
Two models of minimalist, incremental syntactic analysis

Edward P. Stabler

Minimalist grammars (MGs) and multiple context free grammars (MCFGs)
are weakly equivalent in the sense that they define the same languages, a
large mildly context sensitive class that properly includes context free lan-
guages. But in addition, for each MG, there is an MCFG which is strongly
equivalent in the sense that it defines the same language with isomorphic
derivations. However, the structure building rules of MGs but not MCFGs
are defined in a way that generalizes across categories. Consequently, MGs
can be exponentially more succinct than their MCFG equivalents, and this
difference shows in parsing models too. An incremental, top-down beam
parser for MGs is defined here, sound and complete for all MGs, and hence
also capable of parsing all MCFG languages. But since the parser repre-
sents its grammar transparently, the relative succinctness of MGs is again
evident. And although the determinants of MG structure are narrowly and
discretely defined, probabilistic influences from a much broader domain
can influence even the earliest analytic steps, allowing frequency and con-
text effects to come early and from almost anywhere, as expected in incre-
mental models.

Keywords minimalist grammar, parsing, multiple context free grammar

A psychological model is not adequate if a response, any response really due to the
mechanism being modeled, is simply not in the range of the model. But suppose we com-
pare two models that agree on the range of behaviors to be modeled; in fact, suppose their
input/output behaviors are provably identical. Then can there be a reason to prefer one over
the other? Yes. It is a familiar fact that very different algorithms, with very different data
structures, can compute exactly the same function. And in such cases, it can matter which
one is implemented. Since recent mathematical work on grammars has established a wide
range of equivalence results, comparisons of models that are in some relevant sense equiva-
lent are likely to arise often. This paper considers exactly such a case. For every minimalist
grammar (MG) there is a multiple context free grammar (MCFG) which is weakly equiv-
alent (defining the same languages) and strongly equivalent (isomorphic derivation trees
for every string). But while MGs will look at least vaguely familiar to linguists, MCFGs
are surprising. Like a context free grammar, each MCFG has only a finite set of produc-
tion rules, and does not distinguish movement dependencies from complement selection,
or either of those from agreement. All dependencies are enforced uniformly through the
category system. As a result, MCFGs are often much larger, even exponentially larger, than
MGs they are strongly equivalent to. And while the extension of MCFGs to probabilis-

Revised version in Topics in Cognitive Science 2013.

tic models is straightforward, like the extension of CFGs to probablistic CFGs (PCFGs),
probabilistic MCFGs share with PCFGs unrealistic independence assumptions, motivating
a model in which probabilities are not determined by the very restricted mechanisms needed
for definition of structure.

The relevance of such considerations to performance models is illustrated in §2, where
a top-down beam MCFG parser (Stabler 2011b) is adapted to the MGs of §1. Since this
implementation of MGs is simple and transparent, the structure and relative succinctness of
the grammars is evident. A successful MG parse is a kind of structurally conditioned check
of lexical requirements, implemented as the traversal of a graph representing the lexicon.
No such perspective is available in the similar MCFG parsing. §3 briefly observes how
extragrammatical and interface conditions can have gradient influences. The model pre-
sented here is simplified in certain respects (and perhaps it is more complex than necessary
in other respects), but it can be extended to a wide range of live proposals, some of which
are mentioned in §4.

§5 reviews some of the evidence that could support this kind of MG model over equiv-
alent MCFG-based models (of which CFG-based models are a special case), noting that
the issues at stake here are old ones. The reasons offered in favor of MGs over MCFGs
echo the informal arguments given against phrase structure grammars by Chomsky (1956),
but now the relevant formal comparison can be made more rigorous and applied to gram-
mars for mildly context sensitive languages. The important question then, as now, is not
expressive power, but what the linguistic structures are and how they could be calculated
in language use. This remark may seem puzzling at first, but I will explain it more care-
fully in proposals H4 and H5 of the concluding section, §6. In the simple setting of our
MG/MCFG comparison, where expressive power does not distinguish the alternatives at
all, at least some relevant aspects of these questions can be made completely clear. Many
issues are clearer now than they were in 1956, and the evidence still overwhelmingly and
uncontroversially disfavors (M)CFG-based models.

1 MGs and MCFGs

Minimalist grammars (MGs) aim to formalize some of the fundamental ideas of the
the minimalist program (Chomsky 1995:and much following work). MGs and strongly
equivalent MCFGs are gently introduced in Stabler (2011a), with reference to the technical
literature that explores these grammars in great detail. But the basic situation is easily
sketched here. When a determiner combines with a noun, it is common to depict the result
with a tree like the one on the left; but we can also draw a simpler tree like the one on the
right that indicates the derivational step by itself:

DP

D’

D

which

NP

N’

N

wine

•

which::=N D -wh wine::N

The • in the tree on the right signifies the merge operation that builds the tree on the left.
Also notice that in the tree on the right, each lexical item has been associated with a se-
quence of features. For example, which has a sequence of 3 features: =N D -wh. The =

means ‘selects’, and the - marks licensing requirements, so this sequence of features in-
dicates that which selects a noun phrase in order to form a determiner phrase, one which
needs to move to a position where its -wh feature is licensed. The merge operation • can
apply because of the match between =N and the category N. We assume for the moment
that features are matched from left to right, and that each matching operation checks and
deletes both features.1 With the additional steps shown in the tree below on the right, cul-
minating in the final movement of the wh-phrase, indicated by ◦ in the derivation tree, we
build the derived tree on the left:

CP

DP(0)

D’

D

which

NP

N’

N

wine

C’

C

ε

VP

DP

D’

D

the

NP

N’

N

queen

V’

V

prefers

DP

t(0)

◦

•

ε ::=V +wh C •

•

prefers::=D =D V •

which::=N D -wh wine::N

•

the::=N D queen::N

In this simple structure for the clause which wine the queen prefers, as it might appear in
the sentence I wonder [which wine the queen prefers], notice that the the second, higher
DP selected by V, the queen, attaches to the left of V in the derived tree, as a ‘specifier’,

1The idea that grammatical features are ordered in a sequence is not mainstream, at least not explicitly.
Feature ordering is sometimes explicit (Abels 2012, 2007; Müller 2010; Brody 2000; Chomsky 1995:§3), but
roughly equivalent ideas are implicit in many theories that assume ordered projections each of which has just
one non-complex categorial feature (Sportiche 1998; Caha 2009; Adger 2010; Bobaljik 2011:and many oth-
ers). The assumption that matched features are both checked and deleted is also not mainstream, but again
it is easy to allow certain kinds of persistent features and asymmetric checking without changing the compu-
tational properties of interest here (Stabler 2011a). And the Kayneian SVO hypothesis has been challenged
(Abels and Neeleman 2012), but is easily relaxed (Stabler 2011a) without affecting the computational proper-
ties discussed here.

following Kayne’s (1994) proposal that specifiers are on the left. And notice that the top step
◦ shown in the derivation tree is unary, since rather than attaching two separate constituents,
it moves the -wh phrase from inside the tree and attaches it at the root, checking and deleting
both the +wh licensing feature of the (silent) complementizer C and the -wh. In this simple
system, counting the features of all the lexical items at the leaves of the derivation, there
are 13. Each derivation step matches, checks and deletes the leftmost features in the pair of
constituents it applies to, so after the 6 indicated steps (the 6 internal nodes of the tree on
the right), there is one feature left, namely, the ‘start category’ C.

This example is not meant to be a serious structural proposal, but only to indicate
roughly how MG structure building mechanisms work. With simple definitions of the bi-
nary merge step • and the unary move step ◦, it is possible to assign features to lexical items
in a way that allows us to formalize many proposals in the syntactic literature. What is more
surprising is that the class of languages that can be defined by applying • and ◦ to a finite
lexicon is one that was already well known before this kind of grammar was proposed. The
MG-definable languages are exactly the languages defined by multiple context free gram-
mars, by set-local tree adjoining grammars, and many other formalisms (Michaelis 2001;
Harkema 2001a). Furthermore, like these other grammars, it is natural to regard MGs as
folding together two different sorts of principles: those that define the derivation tree, and
those that map the derivation to its pronounced and interpreted form. One insight that comes
from this perspective is that both of those steps, the definition of derivations (like the tree on
the right, above), and the mappings to derived structures (like the tree on the left), are very
simple, finite state computations. (Appendix B explains more carefully how the derivation
tree depicted above, on the right, relates to the the derived tree on the left. Appendix C
precisely defines the operations •, ◦, and the parsing algorithm.)

MGs as MCFGs. MCFGs are a restricted version of Pollard’s (1984) generalized con-
text free grammars, studied by Seki, Matsumura, Fujii, and Kasami (1991). MCFGs do not
have movement, but they have something similar, namely, categories with two or more
string parts. For example, the MG step above that combines the determiner and noun could
be represented with a CFG rule like this,

D-wh(x1x2)→ =N=D-wh(x1) N(x2).

This rule says that a string x1 with category =N =D -wh can combine with a string x2 with
category N to yield the concatenated string x1x2 with category =D -wh. That rule is context
free, but the expressive power of a MCFG comes from allowing categories that classify
tuples of strings. For example, the MG step shown above which combines the verb and its
object corresponds to the use of a MCFG rule like this:

=DV,-wh(x1,x2)→ =D=DV(x1) D-wh(x2).

