
revised 2011-10-06 10:06 stabler@ucla.edu

Edward P. Stabler

Recursion in grammar and performance

In the last 50 years of cognitive science, linguistic theory has proposed
more and more articulated structures, while computer science has shown
that simpler, flatter structures are more easily processed. If we are inter-
ested in adequate models of human linguistic abilities, models that explain
the very rapid and accurate human recognition and production of ordinary
fluent speech, it seems we need to come to some appropriate understand-
ing of the relationship between these apparently opposing pressures for more
and less structure. Here we show how the apparent conflict disappears when
it is considered more carefully. Even when we regard the linguists’ project
as a psychological one, there is no pressure for linguists to abandon their
rather deep structures in order to account for our easy production and
recognition of fluent speech. The deeper, more recursive structures reflect
insights into similarities among linguistic constituents and operations, but
a processor can compute exactly these structures without the extra effort
that deeper analyses might seem to require. To show how this works, we
review §1 standard notions of recursive depth and some basic ideas about
how computations can be implemented, §2 a consensus position about lin-
guistic structure, and §3 some large classes of parsing models that compute
exactly the consensus structures in such a way that the depth of the linguis-
tic analysis does not correspond to processing depth. The apparent tension
is resolved in this last step, with a proper understanding of how computa-
tions can be implemented. The needed perspective on what it is to repre-
sent and manipulate structures, to implement a computation, is completely
standard. From this unifying perspective, we will argue that adequate per-
formance models must be more superficial than adequate linguistic models,
that this is unsurprising, and that the two perspectives are reconciled by
a substantial theory of how linguistic computations are implemented. In a
sense that will be made precise, the recursive depth of a structural analysis
does not correspond in any simple way to depth of the calculation of that
structure in linguistic performance.

UCLA Department of Linguistics

2 Edward P. Stabler

1. Recursion and depth

Ordinary fluent speech is perceived as having parts, in temporal sequence.
Considering the natural patterns of parts found in these sequences, we find
first that they do not have a principled upper bound on their length; in
this sense, languages are infinite. So to define the patterns, we define an
infinite set rather than imposing some arbitrary length bound. The standard
definitions of infinite sets of sequences are recursive, in the sense that the
set being defined is used in its own definition. This idea is familiar from
the definitions of other infinite sets. For example, we can define the set of
natural numbers as the smallest set containing 0 such that, for every natural
number, its successor is also a natural number. This definition is sometimes
presented with a notation like the following, in which we see that the set N
of numbers that we are defining appears on the right, in the definition:

N := 0 | s(N).

This simply says that the set of natural numbers contains 0 and also the suc-
cessor of every natural number (and nothing more). The successor function
is also said to be recursive, since it applies to its own output. In a similar
way, the theorems of standard logics are defined as the axioms together with
everything derived from the theorems by the rules of inference I,

T := Axioms | I(T).

Here again the definition of the set of theorems T is recursive, as are the
inference rules if they can apply to their own output. Languages can be
defined by rewrite rules, but it can be more convenient to use an inductive
definition similar to the previous examples:

L := Lex | F(L).

This says that a language includes a lexicon and everything that can be
built from lexical items by some structure building operations F . Many
generative grammars can be stated in this form, even many of those that
are not explicitly presented this way [45].

Given a recursive definition of a set S and a particular thing a, how
can we tell whether a is in the set S? Clearly, one way to do this is by
proving from the definition that a is included. For example, we can show
that s(s(0)) is a number using our definition of N by observing first that
s(s(0)) is a number if s(0) is, and that s(0) is a number if 0 is, and 0 is a
number. In a sense, this establishes that s(s(0)) is a number by using the
definition 3 times. We can present this proof as a ‘derivation tree’, where •
is the successor function:

•

•

0

Recursion in grammar and performance 3

This tree has depth 3, since that is the number of steps from the root to the
leaf. Returning to our question, how can we tell whether something is in a
set defined by a recursive definition, the answer is: by finding a ‘derivation’
of that element, in this sense.

Suppose we have a propositional logic with this set of four axioms,

Axioms := {p, q, r, (p→ (q → (r → s)))},

and with the inference rule modus ponens, I = {mp}. Then, with the defi-
nition T := Axioms | I(T), we can show that s is a theorem in T with the
derivation standardly presented as shown on the left below, which is just
another form of the derivation tree shown on the right, where • is mp:

p→ (q → (r → s)) p

q → (r → s) q

r → s r

s

•

•

•

p→ (q → (r → s)) p

q

r

The depth of this derivation tree is 4, since that is the length of its longest
path from root to leaf. In effect, on this path, we use the recursive definition
4 times to get this tree.

Now a first point of interest is that there are other definitions of the same
set of theorems T, where many theorems have much shallower derivations.
For example, suppose that in addition to mp, we have an inference rule
which takes 4 premises instead of 2, and, in effect, applies mp 3 times at
once:

α → (β → (γ → ψ)) α β γ

ψ

With this rule, even though the set T is not changed in any way, we can
derive s in 1 step instead of 3 (here using ◦ to represent our new rule),

p→ (q → (r → s)) p q r

s

◦

p→ (q → (r → s)) p q r

With this proof we have saved just a couple of steps, but obviously for longer
proofs, the number of steps we save can increase without bound. That is,
in the new system with two inference rules, many results can be established
with much less recursive depth. There is a large literature in logic about
how to ‘speed up’ proofs by adding new mechanisms like this [27,85,11].

