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goals goals

Q1 How are utterances interpreted ‘incrementally’?

Q2 How is that ability acquired, from available evidence?

Q3 Why are some constituent orders unattested across languages?

Q4 What kind of grammar makes copying a natural option?

we don’t need to start from zero (start from grammar)

frame explanations supported by convergent evidence
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setup

The problem
Parameter setting
Learnability theory
Positive results
The problem, factored
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tb2: ≈40% words unique, 75% bigrams, 90% trigrams, 99.7% sentences

⇒ most sentences heard only once
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Parameter setting: methodology

How are fundamental properties of language learned?
Important to distinguish 2 ideas:

Uncontroversially, we usually aim to understand how the basic
parameters of language variation are set, abstracting away
from other properties.
A controversial suggestion is that there may be a principled
distinction between “core” parameters and “peripheral”
parameters of variation, such that universal grammar “will
make available only a finite class of possible core grammars, in
principle,” (Chomsky’81)

The first idea is assumed here and in virtually all work on
learning, in all domains; the second conjecture might or might
not be true, and nothing mentioned here will depend on it.
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Parameter setting: methodology

How are fundamental properties of language learned?

Gibson&Wexler’94: set n binary parameters on basis of input
constituent orders
〈vs, vos, vo1o2s, . . .〉 7→(spec-final, comp-final, not V2)

. . . in the case of Universal Grammar. . . we want the primitives to be
concepts that can plausibly be assumed to provide a preliminary,
prelinguistic analysis of a reasonable selection of presented data. it
would be unreasonable to incorporate such notions as subject of a

sentence or other grammatical notions, since it is unreasonable to
suppose that these notions can be directly applied to linguistically
unanalyzed data. (Chomsky, 1981)

Suppose parameters are associated with (functional) heads, in the
lexicon. (Presumably tightly constrained – more on this later) The
learner needs to identify them. . .
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(Gold, 1967; Angluin, 1980) A collection of languages is perfectly

identifiable from positive text iff every L has finite subset DL

DL

L
No such intermediate language L’

⇒ no superset of the class of finite languages is learnable in this sense

(Pitt, 1989) If collection identifiable with p >
1
2
, then learnable

in Gold’s sense

(cf. good review in Niyogi’06)E Stabler, UCLA Grammar in Performance and Acquisition:acquisition
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Fin non−RERec RE

Aspects,HPSG,LFG

CSMGCCFReg MG

CF⊂ TAG ≡ CCG ⊂ MCFG ≡ MG ⊂ MGC ⊆ PMCFG ⊂CS
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A regular language is 0-reversible iff xz , yz ∈ L implies
∀w , xw ∈ L iff yw ∈ L
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(Angluin’82): 0-reversible languages are learnable from positive
text
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A CFG is very simple iff every rule has form A → aα for
pronounced (terminal) symbol a and sequence of categories α,
where no two rules have the same pronounced element a.

Example:

S → & S S
S → ¬ S
S → p
S → q
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(Yokomori’03): VSLs are learnable from positive text
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A CG is k-valued if no pronounced (terminal) symbol has more
than k categories.

Example:

&::(S\S)/S
¬::S/S
p::S
q::S

Example:

and::(S\S)/S
saw::(D\S)/D
saw::N
student::N
vegetarian::N
some::D/N
every::D/N
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(Kanazawa’94): k-valued categorial languages are learnable from
function-argument trees (and learnable in principle from strings)
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input: 12340, 15340642310,. . .

Problem: What is the language? Does the language have
structures you have not seen?
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input: 12340, 15340642310,. . .
dependencies (r,b,g)
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structures you have not seen?
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input: 12340, 15340642310, . . .
dependencies (r,b,g), MG, lex unambiguous
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Problem: What is the language? Does the language have
structures you have not seen?
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

criticize::=D V -v praise::=D V -v
-s::=v +v +case T ǫ::=V +case =D v
Beatrice::D -case Benedick::D -case and:=T =T T

>

Beatrice >

<

criticize

<

-s:T >

>

Benedick <

TP

DP(3)
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D
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VP(2)
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vP

DP
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v’
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Benedick

v’

v VP

t(2)
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The same derivation in tuple form, fully explicit:

Beatrice criticize -s Benedick:T

criticize -s Benedick:+case T,Beatrice:-case

-s Benedick:+i +case T,criticize:-i,Beatrice:-case

-s::=v +i +case T Benedick:v,criticize:-i,Beatrice:-case

Benedick:=D v,criticize:-i

ǫ:+case =D v,criticize:-i,Benedick:-case

ǫ::=V +case =D v criticize:V -i,Benedick:-case

criticize::=D V -i Benedick::D -case

Beatrice::D -case
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

The same derivation as a matching graph:

-s =v +i +case T

=V +case =D v

criticize =D V -i Benedick D -case

Beatrice D -case

ǫ

(This graph completely determines the derivation)

Suppose the learner can identify these dependencies using
semantic reasoning, but not the syntactic features. . . what do
we have when features are removed?

E Stabler, UCLA Grammar in Performance and Acquisition:acquisition



grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Let’s call these MG dependency structures:

Beatrice praise

Benedick

-s

ǫ

From these, the learner can identify the language.
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

the learner: given a sequence of dependency structures. . .

