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puzzles
goals
remnant movement puzzles
more basic puzzle

Q1 How are utterances interpreted ‘incrementally’?

Q2 How is that ability acquired, from available evidence?

Q3 Why are some constituent orders unattested across languages?

Q4 What kind of grammar makes copying a natural option?

we don’t need to start from zero (start from grammar)

frame explanations supported by convergent evidence
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puzzles
goals
remnant movement puzzles
more basic puzzle

Everyone1, someone saw t1

‘Interpret t1 as a variable x1 bound by a higher abstraction.’
everyone(λx1.someone(λx2.lovesx1x2).
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puzzles
goals
remnant movement puzzles
more basic puzzle

Everyone1, someone saw t1

‘Interpret t1 as a variable x1 bound by a higher abstraction.’
everyone(λx1.someone(λx2.lovesx1x2).

PBC Each trace must be bound at S-structure.

GPBC Each trace must be bound throughout the derivation.
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puzzles
goals
remnant movement puzzles
more basic puzzle

Everyone1, someone saw t1

‘Interpret t1 as a variable x1 bound by a higher abstraction.’
everyone(λx1.someone(λx2.lovesx1x2).

PBC Each trace must be bound at S-structure.

GPBC Each trace must be bound throughout the derivation.

[t1 saw everyone]2, someone1 did t2
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puzzles
goals
remnant movement puzzles
more basic puzzle

PBC Each trace must be bound at S-structure.

GPBC Each trace must be bound throughout the derivation.

(Müller’98 and many others):

[VP2
t1 Gelesen]

read
hat
has

[das
the

Buch]1
book

[keiner
noone

t2].

[VP2
Criticized by his boss t1] John1 has never been t2.

[AP2
How likely [t1 to win]] is3 John1 t3 t2?

*[AP2
How likely [t1 to be a riot]] is3 there1 t3 t2?

John [VP2
reads t1] [no novels]1 t2.
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puzzles
goals
remnant movement puzzles
more basic puzzle

[T]he hypothesis of direct compositionality can be summed up with the
following slogan:

The syntax and the semantics work together in tandem.
. . . it ensures that . . . every expression which is computed in the syntax
. . . actually does have a meaning. . .

To illustrate with a concrete example, consider the standard, non-directly
compositional analysis of quantifier scope construal: a verb phrase such
as saw everyone fails to have a semantic interpretation until it has been
embedded within a large enough structure for the quantifier to take scope
(e.g. Someone saw everyone). On such an analysis, there is no semantic
value to assign to the verb phrase saw everyone at the point in the
derivation in which it is first formed by the syntax (or any other point in
the derivation, for that matter). (Barker and Jacobson, 2007, pp.1-2)

(let’s worry about this simple case first!)

E Stabler, UCLA Grammar in Performance and Acquisition:interfaces



puzzles
goals
remnant movement puzzles
more basic puzzle

. . . the overt structure of “John offended every linguist” . . . cannot
be the input to the semantic component. . . The DP “every
linguist”. . . will move out of its VP and adjoin to S in the
derivation from SS to LF.

S

DP

John

VP

offended DP

every linguist

⇒

S

DP

every linguist

·

1 S

DP

John

VP

offended t1

(Heim&Kratzer’86,pp.184-5)
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puzzles
goals
remnant movement puzzles
more basic puzzle

There is no way to assign a type to the VP-node in our
system. . . The type clash is resolved by May’s rule Quantifier
Raising (QR). . .

S?

NPe

Bill

VP?type clash!

Veet

hates

DP(et)t

every obnoxious child

⇒QR

St

DP(et)t

every obnoxious child

Set

5 St

NPe

Bill

VPet

Veet

hates

DPe

t5

(von Stechow’08)
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quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

Frege: quantifiers as properties of properties of individuals

It is true that at first sight the proposition

“All whales are mammals”

seems to be not about concepts but about animals; but if we ask which
animal then we are speaking of, we are unable to point to any one in
particular. . . If it be replied that what we are speaking of is not, indeed,
an individual definite object, but nevertheless an indefinite object, I
suspect that “indefinite object” is only another term for concept. . .
(1884, §47)

. . . trouble with the semantic paradoxes ⇒ types
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quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

Syntax

Church’40 simple type theory (see e.g. Carpenter’97 text)

Given a set of basic types B, we build the whole set of types

T := B | (TT).