Consider the sequence of actions: drink, drive, and go to jail. We might
assume that that there is no recursion in a sequence like that, but now we
see that the question depends on how the sequence is defined. For example,
if at each decision point, a similar decision process • is operative, then we
could have a recursive depth of 3 as shown on the left below. But if the
three actions just follow one after the other, then there is just 1 step:

4 Edward P. Stabler

•

drink •

drive •

go to jail •

ǫ

•

drink drive go to jail

(T) (T’)

In the absence of a theory of action or any other application, there may
be no reason to prefer one description over the other. But turning now to
human language, we argue for the following points: a methodological point
M1, and two rather secure empirical hypotheses H1 and H2.

(M1) There can be strong reasons to favor a highly recursive definition
like (T) over a less recursive one like (T’), or vice versa.

(H1) There is a significant consensus about the kinds of recursive opera-
tions needed to define human languages.

(H2) Performance models need to flatten where linguists don’t.

Before explaining and defending these points, two more quick preliminaries
are needed: in §1.1 we define a couple of notions based on the previous
discussion, and in §1.2 we briefly consider a computer science perspective
on definitional complexity and implementation.

1.1. Complexity: size, depth , deptho

Let’s say definition of L is recursive if the definition uses L, as in the exam-
ples above. And an operation (like the successor function, or modus ponens,
or a rule of grammar) is recursive if it can apply to its own output. Taking
a slightly more complex example, in a formal grammar inspired by recent
Chomskian syntax, there is an operation called merge • and an operation
called move ◦, so a language L is defined as follows [81,61,84]:

L := Lex | F(L), where F = {•, ◦}.

A grammar of this kind can establish that who Juliet loves is a ‘complemen-
tizer clause’ (CP) with a derivation like the one shown below right, which is
more conventionally shown with the corresponding derived tree on the left:

Recursion in grammar and performance 5

CP

DP(1)

D’

D

who

C’

C TP

DP(1)

t(1)

T’

T vP

DP

t(1)

v’

DP(0)

D’

D

Juliet

v’

v VP

V’

V

loves

DP

t(0)

◦

•

ǫ::=T +wh C ◦

•

ǫ::=v +k T •

◦

•

ǫ::=V +k =D v •

loves::=D V Juliet::D -k

who::D -k -wh

size 31, depth 11, depthCP 1, depthv′ 2 size 14, depth 9, depth• 5, depth◦ 3

The features associated with lexical items at the leaves of the derivation tree
determine what derivational steps can apply, as explained in [81,34,61,84],
but the relevant thing here is the recursion in the derivation. As indicated
in the captions above, let the size of a tree be the number of nodes; let the
depth of a tree be the length of its longest path, and for each operation f
in the tree (or for each node label when the tree is not a derivation tree),
let the depthf be the greatest number of occurrences of f on any path from
root to leaf. Let’s say that a tree is recursive if for some f , depthf is greater
than 1. Recursion in a derivation tree then indicates that some operation f
is applying to its own output (perhaps mediated by other operations).

Linguists and psycholinguists usually give most attention to derived
trees, like the one on the left, above, but for most processing problems, that
is a mistake! For parsing, for example, it is the derivation that is more fun-
damental, since the existence of a derivation is what determines whether a
structure is assigned at all, and the derivations immediately determine what
the derived structures are (while the converse does not generally hold).1

We will accordingly attend primarily to recursion in the operations, in the
derivation tree, rather than to recursion in the associated derived structures.

1.2. Computational preliminaries

In computer science, a problem is often approached by, first, giving a clear
and perspicuous definition of what needs to be computed, and then carefully
searching for efficient ways of computing it. These two objectives pull differ-
ent directions! This happens because, roughly, (T) the simplest definitions

1 A certain arbitrariness in the derived structures can be revealed in a precise
way by showing that quite different derived structures can yield isomorphic sets
of derivations, with identical leaves – a key idea behind the results established in
Theorems 1 and 2, mentioned below.

6 Edward P. Stabler

may require many steps to derive a result, while (P) the most time-efficient
computations are those that take rather few steps.

(T) To specify what is computed, we aim for simplicity.

(P) For efficiency, aim to keep calculations flat.

The first point is very important! Computer scientists have slogans em-
phasizing the importance of simplicity and that a loop or recursion should
always be used whenever some step or sequence of steps needs to be re-
peated:2

‘Inside every big problem is a little problem trying to get out.’

‘Two or more, use a for.’

If a specification is too complex, it becomes infeasible to assess whether it
is right! Linguists emphasize the analogous point too: we would like to find
as simple a perspective as possible on as much as possible in the language.
For example, Chomsky [14] notes that there are fundamental similarities
between merge • and move ◦, and he accordingly frames his theory in terms
of one merge operation •. Note that if all the operations in the derivation
tree above were instances of the same rule •, then depth• is increased.

However, the second point, (P), is also important! Obviously, computer
scientists often want to compute solutions with minimum resources, and to
model natural computations that are fast and easy, we would like a model
which reveals how those computations can be fast and easy.

The conflict between (T) and (P) is tamed in computer science by the
theory of how an algorithm can be implemented. When we can specify a
function easily, in a ‘high level language’, we can sometimes convert that
specification into an efficient implementation with a ‘compiler’. Many of
the steps in the conversions automated by optimizing compilers serve pre-
cisely to decrease recursive depth. Some steps of this kind include: recursion
unfolding, loop unrolling, partial evaluation, inlining, macro expansion, de-
forestation, and many others [91,3,38,59,78,13,53,47,32].3 There is a sub-
stantial body of theory here, but the basic idea is similar to the speed-up
already mentioned above. For example, given a specification that requires a
calculation of depthf 2, as shown on the left below, a first conversion might
specialize the preterminal steps of the calculation:

2 The first of these is sometimes attributed to Tony Hoare, the latter to Edsger
Dijkstra.

3 In compiling programming languages, loops need to be treated differently from
recursion. These two mechanisms are expressively equivalent. Indeed this kind of
equivalence was a significant motivation for the Church-Turing thesis. For present
purposes, we will not introduce loops, and the difference between loops and re-
cursion on standard machine architectures (or neurally plausible ones) will not
be explored. The relevant point here is simply that both loops and recursion can
define calculations of various recursive depths, and these depths are decreased by
optimizing compilers.