This rule looks odd at first, because the category name on the left side of the rule is given two
MG feature sequences separated by a comma. Intuitively, the sequence =D V is the category
of the VP, and -wh is the category of the moving DP, combined into a single category for
the pair of strings. In the MCFG, though, this is a single, atomic category label. We write
it with a comma in it to aid in the comparison with MGs, but MCFG categories (like CFG
categories) are atoms as far as the grammar is concerned. So the rule above simply says
that a string x1 with category =D =D V can combine with x2 of category D -wh to yield a

pair of strings x1,x2 with category =D V,-wh. So rather than deriving a tree from which a
-wh phrase can move, as in Chomskian syntax, we have a VP category with two parts, two
strings, one of which is the ‘mover’, the -wh phrase, Pollard-style. The moving element x2

‘lands’ in its surface position with the last rule of the derivation:

C(x2x1)→ +whC,-wh(x1,x2).

With essentially this idea, Michaelis (1998) proved that, for any MG, we can formulate a
MCFG that derives exactly the same strings as the MG with derivations that have exactly
the same shape. That is, we can design an MCFG that derives which wine the queen prefers

with a derivation that is isomorphic to the MG derivation shown above. For every MG,
there is an MCFG that derives exactly the same strings with the same derivation trees. This
is our strong equivalence result.

The relative succinctness of MGs. Every MG has a strongly equivalent MCFG, but it is
easy to see that the strongly equivalent MCFG must sometimes be very much larger than the
MG. One problem is movement. Intuitively, if we have i movers that might or might not be
extractable from a VP, we will need VP categories for every possible subset of the i movers,
all 2i of them. (Appendix A presents the argument in more detail.) So although we could,
in principle, compute MG derivations by parsing with the strongly equivalent MCFG, it
is at the cost of missing a generalization and consequently having a larger grammar with
separate rules for each instance of the general patterns. The hypothesis that the human
parser neglects these fundamental generalizations is not plausible, if there is an incremental
parser that can use the more general operations of MGs directly.

2 An incremental, probabilistic, top-down MG parser

Top-down parsers are simple and have some nice properties (Roark and Johnson 1999;
Roark 2001). Perhaps most significantly, they are incremental in the sense that each word
is attached to a fully connected derivation, allowing the full, left grammatical context to be
assessed, for example by processes assessing the relation between compositional meaning
and discourse context. Left-corner and bottom-up parsers do not have this property. But
MG derivations are usually defined bottom-up to avoid indeterminacies, which are equally
present for MG derivations and strongly equivalent MCFG derivations. In the MCFG
bottom-up derivation of which wine the queen prefers above, for example, the last rule
to apply is:

C(x2x1)→ +whC,-wh(x1,x2).
Using this rule top-down, a troubling indeterminacy comes from the fact it requires correctly
splitting the complete string to be derived, x2x1, into two parts. At the beginning of a
top-down parse, we do not have the complete string, let alone a criterion for splitting it
appropriately. Following earlier work by Mainguy (2010) and others, Stabler (2011b) shows
how a top-down MCFG parser can avoid this problem by ‘threading’ the input; that is,
intuitively, instead of passing the input down from the root of the derivation, we pass it
from leaf to leaf. And instead of using a stack of predictions as the standard top-down
CFG parser does, predictions are sorted into linear order at every step (so this is a ‘priority
queue’, not a stack), expanding the leftmost prediction at each point. Here we show how to
adapt those ideas to the particular properties of MGs.

Top-down MG parsing faces another indeterminacy that depends on a particular gram-
matical assumption: In a binary expansion of a constituent with n movers, there are 2n

different ways to partition the movers between the two children. Does the grammar really
allow every moved element to come from any possible c-commanded position? One con-
straint which would make a big difference here is a version of a specifier island constraint.
One version of this constraint, SpICmrg, says there can be no extraction of any proper sub-
constituent of a merged specifier. With SpICmrg, in a binary expansion of a constituent with
n movers, at most one of those movers can come from a merged specifier, and only if the
movement feature is lexically associated with the head of that specifier. Let’s adopt this
constraint for the moment (partly because it simplifies the presentation) and then reassess it
in §4 below.

A transparent, top-down parsing strategy for MG[+SpICmrg] grammars can be illustrated
with an example. This lexicon derives the example shown in §1:

ε ::=V C knows::=C =D V king::N the::=N D
ε ::=V +wh C says::=C =D V queen::N which::=N D -wh

prefers::=D =D V wine::N
drinks::=D =D V beer::N

Notice that many lexical items have the same syntactic features or common suffixes in their
feature sequences. Since the top-down parser will check lexical features right-to-left, it is
convenient to reduce that redundancy by representing lexicons with a tree:2

.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

It is easy to see that this graph exactly represents the lexicon listed above: reading the labels
of each path from a leaf to the root yields a lexical item in that list. It would be natural to
add weights indicating how likely the associations among the lexical properties are taken
to be. And notice that here, as in any language model where syntax and semantics cor-
respond appropriately, the tree representation of the lexicon reflects semantic distinctions,
Curry-Howard-like. Most importantly for present purposes, with the operation of the parser
defined directly on this lexical representation, each next possible step can be determined di-
rectly without any search or calculation at all. In effect, if the categories used by the parser
are tuples of (pointers to) subtrees of the lexicon, then each parsing step is simply a step
down to a descendant in the head category. That is, the queue is the memory structure that
lists the predicted but as yet unanalyzed categories, which are identified as nodes in the tree

2Though lexicons are here represented as trees, clearly nodes dominating identical subtrees in this graph
could be equated, yielding multidominance structures. And a possible way to represent persistent features – if
they vary lexically – is with trivial cycles, that is, arcs from a node to itself. We stick to a tree representation
here for ease of exposition.

representation of the lexicon. An example will show how this works. Each step expands
one node of the derivation tree, so the 12 node derivation tree shown above is parsed in the
following 12 steps. The rules indicated at each step (START, SCAN, internal merge subcases
•i and external merge subcases ◦i) are precisely defined in Appendix C.

A successful top-down recognition of which wine the queen prefers begins with the
start category C, which requires a lexical item that has C as its last feature. So, beginning
at the root of the lexical tree, we step down to the unique node labeled C, representing the
prediction of a completed complementizer phrase. At initialization, this category is the only
element in the queue of predictions:

step remaining input rule queue

0. which wine the queen prefers START 1
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

Just below the root of the start category, there are two options, two descendants. The
parser constructs both analyses (see the discussion of the beam below), but here, to compute
the analysis corresponding to the parse depicted earlier, we descend to +wh. This licensor
then triggers the step down from the root of the lexicon to the corresponding licensee -wh
subtree. Since this is a mover, these two elements form one constituent; the head +wh has a
“mover” -wh:

step remaining input rule queue

1. which wine the queen prefers ◦1 1
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

Continuing down towards the lexical leaves, we step down from +wh to find =V, and this
selection feature triggers a new path from the lexical root to the V. This new predicted V
must be to the left of the selector (since it contains the moved element, which is in spec
position), so it goes to the front of the linearly ordered predictions queue, with the selector
in second position (indicated here by green shading):

step remaining input rule queue

2. which wine the queen prefers •1 1 2
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

Stepping down from V we find =D which triggers a step from the root to the D subtree, now
third in linear order (indicated by red shading):

step remaining input rule queue

3. which wine the queen prefers •2 1 2 3
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

Step 4 is the most interesting step in the derivation. From the previous step, we step down
from the ‘external’ =D to find the ‘internal’ argument selector =D. But this time instead of
introducing a new D, we find it among the movers, stepping down from -wh and bringing
that mover to the front of the queue of predictions:

step remaining input rule queue

4. which wine the queen prefers •3 1 2 3 4
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

The remaining steps are easy. At each step we simply step down from the leftmost element
in our queue, which is the position in the lexical graph indicated by the white box, until all
predictions reach the bottom where a (sometimes empty) head is checked against the input
with a SCAN rule. Follow the white box (first in queue); at each step, the action is there.

Predicting the NP complement of the wh-DP, we can scan 3 lexical items:

step remaining input rule queue

5. which wine the queen prefers •1 1 2 3 4 5
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

step remaining input rule queue

6. which wine the queen prefers SCAN 1 2 3 4
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

step remaining input rule queue

7. which wine the queen prefers SCAN 1 2 3
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

step remaining input rule queue

8. which wine the queen prefers SCAN 1 2
(scanning the empty C)

.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

Predicting the NP complement of the DP subject of prefers, we can scan 3 more lexical
items:

step remaining input rule queue

9. which wine the queen prefers •1 1 2 3
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

step remaining input rule queue

10. which wine the queen prefers SCAN 1 2
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

step remaining input rule queue

11. which wine the queen prefers SCAN 1
.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

step remaining input rule queue
12. which wine the queen prefers SCAN ε

.

