the partition π is clear from context, A ≡ B (mod π) is sometimes simplified
to A ≡ B, and similarly the block of π where a symbol A resides is written [A]
rather than [A]π if no confusion would result.

With this definition, it is possible to say of a CFG G that it is strict deter-
ministic if there exists a strict partition π of N ∪Σ. A language is strict deter-
ministic if some strict deterministic grammar generates it.

A CFG is said to be reduced with respect to a given start symbol S, abbre-
viated reducedS just in case →= ∅ or for every A ∈ N , S ⇒∗ αAβ ⇒∗ w for
some α, β ∈ (N ∪ Σ)∗ and w ∈ Σ∗.

It is also known that

Theorem (Harrison, 11.4.1). Any strict deterministic grammar is equivalent
to a reduced strict deterministic grammar.

Theorem (Harrison, 13.2.3). Any reduced strict deterministic grammar is
also an LR(0) grammar.

These theorems link strict determinism to its consequences for efficient parsing.
Harrison (page 347) explains that

The motivation behind this definition is that we wish to make certain restric-

tions on the simultaneous occurrences of substrings in different productions.

Intuitively, if A → αβ is a production in our grammar, then “partial infor-

mation” about A, together with complete information about a prefix α of αβ,

yields similar partial information about the next symbol of β when β �= ε, or

the complementary information about A when β = ε. In the formal definition,

the intuitive notion of “partial information” is precisely represented by means

of the partition π.
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Loosely speaking, in an automaton processing a strict deterministic grammar,
top-down knowledge of A ≡ A′ buys knowledge of (1)β ≡(1) β′.

The family of all strict deterministic languages is a subfamily of the languages
accepted by deterministic pushdown automata that accept by empty stack in a
final state (Harrison, theorem 11.5.4). In strict deterministic grammars, right-
hand sides of rewriting rules cannot be prefixes of one another.

But if this restriction is relaxed (the qualifier “strict” is dropped), by dis-
tinguishing a special set of prefix-deriving parents, the defined language family
grows to be identical with the one defined by deterministic pushdown automata
that accept in a final state with any stack configuration (Harrison, problem 4
page 392).

2.4 Examples

This section exercises the definitions just given with some CFGs for a simple
language, such as might be used in sentential logic.

Example 1 (Ambiguity). Consider the context-free grammar G1 = 〈Σ,N,→〉,
where
Σ = {p, q, r,¬,∨,∧},
N = {S}, and
→ has the following 6 pairs in it:

S → p S → q S → r
S → ¬S S → S ∨ S S → S ∧ S

This grammar is (yield-)ambiguous since there are the following derivation trees
for ¬p ∧ q:

S → ¬S(¬, S → S ∧ S(S → p(p), S → q(q)))

S → S ∧ S(S → ¬S(¬, S → p(p)), S → q(q))

One can draw graphical presentations that are more readable, like this:

S → ¬S

¬ S → S ∧ S

S → p

p

∧ S → q

q

S → S ∧ S

S → ¬S

¬ S → p

p

∧ S → q

q

These CFG derivation trees are slightly redundant, since the right sides of the
rules at each internal node can be read off the daughters. Eliminating the right
side of each production gives the standard depictions:
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S

¬ S

S

p

∧ S

q

S

S

¬ S

p

∧ S

q

There is only one partition of Σ ∪ N that contains Σ, namely π = {Σ, {N}}.
Evidently, this partition is not strict, because it fails condition (ii) on page 165.
When α = ε, then G1 has, for example β = p and β′ = S. These are both
non-empty, and their first symbols are not in the same block of the partition π.