Recursion in grammar and performance 7

f

f

a b

f

c d

⇒

f

fa,b

a b

fc,d

c d

⇒

f◦1fa,b

a b fc,d

c d

⇒
f◦1fa,b◦3fc,d

a b c d

This first conversion of the problem decreases the depthf from 2 to 1. The
overall size and depth of the tree remains the same, but in many cases
fa,b, fc,d can be more efficient than two applications of f just because the
specialized functions need not handle such a wide range of arguments. The
second and third conversions shown above ‘compose’ the functions together,
‘unfolding’ the computation, as we did earlier when we composed mp with
itself several times. These latter steps decrease the size and depth of the
calculation overall. Typically,

• steps like these decrease recursive depth, but increase program size;

• finding a ‘best’ unfolding for a particular machine with size less
than a fixed finite bound is typically intractable [77]; some recent
‘profiling compilers’ optimize those parts of the code that is most
heavily used, a sensible ‘practice effect’ strategy which could have
an analog in natural systems;

• the ‘best’ unfolding also depends, of course, on architecture of the
machine running it, on what steps are basic, as is noted in linguistic
contexts where we are interested in the possible neural implementa-
tions [80,68,7].

In sum, when considering how a computation might be realized, for example
a computation that decides whether a sequence has a derivation from some
grammar, it is important to remember that this kind of problem can often
be solved (i.e. solved exactly and correctly) with definitions that have been
‘flattened’ by methods like this.4 This kind of flattening affects processing
complexity without any change at all to the mapping computed.

2. Linguistic structure

Now let’s turn to the definition of linguistic structure. The previous discus-
sion suggests that it may be useful to have this goal:

4 What counts as an ‘implementation’ of an algorithm, exactly? Some theoretical
proposals require a very fine grained correspondence between the steps of the
algorithm and the steps of the implementation, while other require less [65,10].
For some extremely simple neural mechanisms in sensory and motor systems, we
can begin to see how relevant computations could be implemented, sometimes all
the way down to the molecular level [46,24,25,89]. But it is not yet clear what
to expect from an ideally completed psychological/neurophysiological theory of
human language abilities and their realization. As Berwick and Weinberg have
pointed out in their excellent discussion of the situation, we of course aim to
characterize the relation as simply and straightforwardly as possible [7, §2]. But
the implementation of programming languages is a rather large and complex story,
and one expects the full story about the implementation of linguistic abilities to
be even more so.

8 Edward P. Stabler

(M0) Disentangle what is computed from how it is computed, its realiza-
tion.

Recursion matters in different ways for the specification of what is computed
and for the performance model, since the recursion in the specification of
what is computed often represents the recognition of simplifying regular-
ities, but the optimal or psychologically appropriate computation may be
flattened in the ways mentioned above. In fact, as (M0) suggests, we will see:
(H2) performance models do in fact need to flatten where linguists don’t.
First, though, it is important to notice that there is significant agreement
about some fundamental properties of the recursive mechanisms that define
linguistic structures.

Although some of the early grammars and processing models were ex-
tremely powerful (e.g. Chomsky’s ‘Aspects’ theory [70], and ATN processing
models [93]), there were challenges to the idea that such powerful models
were necessary [73], and in the late 1980’s a surprising consensus began
to emerge. It turned out that many independently proposed grammar for-
malisms were ‘equivalent’ in the sense that they could define exactly the
same languages, including some non-context free languages, but remaining
efficiently parsable. The proofs of these equivalences were generally rather
easy, revealing some fundamental similarities among the recursive mecha-
nisms. It later turned out that formal grammars inspired by Chomskian
syntax, mentioned above, were also weakly equivalent to other indepen-
dently proposed and well known formalisms. This yielded a surprising con-
vergence, established in a number of papers, which can be summarized like
this, writing ‘CFG’ for ‘languages defined by context free grammars’, ‘TAG’
for ‘languages defined by tree adjoining grammars’, ‘CCG’ for ‘languages
defined by combinatory categorial grammars’, ‘MG’ for the ‘languages de-
fined by minimalist grammars’, ‘MCTAG’ for ‘languages defined by set-local
multi-component tree adjoining grammars’, ‘MCFG’ for ‘languages defined
by multiple context free grammars’, ‘CS’ for ‘languages defined by context
sensitive grammars’, ‘RE’ for ‘recursively enumerable languages’, ‘Aspects’
for ‘languages defined by the transformational grammar of [70]’, and ‘HPSG’
for ‘languages defined by head-driven phrase structure grammar’ [90,60,62,
33,79,70,6,37,86,87,35]:

Thm 1. CFG⊂ TAG=CCG⊂MG=MCTAG=MCFG ⊂CS⊂RE=Aspects=HPSG.

The boxed language classes are, to use Joshi’s [39] term, ‘mildly context
sensitive,’ and Joshi proposes that human languages are in one of these.
Following the results of Theorem 1, it was also discovered that many vari-
ants of minimalist grammars are equivalent: adding head movement (MGH),
adding directional selection with ‘head parameters’ (DMG), adding asym-
metrical feature checking (CMG), adding phases (PMG), adding sidewards
movement (SMMG) [62,63,49,81,82]:

Thm 2. MG=MGH=DMG=CMG=PMG=RMG=SMMG.