C

=V

ε

+wh

=V

ε

V

=D

=C

knows says

=D

prefers drinks

N

king queen wine beer

D

=N

the

-wh

D

=N

which

With step 12 the analysis has reached a successful conclusion, since the input is consumed
and no predictions remain outstanding in the queue.

A probabilistically ranked beam of alternatives. When the parser faces alternatives, all
possible next steps are taken and the results are put into a ranked set of partial derivations,
the ‘beam’. Highly improbable analyses may be discarded, and at each point, the most prob-
able analysis in the beam is developed one more step, in all possible ways. There are many
ways to specify a probability distribution over partial derivations, each with a given history
and context. A careful assessment is beyond the scope of this study. Given the obvious
importance of contextual factors though, the architecture we need must be roughly like the
following, where the parser’s expansion of the beam of candidate analyses P1,P2, . . . ,Pn, at
each step (sensitive only to lexical features of the heads being combined), is distinguished
from probabilistic ranking and pruning (sensitive to frequency effects, discourse, etc.):

listen

integration, decision, reasoning

button push, eye move, etc

rank_prune(freq,discourse)

P1,P2,...,Pn

syn_morph_ph

In this model, the extra-grammatical ranking and pruning of the queue can consider factors
and draw distinctions that are irrelevant to the parsing rules. Obviously, what we understand
or say, at each point, depends not only on what the parser can see, but on many factors irrel-
evant to the definition of possible structures. Compare Roark’s (2001) similar observations
about his parser. §3 emphasizes some important properties of these models.

3 Gradience in models of syntactic analysis

Chomskian syntax is criticized by linguists and psychologists for defining discrete
structures that provide no account of frequency and gradient effects that are evident in
human linguistic judgments and abilities.3 These worries would make it worth considering

3Ferreira (2005:pp.365, 370) says, for example,

. . . many psycholinguists are disenchanted with generative grammar. One reason is that the Min-
imalist Program is difficult to adapt to processing models. Another is that generative theories
appear to rest on a weak empirical foundation. . . [I]t is now clear that no one interested in human
performance can ignore the possible effects of things such as frequency and exposure on ease of
processing.

And Crocker and Keller (2006) say:

While the study of gradient grammaticality has a long history in the generative tradition (Chom-
sky, 1955, 1964), recent approaches such as the Minimalist Program (Chomsky, 1995) do not

whether there is something wrong with our MGs because their definitions of structures are
discrete, and whether we have an appropriate notion of gradience in the performance model
of the previous section. But these issues also have a more direct relevance to the main point
of this paper, namely, that when different phenomena have different sorts of causes – like
difference between selection and movement – this is something a psychological model must
explain, typically by providing different mechanisms with appropriately different sensitivi-
ties.

Grammar is sometimes regarded as a device for partitioning the set of possible strings
into grammatical and ungrammatical. But this conception does not fit with mainstream
linguistic practice. Linguists often give particular attention to explaining differences in
the acceptability of and interpretations of structures that are all marginal. Consider, for
example, recent linguistic discussions about island effects (Szabolcsi 2006:and references
cited here, for example). This work does not provide clear classifications into grammatical
and ungrammatical; rather, it typically explores contrasts in the acceptability of marginal
cases, not with the goal of determining the ‘right’ classification of strings into the categories
of grammatical/ungrammatical, but to discern which properties are relevant to the contrasts.
That is, linguists are interested in the structures of linguistic expressions, regardless of
whether those expressions are fully grammatical or not. A structure is a set of relations,
and once we have a set of various relations, those can provide much more than a binary
classification of strings. The model of §2 generates structures, trees with various properties
that could be related to linguistic abilities in many different ways.

From this point of view, we are not free to stipulate, for example, that corpus frequency
data are “beyond the scope of generative grammar” (Fanselow, Féry, Schlesewsky, and Vogel
2006:p.4). The questions are: what mechanisms are responsible for corpus frequency ef-
fects, and are those mechanisms anything that the model of §2 says anything about? If part
of the explanation of corpus frequencies comes from the structure of individual grammars
(i.e. from the relation between the lexicon and the structures that lexical items determine,
the boxed part of our diagram), then the model must be compatible with that. And if part of
the explanation of corpus frequencies comes from the way possible structures are selected
(by ranking/pruning), the model must be compatible with that as well. These are not matters
for stipulation. There are many ideas about this (Hawkins 2006:for example) but they are
rather indirect because they must be mediated by assumptions about how individual gram-
mars are related to the content of the corpus under study. Here let’s seek out evidence that
is more directly relevant.

Consider the popular question “to what extent do the mechanisms underlying language
comprehension rely on previous linguistic encounters to guide them in resolving the ambi-
guity they currently face?” (Crocker and Keller 2006:p.229). The model of §2 says some-
thing about how the grammar works – that the grammar is mildly context sensitive, etc. –
and it has been suggested that the ranking/pruning can be modeled probabilistically. But
it has not restricted the source of probabilistic influences on ranking/pruning, and so it has
nothing to say about the question of the extent to which those sources rely on previous
linguistic encounters. Closer to the relevant issues, though, in the model of §2, previous
linguistic encounters influence the possible syntactic structures (the grammar, in the boxed

explicitly allow for gradience as part of the grammar.

part of the diagram above) only to the extent that they determine the syntactic features of
lexical items. Are there any challenges to that hypothesis? There is some controversy about
this in the literature, but it is very hard to see any reason for thinking that the relation be-
tween lexical properties and structure – which is what the grammar defines – calls for any
sort of gradience at all. We have other mechanisms in parsing/production models to explain
gradient effects. In their survey of gradience, Sorace and Keller (2005:p.1521) conclude
“soft constraints are at the syntax-pragmatics interface, while hard ones belong to the core
of computational syntax.” The present paper is committed to that view.

A second question directly relevant to the proposal in §2 is whether there is any rea-
son to assume that the ranking/pruning is separate from the structure building operations,
as indicated here. Two related, fundamental kinds of evidence support this. First, while
the structure building operations are completely determined by lexical features, it is ob-
vious that the factors influencing choice among alternative structures goes beyond those;
discourse context and background knowledge about the topics of discussion are clearly
relevant. In the second place, note that the syntactic properties of a complex are “compo-
sitional”, determined by the properties of the parts. Probabilistic CFGs are compositional
in this sense; the probability of a complex formed by a rule is the product of the proba-
bilities of the rule and of the constituents combined. But PCFG estimates of probability
are incorrect unless each choice of rule is made independently from all other choices in
the derivation, and this is obviously not what happens in human language. In human lan-
guage, the acceptability of a complex is not a function of the acceptability of its parts, just
as in (both subjective and objective) probability theory, the probability P(p∧ q) is not a
function of P(p) and P(q). This point is old and uncontroversial. It is a clear concern
even in Grenander’s (1967) pioneering work on probabilistic language models. Charniak
(1993:p.83) famously remarks that PCFG models are so poor that even trigram models do
better. The factors conditioning what we say are diverse and poorly understood, but it is
completely clear that the independent acceptabilities (or relative frequencies) of the parts of
a complex do not determine the acceptability (or relative frequency) of the complex. The
broad influences on acceptability and plausibility completely cross-cut the much narrower,
compositional determinants of syntactic properties. It is right for the model in §2 to sepa-
rate them, and one expects development of this kind of model to require many similar steps
to a much finer articulation of what influences what.4

4 Comparisons and extensions

SpICmrg. Even though the proposed parsing strategy can be applied to an infinite class of
grammars, it is easy to see that particular assumptions about linguistic structure, particular
choices of grammar will have an impact on parser performance. In this paper, we see this
happen with the Specifier Island Constraint (SpIC). As usually formulated, SpIC makes
specifiers into islands, prohibiting the extraction of any proper part of a specifier. Since
movement is always to specifier position, this provides a kind of “freezing” constraint. That

4One standard way to improve a PCFG (or PMCFG) is to break each rule into many ‘lexicalized’ instances
(Eisner and Satta 1999; Eisner 2000; Nederhof and Satta 2000) that can have different probabilities. Obvi-
ously, this step serves exactly to introduce many distinctions into categories that are irrelevant to the possible
structures, for the purpose of defining a choice among those possibilities that depends on other things.

is, SpIC blocks extractions from a constituent after it has moved, because the constituent is
then in specifier position. But very many (perhaps even most) linguists think freezing is too
restrictive (Sauerland 1999; Koopman and Szabolcsi 2000; Collins 2005; Abels 2007:and
others), so it is important that we have not adopted a version of SpIC that enforces freezing.

MG[+SpIC] and variants have been studied in a series of papers.5 Recently,
Kobele and Michaelis (2011) shows that blocking extraction from specifiers formed by
merge reduces expressive power, while prohibiting only extractions from inside specifiers
formed by move does not. So with the addition of SpICmrg, MGs are no longer weakly
equivalent to MCFGs, but this addition significantly simplifies the top-down recognizer be-
cause, roughly speaking, in top-down MG[+SpICmrg] parsing, movers that do not simply
land in specifier position are deterministically passed to the complement.

SpICmrg is obviously unlike “left branch” conditions which block or restrict extractions
of full specifiers, and so it of course allows Ross’s (1967, §4.3.2.5) examples of left branch
extraction from verbal complements in Russian:

Čuju ty čitaješ knigu?
whose you are-reading book

‘whose book are you reading?’