1. label the root category

2. identify first arcs of non-root nodes, add new category labels

3. add new licensee features for each other incoming arc

4. add pre-category feature to match each outgoing arc

5. collect the lexicon

6. assuming no lexical ambiguity, unify features
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Input: 〈d1〉

Beatrice criticize

Benedick

-s

ǫ
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Step 1: Label root category

Beatrice criticize

Benedick

1

-s::T

3 21

3 12

ǫ

E Stabler, UCLA Grammar in Performance and Acquisition:acquisition



grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Step 2: Identify least incoming arcs of non-root nodes; add new
category labels:

Beatrice::D criticize::E

Benedick::F

>1

-s::T

3 2>1

>3 >1
2

ǫ::G
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Step 3: Add new licensee features for each later incoming arc:

Beatrice::D -H criticize::E -J

Benedick::F -I

>1

-s::T

3 2>1

>3
>12

ǫ::G
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Step 4: Add precategory features to match other end of each
outgoing arc, in order (r,b,g):

Beatrice::D -H criticize::=F E -J

Benedick::F -I

>1

-s::=G +J +H T

3
2>1

>3 >12

ǫ::=E +I =D G
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grammars 〈Lex,Mrg〉 from structures

Grammar
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example
more complex examples

Step 5. collect lexicon: GF (〈d1〉) is then:

criticize::=F E -J
-s::=G +J +H T ǫ::=E +I =D G
Beatrice::D -H Benedick::F -I

The result of this step is always a grammar that defines exactly the
dependency trees given in the input; nothing more. The grammar
generates exactly the input string(s).
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Step 6. unify to make rigid: GF (〈d1〉) already rigid, so
GF (〈d1〉) = RG (〈d1〉)

criticize::=F E -J
-s::=G +J +H T ǫ::=E +I =D G
Beatrice::D -H Benedick::F -I

criticize::=D V -v praise::=D V -v
-s::=v +v +case T ǫ::=V +case =D v
Beatrice::D -case Benedick::D -case and::=T =T T
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Input: 〈d1, d2〉

Beatrice criticize

Benedick

-s

and

-s

Benedick praise

Beatrice

ǫǫ
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Step 5: GF (〈d1, d2〉) is then:

Beatrice::P -U Benedick::O -V and::=L =K T
Beatrice::S -Y Benedick::C -X
-s::=M +W +U K ǫ::=N +V =P M
criticize::=O N -W praise::=S R -Z
-s::=Q +Z +X L ǫ::=R +Y =C Q

criticize::=F E -J
-s::=G +J +H T ǫ::=E +I =D G
Beatrice::D -H Benedick::F -I

NB: Again, GF (〈d1, d2〉) does not generalize at all.
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

Step 6. unify to make rigid: RG (〈d1, d2〉) =

criticize::=D E -J praise::=D E -J
-s::=G +J +H T ǫ::=E +H =D G
Beatrice::D -H Benedick::D -H and::=T =T T

criticize::=D V -v praise::=D V -v
-s::=v +v +case T ǫ::=V +case =D v
Beatrice::D -case Benedick::D -case and::=T =T T

This strategy always works
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

input: 12340, 15340642310
Beatrice praise -s Benedick ǫ,

Beatrice criticize -s Benedick ǫ and Benedick praise -s Beatrice ǫ.

dependencies (r,b,g), MG, lex unambiguous
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Problem: What is the language?
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

a

0

2

2

1

1

2

3

1

0

2

2

1

2 1

1
2

1
2

b

3 1 2

a::C -r -l b::=C +r +l T ǫ::T
2::=C +r A -r 3::=C +r B -r
0::=A +l C -l 1::=B +l C -l

cross-serial dependencies by ‘rolling-up’ (non-CF)
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grammars 〈Lex,Mrg〉 from structures

Grammar
the learner
example
more complex examples

A MG is rigid if each pronounced (terminal) symbol has at most 1
set of syntactic features.

Fin

Reg

CF

MG

CS

Thm Given any rigid MG G , and any text of dependency structures
t defined by G , this learning method will exactly identify the
language after finitely many examples
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extensions
structures from strings
grammars from ambiguous structures

structures from strings

Beatrice praise

Benedick

-s

ǫ

Selection: inferred from cognitively salient events

conditioned variation → lexical categories
tight constraints on functional categories ⋆

Movement: non-adjacency with related elements
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extensions
structures from strings
grammars from ambiguous structures

ambiguity

-s::=v +v +case T -s:=N Num (and more)
ǫ::=V +case =D v ǫ::=T C (and more)

read::=D V read::V read::N reed::N (and more)
bill::=D V bill::V bill::N (and more)

much ambiguity is systematic

semantic features reduce syntactic ambiguity

topic, semantic features from distributions?
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Summary

Summary

simple formalisms can model many linguistic proposals

Q3 Why are some constituent orders unattested? (perhaps DTC?)
Q4 What grammars make copying a natural option? (MGC?)

many open questions

Q1 What performance models allow incremental interpretation
(and remnant movement, doubling constructions?)

a straightforward semantics can value every MGC constituent
CKY, Earley efficiently parses every MGC
fit the performance data with a parser that works!

Q2 How is this ability acquired, from available evidence?

rigid MGs can be learned from structures
restricted possible structures aids: strings→structures
many open questions!
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Summary

Recap: the learner given a sequence of dependency structures. . .

1. label the root category

2. identify first arcs of non-root nodes, add new category labels

3. add new licensee features for each other incoming arc

4. add pre-category feature to match each outgoing arc

5. collect the lexicon

6. assuming no lexical ambiguity, unify features

Thm Given any rigid MG G , and any text of dependency structures
t defined by G , this learning method will exactly identify the
language after finitely many examples
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