All these grammars define the same class of mildly context sensitive lan-
guages. This consensus is extended to some optimality systems by recent

Recursion in grammar and performance 9

work [48,43,42,28] based on earlier studies of OT phonology [23,36]. This
is the consensus (H1) mentioned earlier:

(H1) There is a significant consensus about the kinds of recursive oper-
ations needed to define human languages: they are ‘mildly context
sensitive’. (Joshi [39])

This claim still faces some challenges, but the challenges are rather minor
in the sense that, even if they are successful, they require only a slight
weakening of the claim, staying in the polynomially parsable class, properly
included in the context sensitive languages.5

One respect in which minimalist grammars (MGs) are stronger than
some similar, earlier proposals is that they allow a phrase to move after
something has been extracted from it. This kind of ‘remnant movement’
has been proposed now for quite a wide range of constructions [92,66,44,
52,54,4,1]:

[VP t1 Gelesen]2
read

hat
has

[das
the

Buch]1
book

keiner
noone

t2

[APHow likely [t1 to win]]2 is John1 t2?

[VPCriticized by his boss t1]2 John1 has never been t2.

John [VPreads t1]2 [no novels]1 t2.

Most earlier ‘slash-passing’ and ‘store a filler, wait for a gap’ parsing mod-
els cannot handle remnant movement, but standard parsing methods (CKY,
Earley,. . .) have been shown sound, complete, efficient for the whole range of
MGs [34], handling remnant movement and everything else that can be de-
fined with this grammar formalism. Without remnant movement, the move
and merge operations of MGs are strictly weaker, defining only context free
languages [51].

3. Performance and variation

With Theorems 1, 2 and ongoing work that is still enlarging the scope
of those claims, the ‘linguistic wars’ may not be over, but we can now see
that, behind the endless skirmishes, a significant consensus lurks in the back-
ground. In many cases, we have automated recipes for converting grammars
of one type into equivalent grammars of other types, so significant propos-
als expressed in one framework can often be adapted fairly easily to others.
With this mind, let’s consider how minimalist grammars (MGs) could be
incorporated into a performance model. It is sometimes held that this is im-
possible, that MGs are unsuitable for performance models.6 But since MGs
participate in the the broadening consensus, this becomes implausible: the

5 The remaining controversy concerns, for example, the status of copying-like
operations in grammar, which threatens the ‘linear growth’ property [64,9,50],
and the appropriate treatment of dependencies in scrambling [74,5,69].

6 For example, Ferreira says in 2005,

10 Edward P. Stabler

ways of accounting for influences on human online syntactic analysis in one
of these formalisms can be adapted to the others.

When an utterance is structurally ambiguous, human subjects frequently
notice one structure before, or instead of, the others. Here we coarsely clas-
sify some of the proposals about ‘first pass’ parsing preferences, in order
to point out briefly how all of these performance models must draw finer
distinctions among derivational steps than the linguistic theory does. Con-
sequently, even when the model computes exactly the structures defined by
the grammar, the depth of depth of recursion for the computation is lower
than the depth of recursion for the grammatical derivation.

Categorial frequencies. Let’s say that a proposal about parsing prefer-
ences is categorial if it says one or another (partial) analysis is preferred
because of the categories of the expressions involved. It is rather difficult
to experimentally distinguish purely categorial influences from influences
that are based on the particular lexical identities of elements of the same
category, as discussed for example in [26,41, §2.6], but many models of
human recognition complexity and ambiguity resolution encode category-
based preferences. This includes, for example, the models based on proba-
bilistic context free grammars in [40,30,55,56].

The merge steps of a minimalist derivation can be specialized for each
category by marking each step with the features that trigger its applica-
tion. This is achieved by mapping an MG with a particular lexicon into a
strongly equivalent multiple context free grammar, as is done, in effect, by
the conversion of an MG to a strongly equivalent MCFG [60].

. . .many psycholinguists are disenchanted with generative grammar. One
reason is that the Minimalist Program is difficult to adapt to process-
ing models. Another is that generative theories appear to rest on a weak
empirical foundation. . . [I]t is now clear that no one interested in human
performance can ignore the possible effects of things such as frequency and
exposure on ease of processing. [19, pp.365, 370]

Old questions about the relation between grammar and performance [8,21] are
still alive today, prompted in particular by instances where simple grammatical
sequences are not recognized as acceptable, and instances were ungrammatical
sequences seem to be acceptable [20,71,72]. Here we aim only to defend the very
general methodological and structural points already indicated: (M0,M1,H1,H2).

Recursion in grammar and performance 11

CP

DP(1)

D’

D

who

C’

C TP

DP(1)

t(1)

T’

T vP

DP

t(1)

v’

DP(0)

D’

D

Juliet

v’

v VP

V’

V

loves

DP

t(0)

◦[+wh · -wh]

•[C · T]

ǫ::=T +wh C ◦[+k · -k]

•[T · v]

ǫ::=v +k T •[v ·D]

[+k · -k]◦

•[v · V]

ǫ::=V +k =D v •[V ·D]

loves::=D V Juliet::D -k

who::D -k -wh

depth
•[x,y] 1, depth◦[x,y] 1

The steps, now classified by the categories they operate on, can be assigned
different probabilities in a manner exactly analogous to the assignment of
probabilities to the rules of a context free grammar. This kind of step was
taken by Hale [30,29], for example, in a model of processing complexity.