SpICmrg blocks only subject ‘subextraction’, extraction of a proper subconstituent of a
phrase that is second-merged. Subject subextraction seems to be blocked, or at least re-
stricted, across languages. den Besten (1985:§3.2) observes that the so-called Germanic
was-für split is fine for objects but degraded for subjects (cf. also Corver 1990, 2006):

Was hast du in Italien für Museen besucht?
What have you in Italy for museums visited?
‘What sort of museums did you visit in Italy?’

*Was haben für Leute deine Mutter besucht?
what have for people your mother visited?

‘What sort of people have visited your mother?’

And in a recent study, Chomsky (2008) observes that one English instance of apparent
subextraction, fine for objects but not for subjects, is acceptable for the subjects of passives
and unaccusatives, as predicted by SpICmrg if those subjects are underlyingly complements:

it was the CAR (not the TRUCK) of which [they found the (driver, picture)]
it was the CAR (not the TRUCK) of which [the (driver, picture) was found]
*it was the CAR (not the TRUCK) of which [the (driver, picture) caused a scandal]

Accounts of such restrictions include the Subject Condition of Chomsky (1973), the CED
of Huang (1982), and more recent PIC-based accounts (Chomsky 2008; Müller 2010). But
there are some other puzzling cases of apparent subject subextraction. Wexler and Culicover
(1980:p.183) note that while subject subextraction is usually impossible in English, we have
examples like this:

[Some people ti] greeted me [from Philadelphia]i

5Stabler 1999; Michaelis 2004, 2005; Kobele and Michaelis 2005; Gärtner and Michaelis 2007;
Kanazawa, Michaelis, Salvati, and Yoshinaka 2011.

Szabolcsi (1983) observes subextraction of possessors from postverbal subjects in Hungar-
ian:

Ki-neki alsz-ik [a ti vendég-e- /0− /0]?
who-DAT sleep-3sg the guest-POSS-3SG-NOM

‘Whose guest sleeps?’

And Bašić (2004:p.30) observes constructions like this in Serbo-Croatian:

Ovaj nam je predsednik obećao veće plate
this us-cl aux-cl president promised higher salaries
‘This president promised us higher salaries’

There are many proposals for relaxing or replacing SpICmrg. It is easy to remove this as-
sumption from the parsing rules, but this brief discussion of the issues is included here to
indicate how grammatical assumptions bear directly on aspects of parsing that matter for
basic complexity assessments. In parsing models like the one in §2, allowing all extrac-
tions from specifiers imposes additional demands on memory, and so it is intriguing that
Jurka, Nakao, and Omaki (2011) have shown that subject was-für split generally reduces
acceptability, even in speakers most inclined to accept it. This could be a consequence of
the memory burden imposed on the parser, but careful assessment of these matters must be
left for future work.

Complexity filters. Koopman observes that heads often restrict the complexity of their
specifiers, both in the morphology and in the syntax (Koopman and Szabolcsi 2000; Koopman
2002, 2012). And Kobele (2011) notes that these restrictions could be enforced directly in
MGs by coding them into the category system. But these constraints could also be factored
away from the category system, possibly with a significant gain in succinctness from, in-
tuitively, capturing the generalizations succinctly. In performance too, the constraints on
specifiers could be treated separately, imposed by a ‘transducer’ running concurrently with
the parser, checking each step of each analysis.

Head movement, agreement, distributed morphology. Similarly, Kobele (2011) ob-
serves that operations assumed in distributed morphology (Marantz 1997; Halle and Marantz
1993) could be applied to MGs without affecting the class of definable languages (cf. also
Graf 2011). Approaches to head movement and agreement could be compiled into the
MG category system too. But again a factored account may be more succinct and better
evidenced. It is not yet clear which accounts will fare best.

5 Evidence

MG-based parsers have i/o identical MCFG-based models that compute isomorphic
derivations. Let’s briefly survey evidence that could distinguish these rather similar models.

Succinctness. Chomsky (1956:p.119) says “I do not know whether English is. . . literally
beyond the bounds of phrase structure description. . . When we turn to the question of the
complexity of description. . . , however, we find that there are ample grounds for the con-
clusion that this theory of linguistic structure is fundamentally inadequate.” This paper
makes the same kind of comparison. MGs have strongly equivalent MCFGs, but those
MCFGs must simply list all instances of generalizations that the MG formalism captures in
its lexicon. This is explicit in frameworks powerful enough to formulate both perspectives

precisely, as for example in the work of Salvati (2011:p.98), where the MG quantification
over categories with common features is explicit.

With two equivalent models that differ in size but are similar in runtime complexity,
it is natural to prefer the smaller, simpler model. In the present case, the larger, strongly
equivalent MCFGs could even be too large for feasible representation. But the relevance
of this consideration for psychological and neurophysiological models depends on unclear
assumptions about the representational capacity of the human sentence recognizer, how
many types of movements human grammars allow, and other factors. So we cannot be
satisfied with succinctness arguments alone. We expect corroborating evidence from other
sources.

Other evidence. In MCFGs, every rule is a phrase structure expansion, and there is
no mechanism for grouping categories according to their common properties. This is ev-
ident in transparent implementations MCFGs (e.g. those described in Stabler 2012, upon
which §2 is based). But in transparent representations of MGs, like the one in §2, heads of
phrases that move are distinguished in the lexicon; heads of phrases that select a common
element (or a common sequence of elements) are treated alike, and so on. If something
like the parser of §2 were neurophysiologically implemented, we might even find neurally
distributed lexical representations in which the activation of movers is spatially distinct in
memory. More generally, evidence for MG-like grouping and processing of constituents
could take the form of differential influences on the recognition/production of movement
relations and differential neurophysiological/psychological correlates of movement recog-
nition/production.6 A review of the literature turns up an abundance of results of both sorts,
supporting MG-like models.

Are there any supported psycholinguistic generalizations that quantify over movement
constructions, or over local selection constructions? That there is something special about
wh-movement and other A-bar dependencies has been long recognized. Many measures
show that object relatives are more difficult than subject relatives, and more generally that
online complexity increases with the distance spanned by the dependencies recognized.
Many of these results are summarized in, for example, Gibson (1998), Yoshida (2006), and
Grillo (2008).7 Hofmeister and Sag (2010) argue that island effects may be due to a coali-
tion of processing pressures, but that is an issue of detail compared to the very basic point
considered here, and so it is no surprise that their alternative account, even without islands,
quantifies across different categories that are similar with respect to long various distance
dependencies. In acquisition of movement relations, it is also common to find patterns spe-
cific to types of movement, cutting across the particular categories of the elements involved
(Friedmann and Lavi 2006; van Kampen 1997:and refs. there).

6Note that the questions of interest here are not the difficult questions of theoretical detail usually discussed
in the literature: we are not concerned here with the question of whether movement leaves ‘traces’ in particular
surface positions, whether movement is best defined with feature passing mechanisms, or any such thing. The
question here is just whether the recognition of discontinuous licensing conditions is distinguished from other
sorts of analysis, as a transparent MG implementation would predict.

7Bartek, Lewis, Vasishth, and Smith (2011) argue that locality effects have been overestimated, but ac-
knowledge that they are robustly evidenced in at least some experimental paradigms.

6 A methodology for language modeling

The incremental model proposed here is motivated by a number of general and sup-
ported hypotheses about appropriate ways of factoring explanations of linguistic phenom-
ena. Hypotheses H1 and H2 directly inspire the model of §2, but the whole project is
founded on the more general setting of H3-H5:

H1. As discussed in §2, there are regularities in what lexical heads select, what they are
selected by, and how they are licensed by discontinuous dependencies. This is recog-
nized by all mainstream grammatical traditions, and MGs provide just one possible
formalization of this idea. But it is for this reason that MGs can be much simpler and
more plausible than strongly equivalent MCFGs.

H2. As mentioned in §3, the acceptability of complexes is not a function of the accept-
ability of their parts. Nor are the conditioning factors restricted to those properties
that determine the applicability of grammatical rules. The probabilistic ranking and
pruning introduce extra-grammatical influences.

H3. As noted in point (iii) of §3, it is assumed that the grammar defines all the syntactic
structures that the parser ever constructs: full sentences in some cases, fragments in
other cases, built by grammatical mechanisms.

H4. We have adopted standard assumptions about the relevance and irrelevance of the ex-
pressive power of grammars. Expressive power is relevant to the basic requirement
of descriptive adequacy that was mentioned in the first sentence of this paper. How-
ever, that requirement is very far from sharp for two different kinds of reasons. First,
we do not have any direct access to the mechanisms we want to model. Instead, we
are trying to find evidence about mechanisms in the noise of everything else that is
also happening. Second, our evidence is always drastically incomplete, so even very
different models can be compatible with all the evidence seen so far. In these cases,
there can be strong reasons for preferring one theory even over weakly and strongly
equivalent alternatives. Considerations of this latter sort are arguably the ones that
are most substantial in getting us to models that explain the phenomena at hand, as in
this paper.