∀τ ∈ T, vars Vτ (xτ
0 , xτ

1 , . . .) and constants Cτ (cτ
0 ,dτ

1 , . . .)

Terms Λ := Vτ | Cτ | (ΛστΛσ)τ | (λVσ.Λτ )στ

Notation:
across types V =

⋃

τ Vτ C =
⋃

τ Cτ

types associate right eet = e(et)
abstraction associates right λx .λy .λz.M = λx .(λy .(λz.M))

applications associate left fabc = ((fa)b)c)
application over abstraction λx .fxy = λx .((fx)y)

E Stabler, UCLA Grammar in Performance and Acquisition:interfaces



quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

semantics

For each basic type τ ∈ B, Domτ is a set

For all other types Domαβ = [Domα → Domβ]

Frame Dom =
⋃

α∈Typ Domα

Model M = 〈Dom, [[.]]〉, where

Dom is a frame, and
[[.]] : C → Dom such that if α ∈ Cτ then [[α]] ∈ Domτ

Assignments θ : V → Dom such that θ(x) ∈ Domα if x ∈ Vα

Denotations wrt M and θ,

[[x ]]θ
M

= θ(x) if x ∈ V,
[[c]]θ

M
= [[c]] if c ∈ C,

[[αβ]]θ
M

= [[α]]θ
M

[[β]]θ
M

,

[[λx .α]]θ
M

= f such that fa = [[α]]
θ[x:=a]
M

.
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quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

(Syn) Basic types B = {e, t}, and for each type τ , constants

not ∈ Ctt and ∈ Cttt

eqτ ∈ Cττt everythingτ ∈ C(τ t)t

ιτ ∈ C(τ t)τ

(Sems) Domt = {true, false}, Dome any set of individuals, and
constants are interpreted as follows:
[[not]](x) = true if x = false, false otherwise
[[and]](x)(y) = true if x = true and y = true, false otherwise
[[eqτ ]](x)(y) = true if x = y , false otherwise

[[everythingτ ]](P) =

{

true if ∀a ∈ Domτ ,P(a) = true

false otherwise

[[ι]](P) = a if a is the unique thing such that P(a) = true.

Instead of everything(et)t , Church has Π and Carpenter has every, with some(et)t or something introduced by

definition.
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quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

(limited) polymorphism

Easy extensions are available for limited polymorphism.
E.g. instead of eqτ for each type τ , in λ2,

eq = Λα.λxα.xα

E.g. instead of type shifting (cf Capretta’02), ∀n ∈ N

p0 = t. pn+1 = epn. everythingpn+1pn .

(Barendregt’92 survey linked on web page)
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quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

(Syn) Add logical constants every, some ∈ C(et)(et)t

and constants person, thing ∈ Cet , saw ∈ Ceet .

(Sem) [[everyPQ]] =

{

true if Pa → Qa, all a ∈ Dome

false otherwise

[[somePQ]] =

{

true if Pa = Qa = true, some a ∈ Dome

false otherwise

(E.g.) Then we have formulas like these

(every person)(λy .(some thing)(λx .sawxy))
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quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

for VP=[binary relation+quantifier], two main approaches:

1. saturate relation, abstract to bind var, then apply quantifier
(Heim&Kratzer, von Stechow,. . . )

(some person)(λy .(every thing)(λx .sawxy))

2. type-shift (Hendriks, Jacobson, Barker, Winter,. . . ).

L = λQ(et)t .λReet .λy .Q(λx .Rxy)
(some person)(L(every thing)saw)

2’. simply assume quantifiers are polymorphic (Keenan,. . . )

(some person)((every thing)saw)

(NB: in all 3 approaches, (some person) has the identical argument, provided by VP)

So let’s adopt Keenan’s simple ‘arity reducer’ perspective, but use QR to establish scope. . .
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quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

What could VP denotation be, on a standard QR story?

[[TP]]

[[DP]]

some person

[[VP]] ⇐ what could this be?

saw [[DP]]

every thing

Scope determined by ‘landing position’ of object.

Roughly, from [[VP]] we need (every thing)λx and sawx
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quantifiers and arguments
Simple type theory (Church’40)
Extensions
Quantifiers

[[TP]]

[[DP]]

some person

[[VP]] ⇐ what could this be?

saw [[DP]]

every thing

Roughly, from [[VP]] we need (every thing)λx and sawx

Two technical issues: (cf. Kobele’06, PL sems)

Variable x has to be ‘fresh’ to avoid accidental capture

What is λx?