This step, while it increases grammar size, can decrease processing time
very significantly exactly because each step is more specialized. The fol-
lowing graph compares the processing times required to compute the same
derived structures with a ‘naive’ implementation compared to one where
each rule is specified for particular categories:

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06

m
s,

 lo
g

sc
al

e

items, log scale

CKY (exhaustive bottom-up) parsing times

naive merge,move

unfolded

This graph plots processing time versus the number of ‘items’ computed
by a CKY parser, just to illustrate how significant the effect can be on

12 Edward P. Stabler

a standard computing device. Notice that with the operations split into
separate categories, the depthf for these new operations f will tend to be
significantly less in each analysis than the original depth• and depth◦, but
the output of the analysis is not changed in any way.

Lexical frequencies. More common in psychological models is a much
finer tuning: not by category, but by particular lexical items [22,88,57].
It is familiar at least since Zipf [94] that some lexical items combine much
more frequently than others in the same category. One simple computational
model of this kind of preference is a ‘bilexical’ grammar which, in effect,
treats each category as including the particular lexical item which is its
‘head’ in some sense of that term [58,67,17]. When this refinement is applied
to MGs, in most discourses it becomes rare to see depthf greater than 1 for
any (categorially and lexically specific) operation f .

Left context and discourse effects. Even more specific operations are
obtained when we consider not just the pair of heads being combined, but
the whole linguistic left context that has already been seen, together with
the discourse situation. It is perhaps still controversial how much of this
material really conditions first pass parsing preferences, but the evidence
shows that it is applied quite quickly [15,2,12]. In parsing models where the
full left context is available, it has been found useful in prediction [76,75,
83] – an unsurprising result!

Modular perspectives. The previous models were presented as involving
refinements of the rules of grammar, so that more specialized rules can ap-
ply in more specialized contexts (to achieve exactly the same analysis). But
these models need not be described (or implemented) that way. The rea-
son for replacing the original operations •, ◦ of the grammar with a large
set much more specific •C , ◦C operations that apply only in particular con-
texts C is to allow for different probabilistic assessments of derivations in
those different contexts. But obviously, this can be done without special-
izing the operations: we can calculate the probability of the derivations
using the original operations in a model where those probabilities are con-
ditioned by context. For example, as we take each step (with one of the
original operations), we can obtain the probability of the extended partial
derivation by multiplying the previous probability times the probability of
this step, in context. This provides a ranking of the partial derivations at
each step, which could be used for example in ‘beam parsing’ strategies
that prune away the extremely improbable analyses incrementally [40,76,
75], or in one-parse-at-a-time strategies that pursue the most probable or
most expedient option at each point [31]. In these models, the ‘finest’ clas-
sification of derivations comes not from the derivation steps, which are very
general, but from the ranking steps, rankC which will assign each derivation
a probability or weight in context.

Note that instead of having a large family of ranking functions rankC
each specialized for some context C, we could treat the context C as an
argument to a very general ranking function. In fact, this is the usual per-
spective: the ranking function is given some representation of context C

Recursion in grammar and performance 13

and of the derivation D. So could depict a derivation tree with very gen-
eral operations •, ◦, rank but then the leaves of rank would include not just
linguistic material but also contexts, changing the nature of the compari-
son between this evaluation tree and the grammatical derivation trees. In
any case, the effect of the context here is clearly to classify derivations very
finely, along dimensions that matter to performance but not to the syntactic
structural options. It is uncontroversial that this must be done, somehow, to
model context effects on human sentence processing. The review of options
here emphasizes the fact that such effects can be obtained with standard
grammars, either by refining the operations of those grammars or by adding
separate ranking steps. And of course all these steps could all be collapsed
by ‘optimizing’ or ‘practice’ effects in other ways, analogous to methods
used in compiling programming languages, without any change in what is
computed.

4. Summary: How depth of recursion matters

The study of how linguistic structure is recognized takes place in the setting
of significant agreement about what that structure is:

(H1) Human languages are mildly context sensitive.

When we consider any non-trivial computation, it is not hard to understand
the importance of these basic methodological precepts:

(M0) Disentangle what is computed from how it is computed, its realiza-
tion.

(M1) Even in the study of a single domain, there can be strong reasons
to favor a highly recursive definition over a less recursive one, and
vice versa.

Considering the study of human language recognition and production in
particular,

(H2) Performance models need to flatten where linguists don’t.

No reasonable linguist has argued that there are human languages with
grammars that are non-recursive in the senses defined here. And there is
very little controversy (mentioned in footnote 5) about whether the opera-
tions defining human languages are ones that define ‘mildly context sensi-
tive’ languages. The controversy raised by Everett [18] and others concerns
(interesting but) more superficial questions about derived structure: e.g. are
there languages in which we never find clauses containing clauses?

(H2) is true simply because the recursion in the theory of language al-
lows us to state regularities that are independent of many influences on the
performance of linguistic tasks. It is hard to see how reasonable progress
could be made without separating these issues, just as it is hard to see how
to implement a complex high level program on a manufactured computer

14 Edward P. Stabler

without carefully separating and detailing the implementation. Adding non-
structural factors preserves structure but hides it, reducing the depth of
recursion and overwhelming us with detail unless it is approached system-
atically.

References

1. Abels, K. Towards a restrictive theory of (remnant) movement: Improper
movement, remnant movement, and a linear asymmetry. Linguistic Variation
Yearbook 2007 7 (2007), 53–120.

2. Altmann, G. T. M., van Nice, K. Y., Garnham, A., and Henstra, J.-
A. Late closure in context. Journal of Memory and Language 38, 4 (1998),
459–484.

3. Appel, A. W. Unrolling recursions saves space. Technical report tr-363-92,
Dept. of Computer Science, Princeton University, 1992.

4. Baltin, M. R. Movement to the higher V is remnant movement. Linguistic
Inquiry 33, 4 (2002), 653–659.

5. Becker, T., Rambow, O., and Niv, M. The derivational generative power
of formal systems, or, scrambling is beyond LCFRS. IRCS technical report
92-38, University of Pennsylvania, 1992.