H5. Could a neurophysiological or artificial implementation of a MG[+SpICmrg] parser
also be an implementation of the corresponding strongly equivalent MCFG model?
It does not really matter how that question gets answered, since the question of inter-
est is not what counts as an implementation. The real question is: (Q) does the human
parser analyze categories in something like the way MGs do? MCFGs do not analyze
categories, and so they do not have the means to formulate rules that target whole
groups of similar categories. Obviously, it makes sense to detect and take advantage
of the structure that is only implicit in MCFGs – and explaining the regularities de-
mands it. And then it is not natural to say this is an implementation of the MCFG
model any more, with any normal sense of ‘implementation’. But what you call it
does not matter; the question we care about is (Q), and the answer to that question is:
yes.

In sum, the MG idea defended here (and shared by many grammatical traditions) is that
cross-categorial regularities in human languages (roughly speaking: selection, movement,
spellout) reflect the operation of corresponding mechanisms in performance. The rules ap-
ply according to first features, regardless of the rest of the ‘categorial’ specification given
by any following features. And while the structure building rules may be category func-
tional, global influences on preference are not. A wide range of psychological evidence
supports these two fundamental properties. These fundamentals represent a consensus po-
sition, and it is a non-trivial one. The particular incremental MG parsing model proposed
in §2 has these properties, and is otherwise distinguished by its remarkable simplicity, its
adequacy for a large class of mildly context sensitive languages, and its close, rather well-
understood ties with a number of prominent, critically assessed proposals in theoretical and
computational syntax.

Acknowledgments

Thanks to Thomas Graf, Ed Keenan, Hilda Koopman, Colin Phillips, TopiCS editors and
reviewers for helpful suggestions.

References

Abels, Klaus. 2007. Towards a restrictive theory of (remnant) movement: Improper move-
ment, remnant movement, and a linear asymmetry. Linguistic Variation Yearbook 2007
7:53–120.

Abels, Klaus. 2012. The Italian left periphery: A view from locality. Linguistic Inquiry
Forthcoming.

Abels, Klaus, and Ad Neeleman. 2012. Linear asymmetries and the LCA. Syntax 12:25–74.

Adger, David. 2010. A minimalist theory of feature structure. In Features: Perspectives
on a key notion in linguistics, ed. A. Kibort and G. Corbett, 185–218. Oxford: Oxford
University Press.

Bartek, Brian, Richard L. Lewis, Shravan Vasishth, and Mason R. Smith. 2011. In search of
on-line locality effects in sentence comprehension. Journal of Experimental Psychology:
Learning, Memory, and Cognition 37:1178–1198.

Bašić, Monnika. 2004. Nominal subextraction and the structure of NPs in Serbian and
English. Doctoral Dissertation, Universitetet i Tromsø.

den Besten, Hans. 1985. The ergative hypothesis and free word order in Dutch and German.
In Studies in German grammar, ed. Jindřich Toman, 23–64. Dordrecht: Foris.

Bobaljik, Jonathan D. 2011. Universals in comparative morphology: Suppletion, superla-
tives and the structure of words. Cambridge, Massachusetts: MIT Press. Forthcoming.

Brody, Michael. 2000. Mirror theory: syntactic representation in perfect syntax. Linguistic
Inquiry 31:29–56.

Caha, Pavel. 2009. The nanosyntax of case. Doctoral Dissertation, University of Tromsø.

Charniak, Eugene. 1993. Statistical language learning. Cambridge, Massachusetts: MIT
Press.

Chomsky, Noam. 1955. The logical structure of linguistic theory. NY: Plenum. 1955
typescript published, in part, in 1975.

Chomsky, Noam. 1956. Three models for the description of language. IRE Transactions on
Information Theory IT-2:113–124.

Chomsky, Noam. 1964. Degrees of grammaticalness. In The structure of language: Read-
ings in the philosophy of language, ed. J.A. Fodor and J.J. Katz, 384–389. Englewood
Cliffs, New Jersey: Prentice-Hall.

Chomsky, Noam. 1973. Conditions on transformations. In A Festschrift for Morris Halle,
ed. Stephen R. Anderson and Paul Kiparsky. NY: Holt, Rinehard & Winston.

Chomsky, Noam. 1995. The minimalist program. Cambridge, Massachusetts: MIT Press.

Chomsky, Noam. 2008. On phases. In Foundational issues in linguistic theory: Essays
in honor of Jean-Roger Vergnaud, ed. Robert Freidin, Carlos P. Otero, and Maria Luisa
Zubizarreta. Cambridge, Massachusetts: MIT Press.

Chomsky, Noam. 2012. Problems of projection. Lingua forthcoming.

Collins, Chris. 2005. A smuggling approach to passive in English. Syntax 8:81–120.

Corver, Norbert. 1990. The syntax of left branch extraction. Doctoral Dissertation,
Katholieke Universiteit Brabant.

Corver, Norbert. 2006. Subextraction. In The blackwell companion to syntax, volume iv,
ed. Martin Everaert and Henk van Riemsdijk, 566–600. Oxford: Blackwell Publishing.

Crocker, Matthew W., and Frank Keller. 2006. Probabilistic grammars as models of gra-
dience in language processing. In Gradience in grammar: Generative perspectives, ed.
Gisbert Fanselow, Caroline Féry, Matthias Schlesewsky, and Ralf Vogel, 227–245. Ox-
ford: Oxford University Press.

Eisner, Jason. 2000. Bilexical grammars and their cubic-time parsing algorithms. In
Advances in probabilistic and other parsing technologies, ed. Harry Bunt and Anton Ni-
jholt, 29–62. Kluwer.

Eisner, Jason, and Giorgio Satta. 1999. Efficient parsing for bilexical context-free grammars
and head automaton grammars. In Proceedings of the 37th Annual Meeting, ACL’99,
457–464. Association for Computational Linguistics.

Fanselow, Gisbert, Caroline Féry, Matthias Schlesewsky, and Ralf Vogel. 2006. Gradience
in grammar. In Gradience in grammar: Generative perspectives, ed. Gisbert Fanselow,
Caroline Féry, Matthias Schlesewsky, and Ralf Vogel, 1–21. Oxford: Oxford University
Press.

Ferreira, Fernanda. 2005. Psycholinguistics, formal grammars, and cognitive science.
Linguistic Review 22:365–380.

Friedmann, Naama, and Hedva Lavi. 2006. On the order of acquisition of A-movement, wh-
movement and V-C movement. In Language acquisition and development, ed. A. Belletti,
E. Bennati, C. Chesi, E. Di Domenico, and I. Ferrari. Cambridge: Cambridge Scholars
Press.

Gärtner, Hans-Martin, and Jens Michaelis. 2007. Some remarks on locality conditions and
minimalist grammars. In Interfaces + recursion = language? Chomsky’s minimalism and
the view from syntax-semantics, ed. Uli Sauerland and Hans-Martin Gärtner, 161–196.
NY: Mouton de Gruyter.

Gibson, Edward. 1998. Linguistic complexity: Locality of syntactic dependencies.
Cognition 68:1–76.

Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In Logical
Aspects of Computational Linguistics, LACL’11.

Grenander, Ulf. 1967. Syntax-controlled probabilities. Technical report, Brown University,
Providence, Rhode Island.

Grillo, Antonino. 2008. Generalized minimality: Syntactic underspecification in Broca’s
aphasia. Doctoral Dissertation, Universiteit Utrecht, The Netherlands.

Groenink, Annius. 1995. Literal movement grammars. In Proceedings of the 7th Meeting
of the European Association for Computational Linguistics, 90–97.

Halle, Morris, and Alec Marantz. 1993. Distributed morphology and the pieces of inflection.
In The View from Building 20, ed. Kenneth Hale and Samuel Jay Keyser, 111–176. MIT
Press.

Harkema, Henk. 2001a. A characterization of minimalist languages. In Logical Aspects
of Computational Linguistics, ed. P. de Groote, G. Morrill, and C. Retoré, LNCS 2099,
193–211. NY: Springer.

Harkema, Henk. 2001b. Parsing minimalist languages. Doctoral Dissertation, University
of California, Los Angeles.

Hawkins, John A. 2006. Gradedness as relative efficiency in the processing of syntax and
semantics. In Gradience in grammar: Generative perspectives, ed. Gisbert Fanselow, Car-
oline Féry, Matthias Schlesewsky, and Ralf Vogel, 207–226. Oxford: Oxford University
Press.

Hofmeister, Philip, and Ivan A. Sag. 2010. Cognitive constraints and island effects.
Language 86:366–415.

Huang, Cheng-Teh James. 1982. Logical relations in Chinese and the theory of gram-
mar. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts.

Jurka, Johannes, Chizuro Nakao, and Akira Omaki. 2011. It’s not the end of the CED
as we know it. In Proceedings of the 28th West Coast Conference on Formal Linguis-
tics, ed. M. B. Wasburn, K. McKinney-Bock, E. Varis, A. Sawyer, and B. Tomaszewicz.
Somerville, Massachusetts: Cascadilla.