But for MG interpretation, these issues can be avoided.
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semantics for MGs
Sketch
Example: remnant movement

Basic idea:

In MGs, QR triggered by some feature of DP (e.g. -q,-top)

Call a tree useful if it occurs in a completed derivation

By SMC, no 2 constituents in any useful tree have the same
initial licensee feature

So if some subset of the licensee features L = {-f1, . . . , -fk},
trigger DP movement to interpreted positions, we represent
the meaning of each useful tree with a k + 1-tuple:

(s0, s1, . . . , sk),

with s0 the semantic value of the head, and each other si the
value of the subtree (if any) moving for feature -fi .

We will consistently use variable xi for feature si , so if a
constituent moves first for -f1 and then for -f2, after the first
movement we equate x1 = x2 and immediately bind x1.

(similar association of variables with structural positions, with finite bounds, will be available
with most modifications of the SMC considered on the first day)
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semantics for MGs
Sketch
Example: remnant movement

Example 1a:
◦

◦

•

ǫ::=V +q1 +q2 C •

•

some::=N D -q2 person::N

• ⇐ what could this be?

saw::=D =D V •

every::=N D -q1 thing::N

To make the VP easier to point to, I put subject first, but as usual the selected subj is the 2nd arg of em)
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semantics for MGs
Sketch
Example: remnant movement

Example 1a:
◦

◦

•

ǫ::=V +q1 +q2 C •

•

some::=N D -q2 person::N

• ⇐ (saweetx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 thing::N

To make the VP easier to point to, I put subject first, but as usual the selected subj is the 2nd arg of em)
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semantics for MGs
Sketch
Example: remnant movement

Example 1a:
◦

◦

•

ǫ::=V +q1 +q2 C • ⇐ (sawx1x2, every thing, some person)

•

some::=N D -q2 person::N

• ⇐ (saweetx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 thing::N

To make the VP easier to point to, I put subject first, but as usual the selected subj is the 2nd arg of em)
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semantics for MGs
Sketch
Example: remnant movement

Example 1a:
◦

◦ ⇐ (every thing(λx1.sawx1x2), ǫ, some person)

•

ǫ::=V +q1 +q2 C • ⇐ (sawx1x2, every thing, some person)

•

some::=N D -q2 person::N

• ⇐ (saweetx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 thing::N

To make the VP easier to point to, I put subject first, but as usual the selected subj is the 2nd arg of em)
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semantics for MGs
Sketch
Example: remnant movement

Example 1a:
◦ ⇐ (some person(λx2.every thing(λx1.sawx1x2)), ǫ, ǫ)

◦ ⇐ (every thing(λx1.sawx1x2), ǫ, some person)

•

ǫ::=V +q1 +q2 C • ⇐ (sawx1x2, every thing, some person)

•

some::=N D -q2 person::N

• ⇐ (saweetx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 thing::N

To make the VP easier to point to, I put subject first, but as usual the selected subj is the 2nd arg of em)
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semantics for MGs
Sketch
Example: remnant movement

Example 1b:
◦

◦

•

ǫ::=V +q2 +q1 C •

•

some::=N D -q2 person::N

• ⇐ what could this be?

saw::=D =D V •

every::=N D -q1 thing::N
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semantics for MGs
Sketch
Example: remnant movement

Example 1b:
◦

◦

•

ǫ::=V +q2 +q1 C •

•

some::=N D -q2 person::N

• ⇐ (sawx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 thing::N
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semantics for MGs
Sketch
Example: remnant movement

Example 1b:
◦

◦

•

ǫ::=V +q2 +q1 C • ⇐ (sawx1x2, every thing, some person)

•

some::=N D -q2 person::N

• ⇐ (sawx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 thing::N
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semantics for MGs
Sketch
Example: remnant movement

Example 1b:
◦

◦ ⇐ (some person(λx2.sawx1x2), every thing, ǫ)

•

ǫ::=V +q2 +q1 C • ⇐ (sawx1x2, every thing, some person)

•

some::=N D -q2 person::N

• ⇐ (sawx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 thing::N
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semantics for MGs
Sketch
Example: remnant movement