Example 2 (Unambiguous Polish Notation). Consider the context-free grammar
G2 = 〈Σ,N,→〉, where
Σ = {p, q, r,¬,∨,∧},
N = {S}, and
→ has the following 6 pairs in it:

S → p S → q S → r
S → ¬S S → ∨ S S S → ∧ S S

In G2, the operators ∨ and ∧ have been pushed to the leftmost position in the
right-hand side of each rule. On this grammar, there is just one derivation tree
for ∧¬pq, and just one for ¬ ∧ pq:

S → ¬S(¬, S → ∧SS(∧, S → p(p), S → q(q)))

S → ∧SS(∧, S → ¬S(¬, S → p(p)), S → q(q))

The same, more readable diagrams can be drawn:

S → ¬S

¬ S → ∧SS

∧ S → p

p

S → q

q

S → ∧SS

∧ S → ¬S

¬ S → p

p

S → q

q

The labels on these derivation trees can be shortened to just the left-hand side
of the applied rule, in the same way as with G1:

S

¬ S

∧ S

p

S

q

S

∧ S

¬ S

p

S

q
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There is only one partition of Σ ∪ N that contains Σ, namely π = {Σ, {N}}.
This partition is strict. When α = ε, then no matter which rules we choose,
(1)β ∈ Σ and so the conditions are satisfied. And there are no two different β, β′

and two A,A′ such that for some non-empty α, A → αβ and A′ → αβ′.

To set the stage for later developments, it is worth briefly considering two
further variants of G2.

Example 3 (Unambiguous, But Not Strict Deterministic). Consider the context-
free grammar G2a = 〈Σ,N,→〉, where
Σ = {p, q, r,¬,∨,∧},
N = {S,B}, and
→ has the following 7 pairs in it:

S → p S → q S → r
S → ¬S S → BSS
B → ∧ B → ∨

Clearly, G2a generates the same strings of category S as G2, but G2a is not
strictly deterministic, since the set Σ ∪ N has no strict partition.

Example 4 (Unambiguous, and Strict Deterministic again). Consider the context-
free grammar G2b = 〈Σ,N,→〉, where
Σ = {p, q, r,¬,∨,∧},
N = {S, B, U, A}, and
→ has the following 9 pairs in it:

S → A S → US S → BSS
A → p A → q A → r
U → ¬ B → ∧ B → ∨

Clearly, G2b generates the same strings of category S as G2 and G2a, but
G2b is strictly deterministic, since the set Σ ∪ N has the strict partition
{Σ, {A, U, B}, {S}}.

With these examples clarifying what ambiguity and strict determinism amount
to in CFGs, section 3 turns to the Minimalist Grammars.

3 Grammars

3.1 Bare Grammars

Minimalist Grammars are one of a variety of formalisms that construes a gram-
mar G as a set of basic expressions Lex and a set F of partial functions from
tuples of expressions to expressions (Keenan and Stabler, 2003). The language
L(G) is then the closure of Lex with respect to the functions in F . Internal nodes
in the derivations of G, Γ (G), are labeled with elements of F just in case f ∈ F
is applicable to the children:
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Γ (G)0 .= Lex,
Γ (G)k+1 .= Γ (G)k ∪ {f(a)| f ∈ F and a ∈ ((Γ (G)k)∗ ∩ dom(f))},
Γ (G) .=

⋃
k∈N

Γ (G)k.

Clearly, if f labels the root of some tree in Γ (G), then f is a function expression
whose evaluation returns an element e ∈ L(G). So in these derivation trees, each
node has a value which is the denotation of the function expression which is its
label, always an element of L(G).

Grammar G has ambiguous expressions ≡̇ some expression e ∈ L(G) is
the value of the roots of two distinct trees in Γ (G). Grammar G has ambiguous
yields ≡̇ there are two distinct trees in Γ (G) with the same yield. Notice that
the yields of derivations from bare grammars are sequences from Lex∗.