Kanazawa, Makoto, Jens Michaelis, Sylvain Salvati, and Ryo Yoshinaka. 2011. Well-
nestedness properly subsumes strict derivational minimalism. In Logical Aspects of
Computational Linguistics, LACL’11, ed. S. Pogodalla and J.-P. Prost, LNCS/LNAI Vol-
ume 6736. Berlin: Springer.

Kayne, Richard S. 1994. The antisymmetry of syntax. Cambridge, Massachusetts: MIT
Press.

Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with
recognizable tree languages. In Logical Aspects of Computational Linguistics, LACL’11.

Kobele, Gregory M., and Jens Michaelis. 2005. Two type 0 variants of minimalist gram-
mars. In Proceedings of the 10th conference on Formal Grammar and the 9th Meeting
on Mathematics of Language, FGMOL05.

Kobele, Gregory M., and Jens Michaelis. 2011. Disentangling notions of specifier impene-
trability. In The mathematics of language, ed. M. Kanazawa, A. Kornai, M. Kracht, and
H. Seki, LNCS/LNAI Vol. 6878, 126–142. Berlin: Springer.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic
approach to minimalism. In Model Theoretic Syntax at 10. ESSLLI’07 Workshop Pro-
ceedings, ed. James Rogers and Stephan Kepser.

Koopman, Hilda. 2002. Derivations and complexity filters. In Dimensions of movement:
From features to remnants, ed. Artemis Alexiadou, Elena Anagnostopoulou, Sjef Barbi-
ers, and Hans-Martin Gärtner. Philadelphia: John Benjamins.

Koopman, Hilda. 2012. Recursion restrictions: Where grammars count. UCLA. Forthcom-
ing.

Koopman, Hilda, and Anna Szabolcsi. 2000. Verbal Complexes. Cambridge, Mas-
sachusetts: MIT Press.

Mainguy, Thomas. 2010. A probabilistic top-down parser for minimalist grammars.
Http://arxiv.org/abs/1010.1826v1.

Marantz, Alec. 1997. No escape from syntax: Don’t try morphological analysis in the
privacy of your own lexicon. In Proceedings of the 21st Annual Penn Linguistics Collo-
quium, 201–225. University of Pennsylvania.

Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. In Proceedings,
Logical Aspects of Computational Linguistics, LACL’98, 179–198. NY: Springer.

Michaelis, Jens. 2001. Transforming linear context free rewriting systems into minimalist
grammars. In Logical Aspects of Computational Linguistics, ed. Philippe de Groote,

Glyn Morrill, and Christian Retoré, Lecture Notes in Artificial Intelligence, No. 2099,
228–244. NY: Springer.

Michaelis, Jens. 2004. Observations on strict derivational minimalism. Electronic Notes in
Theoretical Computer Science 53:192–209. Proceedings of the joint meeting of the 6th
Conference on Formal Grammar and the 7th Conference on Mathematics of Language
(FGMOL ’01).

Michaelis, Jens. 2005. An additional observation on strict derivational minimalism. In
Proceedings of the 10th conference on Formal Grammar and the 9th Meeting on Mathe-
matics of Language, FGMOL05, ed. J. Rogers. Stanford: CSLI.

Michaelis, Jens, Uwe Mönnich, and Frank Morawietz. 2000. Derivational minimalism in
two regular and logical steps. In Proceedings of the 5th International Workshop on Tree
Adjoining Grammars and Related Formalisms (TAG+5), 163–170.

Mönnich, Uwe. 1998. TAGs M-constructed. In TAG+ Workshop, Institute for Research in
Cognitive Science, University of Pennsylvania.

Mönnich, Uwe. 2010. Well-nested tree languages and attributed tree transducers. In The
10th International Conference on Tree Adjoining Grammars and Related Formalisms
TAG+10.

Morawietz, Frank. 2003. Two step approaches to natural language formalisms. Berlin: de
Gruyter.

Müller, Geroen. 2010. On deriving CED effects from the PIC. Linguistic Inquiry 41:35–82.

Nederhof, Mark-Jan, and Giorgio Satta. 2000. Left-to-right parsing and bilexical context-
free grammars. In Proceedings of ANLP-NAACL 2000.

Pereira, Fernando C. N. 1981. Extraposition grammars. American Journal of Computational
Linguistics 7:243–256.

Pollard, Carl. 1984. Generalized phrase structure grammars, head grammars and natural
language. Doctoral Dissertation, Stanford University.

Roark, Brian. 2001. Probabilistic top-down parsing and language modeling. Computational
Linguistics 27:249–276.

Roark, Brian, and Mark Johnson. 1999. Efficient probabilistic top-down and left-corner
parsing. In Proceedings of the 37th Annual Meeting of the Association for Computational
Linguistics, 421–428.

Rogers, James. 2003. wMSO theories as grammar formalisms. Theoretical Computer Sci-
ence 293:291–320.

Ross, John R. 1967. Constraints on variables in syntax. Doctoral Dissertation, Mas-
sachusetts Institute of Technology.

Salvati, Sylvain. 2011. Minimalist grammars in the light of logic. In Logic and grammar,
ed. Sylvain Pogodalla, Myriam Quatrini, and Christian Retoré, number 6700 in Lecture
Notes in Computer Science. Berlin: Springer.

Sauerland, Uli. 1999. Erasability and scrambling. Syntax 2:161–188.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On multiple
context-free grammars. Theoretical Computer Science 88:191–229.

Sorace, A., and F. Keller. 2005. Gradience in linguistic data. Lingua 115:1497–1524.

Sportiche, Dominique. 1998. Partitions and atoms of clause structure : Subjects, agreement,
case and clitics. NY: Routledge.

Stabler, Edward P. 1999. Remnant movement and complexity. In Constraints and resources
in natural language syntax and semantics, ed. Gosse Bouma, Erhard Hinrichs, Geert-Jan
Kruijff, and Dick Oehrle, 299–326. Stanford, California: CSLI Publications.

Stabler, Edward P. 2011a. Computational perspectives on minimalism. In Oxford handbook
of linguistic minimalism, ed. Cedric Boeckx, 617–641. Oxford: Oxford University Press.

Stabler, Edward P. 2011b. Top-down recognizers for MCFGs and MGs. In Proceedings
of the Workshop on Cognitive Modeling and Computational Linguistics (CMCL), 49th
Annual Meeting of the Association for Computational Linguistics, ed. Frank Keller and
David Reitter.

Stabler, Edward P., and Edward L. Keenan. 2003. Structural similarity. Theoretical Com-
puter Science 293:345–363.

Szabolcsi, Anna. 1983. The possessor that ran away from home. The Linguistic Review
3:89–102.

Szabolcsi, Anna. 2006. Strong vs. weak islands. In The Blackwell companion to syntax,
volume 4, ed. Martin Everaert and Henk van Riemsdijk, 479–531. Oxford: Blackwell.

van Kampen, Jacqueline. 1997. First steps in wh-movement. Doctoral Dissertation, Uni-
versity of Utrecht.

Villemonte de la Clergerie, Éric. 2002. Parsing MCS languages with thread automata.
In Proceedings, 6th International Workshop on Tree Adjoining Grammars and Related
Frameworks, TAG+6.

Wexler, Kenneth, and Peter W. Culicover. 1980. Formal principles of language acquisition.
Cambridge, Massachusetts: MIT Press.

Yoshida, Masaya. 2006. Constraints and mechanisms in long-distance dependency forma-
tion. Doctoral Dissertation, University of Maryland.

Appendix A. The relative succinctness of MGs

MGs can be exponentially smaller than their strongly equivalent MCFGs because MCFGs
explicitly code each movement possibility into the category system, while MGs can, in ef-
fect, quantify over all categories with a given feature. One response that has been proposed
to me is that this MCFG size problem may arise just because our MGs are too liberal. When
all appropriate restrictions on movement (and selection, etc.) are imposed, for example, per-
haps movements will be so restricted that the MCFG explosion will never happen? That this
is not a reasonable idea can be shown by establishing that MGs are relatively succinct even
when they respect overly strict constraints on movement. In particular, this appendix shows
the relative succinctness of MGs that respect the specifier island condition for merged spec-
ifiers (SpICmrg) discussed above. Reflecting on how this result is established will make
clear that no plausible constraints on movement will undermine this relative succinctness
claim, at least given anything like current conceptions of grammar.

Consider an infinite series of grammars MG0,MG1, . . . defined as follows. For each
i ∈N, the lexicon of MGi contains the lexical items specified in (i-iv) and nothing else, with
A the ‘start’ category:

i. the following lexical item, with i+2 syntactic features:

a :: =B+1+2 . . .+iA

ii. the following lexical item, with 3 syntactic features:

b :: =B=CB

iii. the following lexical item, with 1 syntactic feature:

d :: B

iv. And for each 1 ≤ j ≤ i, this lexical item with 2 syntactic features,

c :: C-j.