Example 1b:
◦ ⇐ (every thing(λx1.some person(λx2.sawx1x2)), ǫ, ǫ)

◦ ⇐ (some person(λx2.sawx1x2), every thing, ǫ)

•

ǫ::=V +q2 +q1 C • ⇐ (sawx1x2, every thing, some person)

•

some::=N D -q2 person::N

• ⇐ (sawx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 thing::N
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semantics for MGs
Sketch
Example: remnant movement

Hiraiwa’02: Someone saw everyone (∃ > ∀, ∀ > ∃)
Saw everyone, someone did (∃ > ∀, ∗∀ > ∃)

∗∀ > ∃ if SpIC or other constraint blocks q-movement from spec,TP

◦ ◦

•

ǫ::=T +q2 C ◦

◦

•

ǫ::=V +k +top T •

•

some::=N D -k -q2 person::N

• ⇐ what could this be?

saw::=D =D V -top •

every::=N D thing::N
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semantics for MGs
Sketch
Example: remnant movement

Hiraiwa’02: Someone saw everyone (∃ > ∀, ∀ > ∃)
Saw everyone, someone did (∃ > ∀, ∗∀ > ∃)

∗∀ > ∃ if SpIC or other constraint blocks q-movement from spec,TP

◦◦

•

ǫ::=T +q2 C ◦

◦

•

ǫ::=V +k +top T •

•

some::=N D -k -q2 person::N

• ⇐ (every thing saw), ǫ)

saw::=D =D V -top •

every::=N D thing::N
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semantics for MGs
Sketch
Example: remnant movement

Hiraiwa’02: Someone saw everyone (∃ > ∀, ∀ > ∃)
Saw everyone, someone did (∃ > ∀, ∗∀ > ∃)

∗∀ > ∃ if SpIC or other constraint blocks q-movement from spec,TP

◦◦

•

ǫ::=T +q2 C ◦

◦

•

ǫ::=V +k +top T • ⇐ (every thing sawx1, some person)

•

some::=N D -k -q2 person::N

• ⇐ (every thing saw), ǫ)

saw::=D =D V -top •

every::=N D thing::N
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semantics for MGs
Sketch
Example: remnant movement

Hiraiwa’02: Someone saw everyone (∃ > ∀, ∀ > ∃)
Saw everyone, someone did (∃ > ∀, ∗∀ > ∃)

∗∀ > ∃ if SpIC or other constraint blocks q-movement from spec,TP

◦◦

•

ǫ::=T +q2 C ◦

◦

• ⇐ (every thing sawx1, some person)

ǫ::=V +k +top T • ⇐ (every thing sawx1, some person)

•

some::=N D -k -q2 person::N

• ⇐ (every thing saw), ǫ)

saw::=D =D V -top •

every::=N D thing::N
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semantics for MGs
Sketch
Example: remnant movement

Hiraiwa’02: Someone saw everyone (∃ > ∀, ∀ > ∃)
Saw everyone, someone did (∃ > ∀, ∗∀ > ∃)

∗∀ > ∃ if SpIC or other constraint blocks q-movement from spec,TP

◦ ⇐ (some person(λx1.(every thing saw)x1), ǫ)◦

•

ǫ::=T +q2 C ◦

◦

• ⇐ (every thing sawx1, some person)

ǫ::=V +k +top T • ⇐ (every thing sawx1, some person)

•

some::=N D -k -q2 person::N

• ⇐ (every thing saw), ǫ)

saw::=D =D V -top •

every::=N D thing::N
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

Consider MG with some subset of features L = {-f1, . . . , -fk}
(including e.g. -q, -foc), triggering DP movement to clause
peripheral positions where they can be interpreted. Everything else
interpreted in base position.

Tree t is useful iff it occurs in a completed derivation

Interpret useful tree t as a tuple, [[t]] = (s0, s1, . . . , sk) where

s0 is the semantic value of the t-head, and for 1 ≤ i ≤ k ,
si is the semantic value of the −fi head, if any, otherwise ǫ

Given (s0, . . . , sk)
[i :=x] = (s0, . . . , si−1, x , si+1, . . . sk)

(Sometimes we have a sequence of substitutions to make [i1 := x1, . . . , in := xn ], all ii distinct)

Given s = (s0, s1, . . . , sk) and t = (t0, t1, . . . , tk) let
(s+t) = (u0, . . . , uk) where ui = si if si 6= ǫ, else ui = ti .