3.2 Minimalist Grammars

Minimalist Grammars instantiate this general picture, with elements of Lex
comprising the sequences of a quite limited inventory of “features”, along with
two structure-building functions that are constrained in their application. A
Minimalist Grammar G .= 〈Σ,B,Lex,F〉, where

1. Σ is a non-empty set (the pronounced elements)
2. B is a non-empty set of basic features, which serve to specify the features

F
.= B ∪ S ∪ M ∪ N where =,−,+ are 1-1 functions with domain B such

that selectors S
.= {=f | f ∈ B}, licensees M

.= {−f | f ∈ B}, licensors
N

.= {+f | f ∈ B}, and B, S, M, N are pairwise disjoint.
3. The lexicon Lex ⊂ Σ∗ :: F ∗ is a finite, nonempty set of lexical chains,

where the chains C
.= Σ∗TF ∗, and the types T

.= {::, :} distinguish lexical
chains from derived chains, respectively.

4. The generating functions F = {merge,move} are partial functions from tu-
ples of expressions to expressions, where expressions E

.= C+. It will be
convenient to define these functions in a deductive format, with the argu-
ments as premises and the values as the conclusion.

(a) merge : (E × E) → E is the union of the following 3 functions, for
s, t ∈ Σ∗, for · ∈ {:, ::}, for f ∈ B, γ ∈ F ∗, δ ∈ F+, and for chains
α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l)

s :: =fγ t · f, α1, . . . , αk
r1

st : γ, α1, . . . , αk

r1 applies when s is lexi-
cal; it selects its argument
on the right

s : =fγ, α1, . . . , αk t · f, ι1, . . . , ιl
r2

ts : γ, α1, . . . , αk, ι1, . . . , ιl

r2 applies when s is
phrasal and t has no
more features; it se-
lects its argument on
the left



170 J.T. Hale and E.P. Stabler

s · =fγ, α1, . . . , αk t · fδ, ι1, . . . , ιl
r3

s : γ, t : δ, α1, . . . , αk, ι1, . . . , ιl

r3 applies when s is
phrasal and t has more
features; it selects its
argument on the left

Here st is the concatenation of strings s, t. Note that since the domains
of r1, r2, and r3 are disjoint, their union is a function.

(b) move : E → E is the union of the following 2 functions, for s, t ∈ Σ∗,
f ∈ B, γ ∈ F ∗, δ ∈ F+, and for chains α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l) sat-
isfying the following condition: (SMC) none of α1, . . . , αi−1, αi+1, . . . , αk

has −f as its first feature.

s : +fγ, α1, . . . , αi−1, t : −f, αi+1, . . . , αk
m1

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk

m1 when no fea-
tures follow -f

s : +fγ, α1, . . . , αi−1, t : −fδ, αi+1, . . . , αk
m2

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

m2 when some
features follow -f

Notice that the domains of m1 and m2 are disjoint, so their union is
a function. The (SMC) restriction on the domain of move is a simple
version of the “shortest move condition” (Chomsky, 1995).

Often, one is interested in a subset of L(G), for instance just the derivations
of complementizer phrases. These derivations are all expressions of a particular
syntactic category. More generally, for any f ∈ B, the expressions of category
f , Lf(G) .= {s · f ∈ L(G)| for some · ∈ {:, ::}}; the strings of category f ,
Sf(G) .= {s| s · f ∈ Lf (G) for some · ∈ {:, ::}}; the derivations of f , Γf (G) .=
{d ∈ Γ (G)| d(ε) ∈ Lf (G)}. A derivation d is complete ≡̇ it is in some Γf (G)
for some f ∈ B. A set L ⊆ Σ∗ is a minimalist language ≡̇ for some MG and
some f ∈ B, Sf (G) = L.

The MG-definable languages are exactly the same as the languages definable
by set-local multicomponent tree adjoining grammars, by multiple context-free
grammars, and other well known grammars (Michaelis, 1998; Michaelis, 2001b;
Harkema, 2001a).