In each MGi, clause (iv) introduces i lexical items with 2 features each, so each MGi lex-
icon has 3i+ 6 features altogether, and for all n, provides n! derivations of cnabnd. So the
number of features grows linearly with i. MG2, for example, has 12 features and allows 2!
derivations of ccabbd, including this one:

AP

CP(1)

C’

C

c

A’

CP(0)

C’

C

c

A’

A

a

BP

CP

t(0)

B’

B

b

BP

CP

t(1)

B’

B

b

BP

B’

B

d

◦

◦

•

a::=B +1 +2 A •

•

b::=B =C B •

•

b::=B =C B d::B

c::C -2

c::C -1

The fact that the strongly equivalent MCFG must be exponentially larger follows from the
obvious fact that for every one of the 2i subsets s ⊆ {+1, . . . ,+i}, the MCFG requires a rule
that has B,s on the left side. In fact, for each member i of each such subset, we need a rule
of the form,

B,s(x1, . . . ,x|s|+1)→ =CB, t(x1, . . . ,xi−1,xi+1, . . . ,x|s|+1) C-i(xi)

where t is a sequence of movers containing all of s except -i. (The hopefully intuitive
notation for MCFG rules, with variables over strings, that I use here and in the main text
is explicitly introduced in Kanazawa et al. (2011), for example, and seems to come from
Groenink (1995), Pereira (1981), and even earlier work.) So the number of MCFG rules
grows exponentially with i. And since the specifiers derived by this grammar are all simple,
every MG derivation allowed by this grammar respects the SpICmrg: no extractions of any
proper part of a merged specifier. So we have established this theorem:

Theorem. When we compare the number of features x (i.e. feature occurrences, or tokens)
in a MG lexicon with the number of rules y in the strongly equivalent MCFG, there is no
polynomial function f of x such that y ≤ f (x).

We see that this result obtains because MCFGs cannot define operations for all phrases
whose categories have some particular property in the way that MGs can. That is, MGs
can capture generalizations that MCFGs can only get all the instances of, with large sets of
rules.

Appendix B. Mild context sensitivity in two regular steps

A reviewer asked for an explanation of how derived structure is computed from MG
derivations. This is best explained as part of a much more general point. The Chomsky
hierarchy is usually given by various restrictions on the format of rewrite rules. Regular
(i.e. finite state) grammars, for example, can be defined as allowing only rules of the form
A → aB or A → ε for categories A,B and terminal symbol a, while context free grammars

allow rules of the form A → X where X is any sequence of 0 or more categories and ter-
minal symbols. But a more insightful perspective on the context free languages comes
from a logical, model-theoretic perspective, which can be roughly described as follows –
cf. Rogers (2003) and references cited there for more rigorous presentations. Regular, finite
state grammars define a kind of successor relation, telling us which symbols can occur in
a sequence. Context free grammars define regular trees, where a tree is a structure sim-
ilar to a string but allowing elements to have multiple successors. Regular trees can be
recognized by finite state tree acceptors, and a language is context free iff it is the set of
strings that are the leaves of a regular tree language. So then, what are the mildly context
sensitive languages defined by minimalist grammars? These languages are characterized
by two regular steps: we take a regular tree language, and then use a certain kind of reg-
ular transduction to rearrange the constituents of the trees. There are various ‘two step’
approaches to mildly context sensitive languages in the literature (Mönnich 1998, 2010;
Michaelis, Mönnich, and Morawietz 2000; Morawietz 2003), but the most intuitive one for
MGs is given by Kobele, Retoré, and Salvati (2007). On this perspective, we (1) define what
counts as a good derivation, and then (2) map it to the desired PF (or LF) structure, which
has the elements in their pronounced (or interpreted) positions. It is easy to sketch how
these 2 steps work. Both steps can be done by simple, deterministic, finite state devices.

Suppose we are given any MG lexicon – a finite set of associations between phonolog-
ical and syntactic features. In one standard notation, the lexical item

which::=N D -wh

indicates that an element pronounced which selects a Noun phrase complement to form a
Determiner phrase which must move to a position that licenses wh elements. Beginning
with the lexical items, suppose we just merge things together arbitrarily, merging either two
separate things (indicated by the binary symbol • on the left below) or merging a structure
with some constituent that the structure contains (indicated by ◦, on the right).

(Compare the suggestion in Chomsky (2012) that merge simply takes any two elements X ,Y

to form {X ,Y}, with interface constraints determining whether the resulting derivations are
good.) Some trees built in this way are good derivations like the one on the left below.
Others are not good, like the one on the right below.

good derivation bad derivation

◦

•

ε ::=V +wh C •

•

prefer::=D =D V •

which::=N D -wh wine::N

they::D

•

which::=N D -wh •

•

•

thε ::=N D

◦

•

ε ::=V +wh C ◦

wine::N

prefer::=D =D V

It turns out that checking to see which tree forms a good derivation can be done extremely
easily by a finite state device (here, we use a deterministic finite state bottom-up tree accep-
tor), and the mapping to output representations (‘derived trees’) is also finite state.

To check whether an MG derivation is good, let’s map each leaf, each lexical item to a
state which is named by its sequence of features. We indicate acceptor states (the features)
in red:

◦

•

=V +wh C •

•

=D =D V •

=N D -wh N

D

Now instead of lexical items at the leaves, we have just feature sequences, which will be
the ‘states’ of our finite state tree acceptor. The acceptor calculates the states for internal
nodes by checking features of its daughters in the standard way for MGs (Stabler 2011a),
and the tree is a good derivation if at the end, at the root, we have just the single category
feature C (or whatever category one assumes is the ‘start’ category). This is done in 5
trivial, deterministic steps:

step 1 step 2 step 3 step 4 step 5
check =N and N check =D and D check =D and D check =V and V move wh

◦

•

=V +wh C •

•

=D =D V D -wh

D

◦

•

=V +wh C •

=D V,-wh D

◦

•

v

=V +wh C V,-wh

◦

+wh C,-wh C

That these steps can be done by with a regular, deterministic bottom-up tree acceptor is
pointed out in Kobele et al. (2007), but the essential insight about this structure was already
implicit in Michaelis (1998).

Calculating a derived tree, with the moved constituents in their proper positions, adds
very little extra effort. Kobele et al. (2007) point out that it can be done by a deterministic,
multi bottom-up tree transduction. Traversing the tree bottom-up as before, now we let each
state have subtrees, and each step can apply a trivial assembly step to the subtrees of the
states it is applying to. So now the first step replaces each leaf not just with a state (= the
features), but with a state that keeps the original leaf as a subtree. And then, again, we take
5 steps, checking features as before but this time computing subtrees for each state. And
again, we put the states in red:

lexical features step 1: check =N and N
with subtrees with subtrees

◦

•

=V +wh C

ε ::=V +wh C

•

•

=D =D V

prefer::=D =D V

•

=N D -wh

which::=N D -wh

N

wine::N

D

they::D

◦

•

=V +wh C

ε ::=V +wh C

•

•

=D =D V

prefer::=D =D V

D -wh

<

which::D -wh wine::

D

they::D

step 2: check =D and D step 3: check =D and D
◦

•

=V +wh C

ε ::=V +wh C

•

=D V,-wh

<

prefer::=D V

<

which::-wh wine::

D

they::D

◦

•

=V +wh C

ε ::=V +wh C

V,-wh

>

they:: <

prefer::V

<

which::-wh wine::

step 4: check =V and V step 5: move wh
◦

+wh C,-wh

<

ε ::+wh C >

they:: <

prefer::

<

which::-wh wine::

C

>

<

which:: wine::

<

ε ::C >

they:: <

prefer::

Step 5 is the derived bare phrase structure representation of which wine they prefer. Get-
ting X-bar representations instead is only slightly more difficult. Full specifications and
computer implementations of these translations are available at the sites

http://www.linguistics.ucla.edu/people/stabler/coding.html

https://github.com/epstabler/mgtdb/wiki.

For a more thorough introduction to these grammars and a variety of examples, see Stabler
(2011a) and references cited there.

Appendix C. A top-down MG[+SpICmrg] recognizer

The parser described informally in §2 is here specified precisely. It is a fairly straight-
forward adaptation of the MCFG recognizer of Stabler (2011a), and so shares many of that
parser’s properties. The key innovation is, intuitively, to recognize the derivation tree, not
the derived tree with strings in their linear order. The reason this is important is: the lan-
guage is defined by its derivations. And recognizing the derivation, even when its elements
may not be in their surface linear order, is extraordinarily simple when linear order is de-
termined by the operations of the grammar, as it is in both MCFGs and MGs. Parsing MGs
or MCFGs top-down, when a constituent is expanded, we know, at that point, the relative
linear surface order of its constituents, in a sense that is easy to make precise. In MCFGs,
relative linear order is stipulated arbitrarily rule-by-rule, but in standard MGs the order is
specifier/head/complement (that is, second-merged/head/first-merged). MGs with alterna-
tive spell-out rules are briefly mentioned in §3 (MGs with transductions for morphology,
etc.), but here we stick to the Kayne-ian SVO assumption. With linear order specified for
each rule, it is easy to index the predictions so that they can be sorted into linear order,
putting the leftmost on ‘top’ of the queue – see point (ix) just below. So instead of the stack
of predictions used in CF parsing, we have a priority queue of predictions, with the least,
leftmost element always first, on top. The analyses in the beam are also sorted, in order of
decreasing probability, so that the most probable analysis is first, on top at each step. In the
MG parsing defined here, though, instead of stipulated MCFG rules, the lexicon determines
all the structural options. The algorithm can be represented in pseudocode as follows, and
a number of different implementations of the parser are available from the websites listed
just above, at the end of Appendix B.

