
Tupled Pregroup Grammars

Edward P. Stabler
University of California, Los Angeles

Abstract. This paper extends Lambek’s pregroup grammars in a way designed to
facilitate comparison with proposals in the tradition of Chomskian syntax. Instead of
categorizing expressions with sequences of pregroup terms, we use tuples of sequences
of terms and define basic operations on tuples. Then we can define non-context free
languages and realize some recent syntactic analyses quite straightforwardly. The
pregroup operations provide a simple ‘feature checking’ and the tupling allows oper-
ations rather like ‘movement’. A certain kind of tupled pregroup grammar (mTPG) is
‘mildly context sensitive’, in Joshi’s sense, and seems to allow quite natural analyses
for ‘head movement’, ‘pied piping’ and ‘remnant movement’ constructions, avoiding
special, ad hoc mechanisms.

Constituent combination is treated in classical categorial grammar
as kind of non-associative product, and there is no corresponding di-
vision operation (Bar-Hillel, 1953). Lambek noticed that associativity
and division are easily added (Lambek, 1958), but the resulting calculus
is rather complex: even the proof that it defines exactly the (ε-free)
context free languages is non-trivial (Pentus, 1993). Lambek, Casadio,
Buszkowski and others have more recently studied simpler associative
calculi they call ‘pregroup grammars’, and an easy proof shows that
they also define the context free languages.

This paper extends pregroup grammars by making them higher
order, in a way designed to facilitate comparison with proposals in
the tradition of Chomskian syntax. Categorizing expressions with k-
tuples (or equivalently, k-ary functions) of sequences of terms instead
of merely sequences of terms, and defining basic operations on tuples,
non-context free languages can be defined. In fact, a certain kind of
tupled pregroup grammar (mTPG) presented here is ‘mildly context
sensitive’ in the sense of Joshi (1985), with exactly the same expressive
power as the set-local multi-component tree adjoining grammars of
Weir (1988), the multiple context free grammars (MCFGs) of Seki et al.
(1991) and the minimalist grammars (MGs) of Stabler and Keenan
(2003). mTPG operations are much simpler than MG operations, and
furthermore, whereas some ‘head movement’, ‘affix hopping’, ‘partial
movement’ and ‘pied piping’ phenomena seem to motivate complex,
ad hoc mechanisms in minimalist grammars (Stabler, 2001), mTPGs
appear to provide reasonable treatments without any extension.

draft comments welcome: stabler@ucla.edu

tpg.tex; 22/04/2004; 16:57; p.1

2 Edward P. Stabler

1. Pregroup grammars and blocking constraints

Following Lambek (2001) and Buszkowski (2001), consider any set P of
simple types, and define an associated set of terms RP as the closure
of P with respect to function l together with the closure of P with
respect to function r. These ‘left adjoint’ and ‘right adjoint’ functions
are usually written as superscripts, so for any simple type a ∈ P, RP

contains the following, and we will assume they are pairwise distinct:

. . . all al a ar arr . . .

It is convenient to introduce another notation for terms too, repre-
senting any simple type a = a(0), iterations of the right adjoint with
positive superscripts in parentheses, and iterations of the left adjoint
with negative superscripts in parentheses, so the previous sequence is:

. . . a(−2) a(−1) a(0) a(1) a(2) . . .

As usual, for any set S, S∗ is the set of finite sequences of elements of S,
and ε is the empty sequence. Define the set of types TP = R

∗
P
, the finite

sequences of terms. (We will often drop the subscripts from TP and RP

when no confusion will result.) Over alphabet Σ and simple types P,
PG expressions are type, string pairs, elements of E = TP×(Σ∪{ε})∗,

sometimes written t:s, and sometimes with types over strings
(

t

s

)

.

A pregroup grammar G = 〈Σ, P,≤, I,S〉 where Σ is a nonempty
alphabet, P is a set of simple types partially ordered by ≤, finite set
I ⊂ TP × ((Σ ∪ {ε}), and ‘start’ type S ∈ P.

Let _
PG

be the binary relation on E
∗ that holds only in the following

three cases, for any α, β ∈ E
∗ and any a, b ∈ T such that either a ≤ b

and n is even, or b ≤ a and n is odd,

(Conc) α

(

t1
s1

)(

t2
s2

)

β_α

(

t1t2
s1s2

)

β.

(GCON) α

(

xa(n)b(n+1)y
s

)

β_α

(

xy
s

)

β

(GEXP) α

(

xy
s

)

β_α

(

xa(n+1)b(n)y
s

)

β.

Define the powers s_0
PG

t iff s = t, and s_k+1
PG

t iff ∃u, s_k
PG

u and u_
PG

t.

Let s_∗

PG
t iff ∃k, s_k

PG
u. Then the language LG = {s| I

∗
_

∗

PG

(

S
s

)

}.

tpg.tex; 22/04/2004; 16:57; p.2

Tupled Pregroup Grammars 3

1.1. Example G0.

Let the vocabulary Σ = {a, boy, girl, laughs, praised, and, spoke, to},
the simple types P = {D3s,D,N,S} with ≤ the identity together with
D3s ≤ D, and with the following 8 expressions in the lexicon I:

(

D3sN
l

a

)(

N
boy

)(

N
girl

)(

DrDDl

and

)(

Dr
3sS

laughs

)(

DrSDl

praised

)(

DrSPl

spoke

)(

PDl

to

)

.