Example 5 (an MG for an ambiguous language). Consider now an MG similar
to the context-free grammar G1, G3 = 〈Σ,N,Lex,F〉, where
Σ = {p, q, r,¬,∨,∧},
N = {S}, and
Lex has the following 6 lexical items built from Σ and N

p :: S q :: S r :: S
¬ :: =S S ∨ :: =S =S S ∧ :: =S =S S

Grammar G3 has ambiguous expressions, since we have the following two
different derivations of ¬p ∧ q:

merge(merge(∧ :: =S=SS, q :: S),merge(¬ :: =SS, p :: S))

merge(¬ :: =SS,merge(merge(∧ :: =S=SS, q :: S), p :: S))
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A graphical presentation can be provided which, instead of marking all the in-
ternal nodes with the uninformative symbol merge, labels them with the values
of merge:

¬p ∧ q : S

∧q : =S S

∧ :: =S =S S q :: S

¬p : S

¬ :: =S S p :: S

¬p ∧ q : S

¬ :: =S S p ∧ q : S

∧q : =S S

∧ :: =S=SS q :: S

p :: S

These derivations correspond to the X-bar structures given below:

SP

SP

S’

S

¬
SP

S’

S

p

S’

S

∧
SP

S’

S

q

SP

S’

S

¬
SP

SP

S’

S

p

S’

S

∧
SP

S’

S

q

While these examples show that G3 has ambiguous expressions, they do not show
that G3 has ambiguous yields. Notice that the yields of the two simple derivation
trees shown above (not the X-bar structures, but the derivation trees) are not
the same. The two yields are, respectively,

∧ :: =S=SS q :: S ¬ :: =SS p :: S

¬ :: =SS ∧ :: =S=SS q :: S p :: S

In fact, G3 derivations have unambiguous yields. That is, each sequence of lexical
items is the yield of at most one derivation. However, while these sequences of
lexical items determine their derivations, the corresponding multisets do not,
as can be seen in this example from the fact that exchanging the positions of
lexical items p and q, gives two new derivations which, respectively have the
same multisets of lexical items as the two derivations shown above. These latter
two derivations derive the string ¬q ∧ p.

The suggestion is that extra information contained in the leaves – thrown
away when the structure building function merge is evaluated – is enough to fully
determine the derivation. This suggestion is amplified into a general procedure
in section 4.
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4 Strict Deterministic Grammars for MG Derivations

This section first gives the “natural” CFG for MG derivation tree fringes, adapt-
ing some basic ideas from Michaelis (1998). The CFGs obtained this way (sub-
section 4.1) are not, in general, strict deterministic, but subsection 4.2 shows
how they can always be extended so as to become so. The argument then is
that, because a strict deterministic grammar for the derivation tree fringe lan-
guage exists, the language is strict deterministic, hence LR(0), hence uniquely
readable.

4.1 The Natural Translation

Perhaps the most natural view of MG derivations as generated by CFGs simply
ignores the string-manipulation parts of the structure-building functions. Ab-
breviate by numerical subscripting i the set of ith projections of each element
in a set of n-tuples, i ≤ n. Then for any MG G = 〈Σ,B,Lex, {merge,move}〉,
define

R(Lex) .= {Fs → S :: Fs| S :: Fs ∈ Lex},
R(G) .= closure(R(Lex), {rmerge, rmove})
h(G) .= 〈Σ′, Cat,→〉 where Σ′ = Lex,Cat = R(G)1, and →= R(G).

The functions rmerge, rmove are the obvious modifications of merge,move. To
obtain the CFG, simply eliminate the string components everywhere except at
the leaves. So instead of chains C with string components, the cchains CC

.= F ∗

are just feature sequences, and the possible rules R
.= CC+×(Lex∪CC+). To

generate the needed context-free rules, rmerge : (R×R) → R is the union of the
following 3 functions, for f ∈ B, γ ∈ F ∗, δ ∈ F+, for cchains α1, . . . , αk, ι1, . . . , ιl
(0 ≤ k, l), for non-lexical right sides N ∈ CC+, and for arbitrary right sides
M,L ∈ (Lex ∪ CC+)