http://www.linguistics.ucla.edu/people/ stabler/coding.html
https://github.com/epstabler/mgtdb/wiki

Given input, lexicon, and a minimum probability bound min, and a function P that tells us the prob-
ability of each expansion, the recognition algorithm works with a priority queue dq of derivations,
where each derivation has 3 parts (i,p,q), where i is the remaining input, p is the probability of the
parse, and q is a priority queue of predicted indexed categories.

initialization

ic := (startCat, /0)ε predict start from lex tree, with index ε

p := 1. initial probability
q := insert ic into empty queue initial queue of predicted categories
dq := push (i,q, p) into empty queue initial queue of partial derivations

procedure derive(P,lexicon,min,dq):
while dq 6= [] ∧ maxdq 6= ([], [], p)

(i,q, p) := pop(dq) pop max probability derivation
exps := all expansions of (i,q) apply rules (below), using lexicon
for d in exps

if P(d)> min, push d onto dq only keep steps with probability > min
if dq = [] then false else true

The rules for computing the ‘expansions’ of each predicted category are, in effect, the
inverses of the standard bottom-up MG rules Stabler and Keenan (2003), slightly modified
for SpICmrg. To define these rules precisely, the following conventions will be useful. Each
rule is an operation on a pair i,q where i is the input and q the queue of predicted categories:

1. Given any sequence of trees x, let Σx be the elements of that sequence, in order, whose
roots are labeled with vocabulary elements (i.e. leaves of the lexical tree). And let
Σx be the elements of that sequence, in order, whose roots are labeled with syntactic
features (i.e. those roots are internal nodes of the lexical tree).

2. Let t(x) be a tree in which the sequence of subtrees immediately dominated by the
root is x. And let t[u] be a tree whose the root immediately dominates subtree u. That
is, t[u] is a tree t(x) where u occurs in x.

3. The notation ti indicates that t is associated with index i ∈N
∗. The result of extending

i with 0 is i0; extending i with 1 yields i1; and so on. As in Stabler (2011a), two in-
dices are ordered by the standard lexicographic convention for lists, built into OCaml
and other languages; two predictions are ordered by their least indices.

4. t ∗q in a premise indicates that the result of removing the least prediction t from the
current queue is q. In a conclusion, t ∗ q represents the result of inserting t into q.
This operator associates to the right, so t ∗u∗q = t ∗ (u∗q).

5. Similarly for the movers, -f (x)i ⊎µ in a premise indicates that the result of removing
-f (x)i from the multiset of current movers is µ . -f (x)i ⊎ µ in a conclusion repre-
sents the value of adding -f (x)i to the mover multiset µ , only possible if the SMC is
respected.

6. Let ℓ be the tree representation of the lexicon. It follows from the structure of the
lexical tree that, in any ℓ[t], and in any t[u] where the root of t is a licensee, the root
of u is labeled with a category or a licensee, never with a selector or licensor.

With these conventions, the structure building rules can be restated as operations on input,q,
the remaining input and the priority queue of predictions:

input, (C(x), /0)ε

(START) ℓ[C(x)], for start category C

w∗ input, (t[w], /0)i ∗q

input, q
(SCAN)

input, (t[= f (x)],µ)i ∗q

input, (= f (Σx), /0)i0 ∗ (f (y),µ)i1 ∗q
(•1) ℓ[f (y)]∧Σx 6= ε

input, (t[= f (x)],µ)i ∗q

input, (= f (Σx),µ)i1 ∗ (f (y), /0)i0 ∗q
(•2) ℓ[f (y)]∧Σx 6= ε

input, (t[= f (x)], u[f (y)] j ⊎µ)i ∗q

input, (= f (Σx), /0)i ∗ (f (y),µ) j ∗q
(•3) Σx 6= ε

input, (t[= f (x)], u[f (y)] j ⊎µ)i ∗q

input, (= f (Σx),µ)i ∗ (f (y), /0) j ∗q
(•4) Σx 6= ε

input, (t[+f (x)],µ)i ∗q

input, (+f (x),-f (y)i0 ⊎µ)i1 ∗q
(◦1) ℓ[-f (y)]

input, (t[+f (x)], u[-f (y)] j ∗µ)i ∗q

input, (+f (x),-f (y) j ⊎µ)i ∗q
(◦2)

Some points to note. Each rule removes exactly one element from the queue of predictions,
the minimum (i.e. leftmost). The merge rules each insert two new elements into the queue;
the move rules insert one element. Four rules fetch a subtree from the lexicon ℓ. The
indexing of chains is trivially determined in •1,•2 and ◦1 by the standard spec-head-comp
rule that standard MGs implement. The queue is sorted by index, as in Stabler (2011a) and
point 3 above (cf. Mainguy, 2010; Villemont de la Clergerie, 2002; Harkema, 2001). To
enforce the SpICmrg, the third merge rule of Stabler and Keenan (2003) is split into two, •3

and •4, for first- and second-merge respectively, so that the second-merged elements, the
specifiers, can be treated appropriately. Rules •2,•4 do not pass any movers into specifiers,
as required by SpICmrg. Note also that with SpICmrg, since we do not have the freezing that
comes with SpIC, when a complement with movers is merged, no record need be kept of
which complement came with which movers, significantly simplifying the inference rules.

Example 1. The 12 node derivation for which wine the queen prefers, depicted in §1, is
found by the following 12 step recognition sequence. For readability, we put ... in place of
subtrees that are not lexical. So to read the following derivation, it is important to refer to
the depiction of the lexicon above to see which subtrees are being referred to in each step.

step queue rule
0. (C(...), /0)ε START

1. (+wh(...),-wh(...)0)1 ◦1

2. (V(...),-wh(...)0)11,(=V(ε), /0)10 •1

3. (=D(...),-wh(...)0)111,(=V(ε), /0)10,(D(...), /0)110 •2

4. (D(...), /0)0,(=V(ε), /0)10,(D(...), /0)110,(=D[prefers], /0)111 •3

5. (=N(which), /0)00,(N[wine], /0)01,(=V(ε), /0)10,(D(...), /0)110,(=D[prefers], /0)111 •1

6. (N[wine], /0)01,(=V(ε), /0)10,(D(...), /0)110,(=D[prefers], /0)111 SCAN

7. (=V(ε), /0)10,(D(...), /0)110,(=D[prefers], /0)111 SCAN

8. (D(...), /0)110,(=D[prefers], /0)111 SCAN

9. (=N(the), /0)1100,(N[queen], /0),1101 ,(=D[prefers], /0)111 •1

10. (N[queen], /0)1101,(=D[prefers], /0)111 SCAN

11. (=D[prefers], /0)111 SCAN

12. ε SCAN

To simplify the presentation, I am not trimming the indices here in the way I did in Stabler
(2011a), but obviously that could be done.

Example 2. To see moving specifiers (as allowed by SpICmrg), here is the recognition
of the 13 node derivation of ccabbd from MG2 depicted in Appendix 6. (I omit the lexical
tree for reasons of space but recommend, dear reader, that you draw it for yourself.)

step queue rule
0. (A(...), /0)ε START

1. (+2(...),-2(...)0)1 ◦1

2. (+1(...),-1(...)10-2(...)0)11 ◦1

3. (B(...),-1(...)10-2(...)0)111(=B(a), /0)110 •1

4. (C(c), /0)0,(=C(...),-1(...)10)111(=B(a), /0)110 •4

5. (=C(...),-1(...)10)111(=B(a), /0)110 SCAN

6. (B(...),-1(...)10)1111(=B(a), /0)110(=B(b), /0)1110 •1

7. (C(c), /0)10,(=B(a), /0)110(=B(b), /0)1110(=C(...), /0)1111 •4

8. (=B(a), /0)110(=B(b), /0)1110(=C(...), /0)1111 SCAN

9. (=B(b), /0)1110(=C(...), /0)1111 SCAN

10. (=C(...), /0)1111 SCAN

11. (=B(b), /0)11110(B(d), /0)11111 •1

12. (B(d), /0)11111 SCAN

13. ε SCAN

Example 3. To see remnant movement, it is useful to consider artificial examples like this 7
item grammar for the copy language {xx|x ∈ {a,b}∗}, with start category T, before tackling
the less explicit and more complex proposals in the syntax literature:

ε ::=T +r +l T ε ::T -r -l
a::=A +l T -l b::=B +l T -l
a::=T +r A -r b::=T +r B -r

It is immediately obvious from this lexicon that all MG derivations respect SpICmrg, since
no specifier is ever merged; all specifiers are created by movement. The 11 step recognizer
sequence that accepts abab is easily computed, a goo exercise for the reader. (Or see the
websites given in the first paragraph of this appendix for implemented versions of this
algorithm, which provide this grammar as one of the examples.)

	MGs and MCFGs
	An incremental, probabilistic, top-down MG parser
	Gradience in models of syntactic analysis
	Comparisons and extensions
	Evidence
	A methodology for language modeling