6. Berwick, R. C. Computational complexity of lexical functional grammar. In
Proceedings of the 19th Annual Meeting of the Association for Computational
Linguistics, ACL’81 (1981), pp. 7–12.

7. Berwick, R. C., and Weinberg, A. S. The Grammatical Basis of Lin-
guistic Performance: Language Use and Acquisition. MIT Press, Cambridge,
Massachusetts, 1984.

8. Bever, T. G. The cognitive basis for linguistic structures. In Cognition and
the Development of Language, J. Hayes, Ed. Wiley, NY, 1970.

9. Bhatt, R., and Joshi, A. Semilinearity is a syntactic invariant: a reply to
Michaelis and Kracht. Linguistic Inquiry 35 (2004), 683–692.

10. Blass, A., Dershowitz, N., and Gurevich, Y. When are two algorithms
the same? Bulletin of Symbolic Logic 15, 2 (2009), 145–168.

11. Buss, S. R. On gödel’s theorems on lengths of proofs i: Number of lines and
speedup for arithmetics. Journal of Symbolic Logic 59, 2 (1994), 737–756.

12. Chambers, C. G., Tanenhaus, M. K., Eberhard, K. M., Filip, H., and
Carlson, G. N. Actions and affordances in syntactic ambiguity resolution.
Journal of Experimental Psychology: Learning, Memory and Cognition 30, 3
(2004), 687–696.

13. Chitil, O. Type inference builds a short cut to deforestation. In International
Conference on Functional Programming (1999), pp. 249–260.

14. Chomsky, N. The Minimalist Program. MIT Press, Cambridge, Mas-
sachusetts, 1995.

15. Crain, S., and Steedman, M. On not being led up the garden path. In
Natural Language Parsing, D. Dowty, L. Karttunen, and A. Zwicky, Eds.
Cambridge University Press, NY, 1985.

16. den Besten, H., and Webelhuth, G. Stranding. In Scrambling and Bar-
riers, G. Grewendorf and W. Sternefeld, Eds. Academic Press, NY, 1990.

17. Eisner, J. Bilexical grammars and their cubic-time parsing algorithms. In
Advances in Probabilistic and Other Parsing Technologies, H. Bunt and A. Ni-
jholt, Eds. Kluwer Academic Publishers, October 2000, pp. 29–62.

18. Everett, D. L. Cultural constraints on grammar and cognition in Piraha:
Another look at the design features of human language. Current Anthropology
46 (2005), 621–646.

19. Ferreira, F. Psycholinguistics, formal grammars, and cognitive science.
Linguistic Review 22 (2005), 365–380.

Recursion in grammar and performance 15

20. Ferreira, F., and Patson, N. D. The ‘good enough’ approach to language
comprehension. Language and Linguistics Compass 1 (2007), 71–83.

21. Fodor, J. A., Bever, T. G., and Garrett, M. F. The Psychology of
Language: An Introduction to Psycholinguistics and Generative Grammar.
McGraw-Hill, NY, 1976.

22. Ford, M., Bresnan, J., and Kaplan, R. M. A competence-based theory
of syntactic closure. In The Mental Representation of Grammatical Relations,
J. Bresnan, Ed. MIT Press, Cambridge, Massachusetts, 1982.

23. Frank, R., and Satta, G. Optimality theory and the generative complexity
of constraint violability. Computational Linguistics 24 (1998), 307–315.

24. Franosch, J.-M. P., Lingenheil, M., and van Hemmen, J. L. How a frog
can learn what is where in the dark. Physical Review Letters 95, 7 (2005),
078106.

25. Friedel, P. Sensory Information Processing: Detection, Feature Extraction,
and Multimodal Integration. PhD thesis, Technical University of Munich,
2008.

26. Gibson, E., and Pearlmutter, N. J. Constraints on sentence processing.
Trends in Cognitive Science 2 (1998), 262–268.

27. Gödel, K. Uber die Länge von Beweisen. Ergebnisse eines Mathematis-
chen Kolloquiums (1936), 23–24. English translation in Kurt Gödel: Collected
Works, Volume 1. Oxford University Press, NY, 1986, pp. 396-399.

28. Graf, T. Reference-set constraints as linear tree transductions via controlled
optimality systems. In Proceedings of the Conference on Formal Grammar,
ESSLLI’10 (2010).

29. Hale, J. Grammar, Uncertainty, and Sentence Processing. PhD thesis, Johns
Hopkins University, 2003.

30. Hale, J. Uncertainty about the rest of the sentence. Cognitive Science 30, 1
(2006), 609–642.

31. Hale, J. T. What a rational parser would do. Cognitive Science 35, 3 (2011),
399–443.

32. Hamilton, G. Higher order deforestation. Fundamenta Informaticae 69, 1-2
(2006), 39–61.

33. Harkema, H. A characterization of minimalist languages. In Logical As-
pects of Computational Linguistics (NY, 2001), P. de Groote, G. Morrill, and
C. Retoré, Eds., Lecture Notes in Artificial Intelligence, No. 2099, Springer,
pp. 193–211.

34. Harkema, H. Parsing Minimalist Languages. PhD thesis, University of
California, Los Angeles, 2001.

35. Jaeger, E., Francez, N., and Wintner, S. Guaranteeing parsing termi-
nation of unification grammars. Journal of Logic, Language and Information
14, 2 (2005), 199–234.

36. Jäger, G. Gradient constraints in finite state OT: The unidirectional and the
bidirectional case. In More than Words: A Festschrift for Dieter Wunderlich,
J. Greenberg, Ed. Akademie Verlag, Berlin, 2002, pp. 299–325.