=fγ → s :: =fγ f, α1, . . . , αk → M
rr1

γ, α1, . . . , αk → =fγ f, α1, . . . , αk

=fγ, α1, . . . , αk → N f, ι1, . . . , ιl → M
rr2

γ, α1, . . . , αk, ι1, . . . , ιl → =fγ, α1, . . . , αk f, ι1, . . . , ιl

=fγ, α1, . . . , αk → M fδ, ι1, . . . , ιl → L
rr3

γ, t : δ, α1, . . . , αk, ι1, . . . , ιl → =fγ, α1, . . . , αk fδ, ι1, . . . , ιl

Note that since the domains of rr1, rr2, and rr3 are disjoint, their union is a
function.
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Similarly, rmove : R → R is the union of the following 2 functions:

+fγ, α1, . . . , αi−1,−f, αi+1, . . . , αk → N
rm1

γ, α1, . . . , αi−1, αi+1, . . . , αk → +fγ, α1, . . . , αi−1,−f, αi+1, . . . , αk

+fγ, α1, . . . , αi−1,−fδ, αi+1, . . . , αk → N
rm2

γ, α1, . . . , αi−1, δ, αi+1, . . . , αk → +fγ, α1, . . . , αi−1,−fδ, αi+1, . . . , αk

Notice several facts about the translation h.

Theorem (Michaelis, Harkema). R(G) is finite.

Because of R(G)’s finitude, h is well-defined.

Theorem (h-Correctness). For every MG G, s ∈ yield(Γf (G)) if and only if
s ∈ Lf (h(G)).

Proof idea: this is established with an easy induction on derivation lengths, since
the context-free rules rr and rm correspond to every possible application of merge
and move.

Theorem 1 (Non-left-recursive). For every MG G, h(G) is not left recursive.

Proof idea: This is easy to see, since the label of any left daughter of any node
in any derivation is always strictly larger than its parent. In the case of merge,
it is one feature larger; in the case of move, it is two features larger.

Examples 6 and 7 show how the range of this translation is not restricted to
strict deterministic CFGs. However, subsection 4.2 illustrates another translation
g that is restricted in this way.

Example 6 (h(G3) is not strictly deterministic). Consider grammar G3 from page
170. The CFG h(G3) = 〈Σ,N,→〉 where Σ = Lex, N = {S, =SS, =S=SS}, and
→ is the following 8 pairs:

S → =SS S S → p :: S S → q :: S S → r :: S
=SS → =S=SS S =SS → ¬ :: =SS
=S=SS → ∧ :: =S=SS =S=SS → ∨ :: =S=SS

Notice that 6 of the 8 pairs are lexical. Also, it is clear that Σ ∪N has no strict
partition. Notice, in particular, that the category =SS can rewrite as a lexical
item or as a pair of nonterminals.

Example 7 (h(G3)a ≡ h(G3) and h(G3)a is strictly deterministic). Let h(G3)a .=
〈Σ,N,→〉 where Σ = Lex, N = {1=SS , 2=SS , 1=S=SS , S, =SS, =S=SS}, and →
is the following 11 pairs:
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S → =SS S S → 2=SS

2=SS → 1=SS 1=SS → p :: S 1=SS → q :: S 1=SS → r :: S
=SS → =S=SS S =SS → 1=S=SS

1=S=SS → ¬ :: =SS
=S=SS → ∧ :: =S=SS =S=SS → ∨ :: =S=SS

Clearly LS(h(G3)) = LS(h(G3)a), but now Σ ∪ N has a strict partition:

{{S}, {=SS, 2=SS}, {=S=SS, 1=S=SS , 1=SS}, Σ}.

4.2 Extending the Natural Translation

The step from h(G3) to h(G3)a can be generalized to show that, for any MG G
the grammar h(G) generates an LR(0) language. This is shown using another
language-preserving map g on the grammars h(G) whose range includes only
strict deterministic CFGs.