FF (t) = f means the first feature of head of tree t is f
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

For t1[=c] = a with [[a]] = (s0, . . . , sk),
and t2[c] = b with [[b]] = (r0, . . . , rk ),

[[em(a, b)]] =











([[a]]+[[b]])[0:=s0xi ,i :=r0] if FF (t2) = -fi ∈ L (store)

([[a]]+[[b]])[0:=s0r0] if s0r0 well-typed (FA)

([[a]]+[[b]])[0:=r0s0] otherwise (BA)

For t1[+fj ] = a with [[a]] = (s0, . . . , sk), with subtree t2[-fj ],

[[im(a)]] =



















[[a]] if FF (t2) = -fi , i = j (ck)

[[a]][0:=some(λxj .xi=xj∧s0), i :=sj , j:=ǫ] if FF (t2) = -fi ∈ L (ck)

[[a]] if FF (t2) 6∈ L (0)

[[a]][j:=ǫ, 0:=sj (λxj .s0)] if t2 has no features. (bnd)

(nb: in these defs, sequences of cases are to be understood in order, as if. . . else, and some is obviously (et)t.)
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

checking example:

◦

◦

•

ǫ::=V +q1 +q2 C •

Mary::D • ⇐ what could this be?

saw::=D =D V •

every::=N D -q1 -q2 thing::N

Again, to make the VP easier to point to, I put subject first, but selected subj is the 2nd arg of em)
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

checking example:

◦

◦

•

ǫ::=V +q1 +q2 C •

Mary::D • ⇐ (sawx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 -q2 thing::N

Again, to make the VP easier to point to, I put subject first, but selected subj is the 2nd arg of em)
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

checking example:

◦

◦

•

ǫ::=V +q1 +q2 C • ⇐ (sawx1mary, every thing, ǫ)

Mary::D • ⇐ (sawx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 -q2 thing::N

Again, to make the VP easier to point to, I put subject first, but selected subj is the 2nd arg of em)
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

checking example:

◦

◦ ⇐ (some(λx1.x1 = x2 ∧ sawx1mary), ǫ, every thing)

•

ǫ::=V +q1 +q2 C • ⇐ (sawx1mary, every thing, ǫ)

Mary::D • ⇐ (sawx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 -q2 thing::N

Again, to make the VP easier to point to, I put subject first, but selected subj is the 2nd arg of em)
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

checking example:

◦ ⇐ (every thing(λx2.some(λx1.x1 = x2 ∧ sawx1mary)), ǫ, ǫ)

◦ ⇐ (some(λx1.x1 = x2 ∧ sawx1mary), ǫ, every thing)

•

ǫ::=V +q1 +q2 C • ⇐ (sawx1mary, every thing, ǫ)

Mary::D • ⇐ (sawx1, every thing, ǫ)

saw::=D =D V •

every::=N D -q1 -q2 thing::N

Again, to make the VP easier to point to, I put subject first, but selected subj is the 2nd arg of em)
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

Improvements

can we make [[move]] uniform?

when we don’t know scope of object, does anything more
follow about VP denotation that the pairs do not make
explicit?
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

Improvements

can we make [[move]] uniform?
yes, and this gets us closer the the representational
perspective – but too much for today

when we don’t know scope of object, does anything more
follow about VP denotation that the pairs do not make
explicit?
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Appendix: semantics for MGs
Detail summary
Example: checking
Improvements

Improvements

can we make [[move]] uniform?
yes, and this gets us closer the the representational
perspective – but too much for today

when we don’t know scope of object, does anything more
follow about VP denotation that the pairs do not make
explicit?
yes, remember conservativity! This is important and usually
ignored (but cf. Ben-Shalom, Keenan) – too much for today
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morphophonology PF movement, Morphonology by composition

LF

PF
"spell out"

PF

LF

lexical resourceslexical resources
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morphophonology PF movement, Morphonology by composition

Morphophonology as transduction

the king eat -s the pie 7→ the king eats the pie

(CL: Roark&Sproat’07,Huet’03)

(Ph: Riggle’04,Eisner’97)
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morphophonology PF movement, Morphonology by composition

Morphophonology as transduction

the king eat -s the pie 7→ the king eats the pie
the king have -s eat -en the pie 7→ the king has eaten the pie