37. Johnson, M. Attribute Value Logic and The Theory of Grammar. No. 16 in
CSLI Lecture Notes Series. CSLI Publications, Chicago, 1988.

38. Jones, N. D., Gomard, C. K., and Sestoft, P. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, Englewood Cliffs, New Jersey,
1993.

39. Joshi, A. How much context-sensitivity is necessary for characterizing struc-
tural descriptions. In Natural Language Processing: Theoretical, Computa-
tional and Psychological Perspectives, D. Dowty, L. Karttunen, and A. Zwicky,
Eds. Cambridge University Press, NY, 1985, pp. 206–250.

40. Jurafsky, D. A probabilistic model of lexical and syntactic access and dis-
ambiguation. Cognitive Science forthcoming (1996).

16 Edward P. Stabler

41. Jurafsky, D. Probabilistic modeling in psycholinguistics: Comprehension
and production. In Probabilistic Linguistics, R. Bod, J. Hay, and S. Jannedy,
Eds. MIT Press, Cambridge, Massachusetts, 2003, pp. 39–96.

42. Kanazawa, M. A pumping lemma for well-nested multiple context free gram-
mars. In 13th International Conference on Developments in Language Theory,
DLT 2009 (2009).

43. Kanazawa, M., and Salvati, S. Generating control languages with ab-
stract categorial grammars. In Proceedings of the 12th conference on Formal
Grammar (FG’07) (Stanford, California, 2007), L. Kallmeyer, P. Monachesi,
G. Penn, and G. Satta, Eds., CLSI Publications.

44. Kayne, R. S. Overt vs. covert movment. Syntax 1, 2 (1998), 128–191.
45. Keenan, E. L., and Stabler, E. P. Bare Grammar: Lectures on Linguistic

Invariants. CSLI Publications, Stanford, California, 2003.
46. Kempter, R., Leibold, C., Wagner, H., and van Hemmen, J. L. For-

mation of temporal-feature maps by axonal propagation of synaptic learning.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 98, 7 (2001), 4166–4171.

47. Kennedy, K., and Allen, R. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann, San Mateo, Cali-
fornia, 2001.

48. Kepser, S., and Mönnich, U. Properties of linear context free tree languages
with an application to optimality theory. Theoretical Computer Science 354
(2006), 82–97.

49. Kobele, G. M. Formalizing mirror theory. Grammars 5 (2002), 177–221.
50. Kobele, G. M. Generating Copies: An Investigation into Structural Identity

in Language and Grammar. PhD thesis, UCLA, 2006.
51. Kobele, G. M. Without remnant movement, mgs are context-free. In Pro-

ceedings of the 11th Mathematics of Language (MOL) (2009).
52. Koopman, H., and Szabolcsi, A. Verbal Complexes. MIT Press, Cam-

bridge, Massachusetts, 2000.
53. Kühnemann, A. Comparison of deforestation techniques for functional pro-

grams and for tree transducers. In Fuji International Symposium on Func-
tional and Logic Programming (1999), pp. 114–130.

54. Lee, F. VP remnant movement and VSO in Quiavińı Zapotec. In The Syntax
of Verb Initial Languages, A. Carnie and E. Guilfoyle, Eds. Oxford University
Press, Oxford, 2000.

55. Levy, R. Expectation-based syntactic comprehension. Cognition 106 (2008),
1126–1177.

56. Levy, R., Reali, F., and Griffiths, T. Modeling the effects of mem-
ory on human online sentence processing with particle filters. Proceedings
of the Twenty-second Annual Conference on Neural Information Processing
Systems, 2009.

57. MacDonald, M., Pearlmutter, N. J., and Seidenberg, M. S. Syntac-
tic ambiguity as lexical ambiguity resolution. In Perspectives on Sentence
Processing, C. Clifton, L. Frazier, and K. Rayner, Eds. Lawrence Erlbaum,
Hillsdale, New Jersey, 1994, pp. 155–180.

58. Magerman, D. M. Natural Language Parsing as Statistical Pattern Recog-
nition. PhD thesis, Stanford University, 1994.

59. Marlow, S., and Wadler, P. Deforestation for higher-order functions. In
Functional Programming (1992), pp. 154–165.

60. Michaelis, J. Derivational minimalism is mildly context-sensitive. In Pro-
ceedings, Logical Aspects of Computational Linguistics, LACL’98 (NY, 1998),
Springer, pp. 179–198.

61. Michaelis, J. On Formal Properties of Minimalist Grammars. PhD thesis,
Universität Potsdam, 2001. Linguistics in Potsdam 13, Universitätsbibliothek,
Potsdam, Germany.

Recursion in grammar and performance 17

62. Michaelis, J. Transforming linear context free rewriting systems into mini-
malist grammars. In Logical Aspects of Computational Linguistics (NY, 2001),
P. de Groote, G. Morrill, and C. Retoré, Eds., Lecture Notes in Artificial In-
telligence, No. 2099, Springer, pp. 228–244.

63. Michaelis, J. Notes on the complexity of complex heads in a minimalist
grammar. In Proceedings of the 6th International Workshop on Tree Adjoining
Grammars and Related Frameworks, TAG+6 (2002), pp. 57–65.

64. Michaelis, J., and Kracht, M. Semilinearity as a syntactic invariant.
In Logical Aspects of Computational Linguistics (NY, 1997), C. Retoré, Ed.,
Springer-Verlag (Lecture Notes in Computer Science 1328), pp. 37–40.

65. Moschovakis, Y. N. What is an algorithm? In Mathematics unlimited
– 2001 and beyond, B. Engquist and W. Schmid, Eds. Springer, NY, 2001,
pp. 919–936.