Given h(G) = 〈Σ,N,→〉, for any A ∈ N , sequence (A1A2 . . . An) ∈ N+ is a
left branch of A if and only if the following three conditions hold:

1. A = A1

2. for all 1 ≤ i < n, either Ai → Ai+1 or Ai → Ai+1B for some B ∈ N , and
3. An → a for some a ∈ Σ

When A → a for a ∈ Σ, the empty sequence ε is a left branch of A.
As observed earlier (theorem 1), for any MG G h(G) is never left recursive.

Since there are no infinite left-recursive branches, one can define a ranking func-
tion rank : (N ∪ Lex) → N so that for a ∈ Σ, rank(a) = 0 and for A ∈ N ,
rank(A) is the length of the longest left branch of A.

Example 8. In h(G3), notice that rank(S) = 3, rank(=SS) = 2, and
rank(=S=SS) = 1.

Now g can be defined directly on MGs using h. Observe that all rules p ∈ h(G)
are of the form p = A → a or p = A → BC or p = A → B. Define a function
pad by cases that maps each such rule to a set of pairs as follows:

p = A → a:
If rank(A) = 1, then pad(p) = {p}. Else we add padded categories from
rank(A) down to 1 as follows:

pad(p) = {A → (rank(A)−1)A, (rank(A)−1)A → (rank(A)−2)A, . . . , 1A → a}.

p = A → BC:
If rank(B) = rank(A)−1, then pad(p) = {p}. Else we add padded categories
from rank(A) down to rank(B) as follows:
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pad(p) = { A → (rank(A) − 1)BC, (rank(A) − 1)B → (rank(A) − 2)B ,
. . . , rank(B)B → B}.

p = A → B: pad(p) is defined similarly.

The new rule set R′(G) is defined to be
⋃

r∈(→) pad(r), and for any MG G, the
context-free grammar g(G) .= 〈Σ,R′(G)1, R′(G)〉.
Theorem (g-Correctness). For every MG G, h(G) = 〈Σ,N,→〉 and g(G) =
〈Σ,N ′,→′〉, and any A ∈ N , LA(h(G)) = LA(g(G)).

Proof: From the definition of g, we have immediately that N ⊆ N ′ and a simple
induction shows, using the definition of pad, that the same sets of terminal
strings are derivable. �

The ranking of nonterminals by their longest left branch induces a partition.
For each x ∈ (N ∪ Σ), [x] .= {y ∈ (N ∪ Σ)| rank(y) = rank(x)}. Since there is
a unique maximum left branch length for every nonterminal, the [x] are disjoint
and since every nonterminal has a maximum left branch length, the [x] are
exhaustive.

Theorem 2 (Strict Determinism of MG derivation languages). For any
MG G, g(G) = 〈Σ,N,→〉, the set

π = {[x]| x ∈ (N ∪ Σ)}
is a strict partition of N ∪ Σ.

Proof. Referring again to the definition of strict partitions (2.3) on page 165,
each condition is satisfied by construction:

1. Σ ∈ π since by the definition of rank, Σ = [a] for all a ∈ Σ.
2. For α = ε, it follows from the definition of pad that rules with equivalent left

sides have equivalent first symbols on their right sides.
And there are no two different β, β′ and two A,A′ such that for some non-
empty α, A → αβ and A′ → αβ′. �

5 Conclusion

In showing that the derivation tree fringes of MGs are strict deterministic, it has
been important to keep in mind the difference between having (un)ambiguous ex-
pressions – i.e. that the string languages are unambiguous, which is certainly
false for MGs – and having (un)ambiguous yields – i.e. that the language of lex-
ical entry sequences is unambiguous. This latter point is the one demonstrated
in this paper. Because strict determinism implies LR(0), shift-reduce automata
can quickly assemble a sequence of lexical entries into a tree, dependency graph
or other representation, after chart-parsing or some other method has disam-
biguated a grammatical string into the correct sequence of lexical entries.
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