(CL: Roark&Sproat’07,Huet’03)

(Ph: Riggle’04,Eisner’97)
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morphophonology PF movement, Morphonology by composition

Morphophonology as transduction

the king eat -s the pie 7→ the king eats the pie
the king have -s eat -en the pie 7→ the king has eaten the pie
the king have -s laugh -en 7→ the king has laughed

(CL: Roark&Sproat’07,Huet’03)

(Ph: Riggle’04,Eisner’97)
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morphophonology PF movement, Morphonology by composition

Morphophonology as transduction

the king eat -s the pie 7→ the king eats the pie
the king have -s eat -en the pie 7→ the king has eaten the pie
the king have -s laugh -en 7→ the king has laughed
the king be -s laugh -ing 7→ the king’s laughing

(CL: Roark&Sproat’07,Huet’03)

(Ph: Riggle’04,Eisner’97)
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morphophonology PF movement, Morphonology by composition

Morphophonology as transduction

the king eat -s the pie 7→ the king eats the pie
the king have -s eat -en the pie 7→ the king has eaten the pie
the king have -s laugh -en 7→ the king has laughed
the king be -s laugh -ing 7→ the king’s laughing
the king will -s laugh 7→ the king will laugh

(CL: Roark&Sproat’07,Huet’03)

(Ph: Riggle’04,Eisner’97)
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morphophonology PF movement, Morphonology by composition

Morphophonology as transduction

the king eat -s the pie 7→ the king eats the pie
the king have -s eat -en the pie 7→ the king has eaten the pie
the king have -s laugh -en 7→ the king has laughed
the king be -s laugh -ing 7→ the king’s laughing
the king will -s laugh 7→ the king will laugh
-s the king laugh 7→ does the king laugh

(CL: Roark&Sproat’07,Huet’03)

(Ph: Riggle’04,Eisner’97)
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morphophonology PF movement, Morphonology by composition

A

what:what
king:king

pie:pie
the:the
does:-s

been:been
eat:eat

laugh:laugh
have:have

B

is:be

’s:be

will:will

has:have

eats:eat

laughs:laugh

C

eating:eat

having:have

laughing:laugh

D

laughed:laugh

eaten:eat

e:-s

e:-ing

e:-en

forward:
the king eat -s the pie 7→ the king eats the pie

E Stabler, UCLA Grammar in Performance and Acquisition:interfaces



morphophonology PF movement, Morphonology by composition

A

what:what
king:king

pie:pie
the:the
does:-s

been:been
eat:eat

laugh:laugh
have:have

B

is:be

’s:be

will:will

has:have

eats:eat

laughs:laugh

C

eating:eat

having:have

laughing:laugh

D

laughed:laugh

eaten:eat

e:-s

e:-ing

e:-en

forward:
the king eat -s the pie 7→ the king eats the pie

backward:
the king eats the pie 7→ the king eat -s the pie

the king eat does the pie
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intermission 2
References

So far 2

simple formalisms can model many linguistic proposals

a straightforward semantics values every constituent in course
of derivation

• Simple, extensional MG semantics is defined in ≈7 lines
• No problem with remnant movement
• Conditions could be placed on use of LF variables

(cf Collins&Sabel)
• A tighter connection than pairing for VP is possible

PF standardly handled by transducer composition

Q1 What performance models allow incremental interpretation
(and remnant movement, doubling constructions)?
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So far 2

MG semantics

For t1[=c] = a with [[a]] = (s0, . . . , sk),
and t2[c] = b with [[b]] = (r0, . . . , rk ),

[[em(a, b)]] =











([[a]]+[[b]])[0:=s0xi ,i :=r0] if FF (t2) = -fi ∈ L (store)

([[a]]+[[b]])[0:=s0r0] if s0r0 well-typed (FA)

([[a]]+[[b]])[0:=r0s0] otherwise (BA)

For t1[+fj ] = a with [[a]] = (s0, . . . , sk), with subtree t2[-fj ],

[[im(a)]] =



















[[a]] if FF (t2) = -fi , i = j (ck)

[[a]][0:=some(λxj .xi=xj∧s0), i :=sj , j:=ǫ] if FF (t2) = -fi ∈ L (ck)

[[a]] if FF (t2) 6∈ L (0)

[[a]][j:=ǫ, 0:=sj (λxj .s0)] if t2 has no features. (bnd)
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