66. Müller, G. Incomplete Category Fronting. Kluwer, Boston, 1998.
67. Nederhof, M.-J., and Satta, G. Left-to-right parsing and bilexical context-

free grammars. In Proceedings of ANLP-NAACL 2000 (2000).
68. Parberry, I. Circuit complexity and feedforward neural networks. In Math-

ematical Perspectives on Neural Networks, P. Smolensky, M. C. Mozer, and
D. Rumelhart, Eds. Erlbaum, Mahwah, New Jersey, 1996.

69. Perekrestenko, A. Minimalist grammars with unbounded scrambling and
nondiscriminating barriers are NP-hard. In Proceedings of the 2nd Inter-
national Conference on Language and Automata Theory and Applications,
LATA2008 (Berlin, 2008), C. Mart́ın-Vide, F. Otto, and H. Fernau, Eds.,
Lecture Notes in Computer Science 5196, Springer-Verlag, pp. 421–432.

70. Peters, P. S., and Ritchie, R. W. On the generative power of transfor-
mational grammar. Information Sciences 6 (1973), 49–83.

71. Phillips, C., and Wagers, M. Relating time and structure in linguistics
and psycholinguistics. In Oxford Handbook of Psycholinguistics, G. Gaskell,
Ed. Oxford University Press, Oxford, 2007, pp. 739–756.

72. Phillips, C., Wagers, M., and Lau, E. Grammatical illusions and selective
fallibility in real-time language comprehension. Language and Linguistics
Compass forthcoming (2010).

73. Pullum, G. K., and Gazdar, G. Natural languages and context free lan-
guages. Linguistics and Philosophy 4 (1982), 471–504.

74. Rambow, O. Formal and Computational Aspects of Natural Language Syntax.
PhD thesis, University of Pennsylvania, 1994. Computer and Information
Science Technical report MS-CIS-94-52 (LINC LAB 278).

75. Roark, B. Probabilistic top-down parsing and language modeling. Compu-
tational Linguistics 27, 2 (2001), 249–276.

76. Roark, B. Robust garden path parsing. Natural Language Engineering 10,
1 (2004), 1–24.

77. Scheifler, R. W. An analysis of inline substitution for a structured program-
ming language. Communications of the Association for Computing Machinery
20 (1977), 647–654.

78. Seidl, H., and Sørensen, M. H. Constraints to stop higher-order deforesta-
tion. In ACM Symposium on Principles of Programming Languages (1997),
ACM Press, pp. 400–413.

79. Seki, H., Matsumura, T., Fujii, M., and Kasami, T. On multiple context-
free grammars. Theoretical Computer Science 88 (1991), 191–229.

80. Smolensky, P., and Legendre, G. The Harmonic Mind: From Neural
Computation to Optimality-Theoretic Grammar, Volume I: Cognitive Archi-
tecture. MIT Press, Cambridge, Massachusetts, 2006.

81. Stabler, E. P. Derivational minimalism. In Logical Aspects of Computa-
tional Linguistics, C. Retoré, Ed. Springer-Verlag (Lecture Notes in Computer
Science 1328), NY, 1997, pp. 68–95.

18 Edward P. Stabler: Recursion in grammar and performance

82. Stabler, E. P. Computational perspectives on minimalism. In Oxford Hand-
book of Minimalism, C. Boeckx, Ed. Oxford University Press, Oxford, 2010,
pp. 617–641.

83. Stabler, E. P. Top-down recognizers for MCFGs and MGs. In Proceedings of
the Workshop on Cognitive Modeling and Computational Linguistics (CMCL),
49th Annual Meeting of the Association for Computational Linguistics (2011),
F. Keller and D. Reitter, Eds.

84. Stabler, E. P., and Keenan, E. L. Structural similarity. Theoretical
Computer Science 293 (2003), 345–363.

85. Statman, R. Structural Complexity of Proofs. PhD thesis, Stanford Univer-
sity, 1974.

86. Torenvliet, L., and Trautwein, M. A note on the complexity of re-
stricted attribute-value grammars. In Proceedings of Computational Linguis-
tics In the Netherlands, CLIN5 (Twente, The Netherlands, 1995), M. Moll
and A. Nijholt, Eds., Department of Computer Science, University of Twente,
pp. 145–164.

87. Trautwein, M. The complexity of structure-sharing in unification-based
grammars. In Proceedings of Computational Linguistics In the Netherlands,
CLIN5 (1995), pp. 165–180.

88. Trueswell, J. The role of lexical frequency in syntactic ambiguity resolution.
Journal of Memory and Language 35 (1996), 566–585.

89. van Hemmen, J. L., and Schwartz, A. B. Population vector code: a geo-
metric universal as actuator. Biological Cybernetics 98, 6 (2008), 509–518.

90. Vijay-Shanker, K., Weir, D., and Joshi, A. Characterizing structural
descriptions produced by various grammatical formalisms. In Proceedings of
the 25th Annual Meeting of the Association for Computational Linguistics
(1987), pp. 104–111.

91. Wadler, P. Deforestation: Transforming programs to eliminate trees. The-
oretical Computer Science 73, 2 (1990), 231–248.

92. Webelhuth, G., and den Besten, H. Adjunction and remnant topicaliza-
tion in the germanic SOV-languages. Paper presented at the GLOW confer-
ence, Venice, 1987.

93. Woods, W. A. Transition network grammars for natural language analysis.
Communications of the Association for Computing Machinery 13, 10 (1970),
591–606.

94. Zipf, G. K. The Psychobiology of Language: An introduction to dynamic
philology. Houghton-Mifflin, Boston, 1935.