Recall the notational convention that abr = a(0)b(1), and since 0 is
even, this contracts if a ≤ b, by GCON above. But alb = a(−1)b(0),
and so contracts if b ≤ a. So if we read ≤ as ‘is an instance of’, then
GCON says that contraction happens when the adjoint of a term is
appropriately adjacent to an instance of that term. So G0 generates
an infinite language containing a boy laughs but not a boy and a girl
laughs, as desired. We can depict derivations in a standard tree format:

S:a girl spoke to a boy

D3sD
rS:a girl spoke to a boy

D3s:a girl

D3sN
lN:a girl

D3sN
l:a N:girl

DrS:spoke to a boy

DrSPlP:spoke to a boy

DrSPl:spoke P:to a boy

PDlD3s:to a boy

PDl:to D3s:a boy

D3sN
lN:a boy

D3sN
l:a N:boy

Binary branching indicates applications of Conc, unary branching indi-
cates applications of GCON, and each leaf is an element of the lexicon

I. For any G, to derive
(

t

s

)

∈ L(G) with t ∈ P, GEXP is never re-

quired (Lambek, 1999, Prop.2), recalling the ‘cut elimination’ result
for the calculus of Lambek (1958). The reader can easily verify that,
even without GEXP, there are many derivations of this string. With a
computer implementation it is easy to calculate that there are 12,016
different derivation trees which could have been displayed here.1

1 With Lemma 9 below, parsing methods for MGs are easily adapted
to the systems defined here (PGs, mPGs, mTPGs). See implementations at
http://www.linguistics.ucla.edu/people/stabler/.

tpg.tex; 22/04/2004; 16:57; p.3

4 Edward P. Stabler

1.2. A blocking constraint

We follow Lambek (2000) in proposing that some undesirable deriva-
tions should be blocked with ‘performance constraints’, but pursue
a different idea about what the constraints are, one inspired by the
tradition of Chomskian syntax. Notice that the type of each lexical
item in G0 has exactly one one element of P, and in the derivation
shown, no Conc step applies to a type with more than one element of P

in it. Derivations like this are common in linguistic applications. Let’s
say a type proper iff GCON does not apply to it and it has exactly 1
element of P; it is saturated iff no adjoint types occur in it; and it is
rl iff it has 0 or more right adjoints, followed by a simple type, followed
by 0 or more left adjoints. (So an rl type is proper, and has no adjoints
of adjoints.) An expression is proper (saturated, rl) iff its type is. A
minimal PG (mPG) is a PG in which

I assigns rl types;

Conc applies to a pair of expressions only if both are proper and at
least one of them is saturated.2

Some restriction of this sort might be motivated by a memory limitation
– an inability to remember more than one incomplete, unsaturated
element at at time (cf. Stabler 1994).

Above we showed 1 of 12,016 derivation trees for the sentence a girl
spoke to a boy, but only in 2 of these does Conc respect the proper and
saturation requirements, the one above with the constituency
[a girl][spoke [to [a boy]]], and another with the constituency
[[a girl] spoke][to [a boy]]. The way proper typing and saturation
induce structure here is key. There is only one analysis of the P phrase to
a boy because to and a are both unsaturated; but there are two analyses
of the major constituents of the sentence, DVP, because both D and P
are saturated in this simple grammar. So mPG restrictions remove a
good deal of the associativity in the simple system; intuitively, mPG is
more associative than the classical categorial grammar, but lacks the
global associativity of PG.3

So the mPG requirements are severe, but they have no impact on
expressive power: the PG-definable and mPG-definable languages are
the same, as shown in §2. PGs can be made more expressive with

2 This is analogous to the assumption in Chomskian syntax that a head projects
to the phrasal level – combining with its arguments to the left and right – before it
can merge with another phrase or enter into a movement relation. Grammars with
movement allow a fully projected phrase to be incomplete in another way too: with
‘licensing’ requirements, which will find an analog in TPGs introduced below.

3 Cf. Bar-Hillel (1953), and the modern perspective of Moortgat (1996, ex.2.21).

tpg.tex; 22/04/2004; 16:57; p.4

Tupled Pregroup Grammars 5

the addition of modal operators (Fadda, 2002; Oehrle, 2002) but it is
not yet clear how to tailor this approach to define exactly the class
of languages we want for linguistic theory. In §3, we introduce tupled
pregroup grammars (TPGs), and extend our ‘performance’ restriction
to define a well-known mildly context sensitive class of languages.

2. The power of mPGs

First, observe that there are proper lexicons which allow PG derivations
of a result even when there are no mPG derivations of the same result.
Consider for example this sequence of 3 proper elements:

(

S
ε

)(

PQl

x

)(

QPr

y

)

_PG

(

S
xy

)

.

And there are PG derivations of an rl result from rl premises when
there are no mPG derivations:

(

ArBCl

x

)(

CDl

y

)

_
∗

PG

(

ArBDl

xy

)

.

Nevertheless we have the following basic results.

LEMMA 1. Every rl type is proper. And a rl type is saturated iff it is
atomic.

Proof: This follows immediately from the definitions. �

LEMMA 2. If e1 . . . en_
∗

PG
a for rl expressions e1, . . . , en (for n ≥ 1)

and atomic expression a, then there is at least one atomic ei (1 ≤ i ≤ n)

Proof: In an unsaturated expression there are at least as many adjoints
as atoms, but if e1 . . . en_

∗

PG
a there must be exactly 1 more atom than

adjoints in the premises. �

LEMMA 3. If e1 . . . en_
∗

PG
a for rl expressions e1, . . . , en (for n ≥ 1)

and atomic expression a, every GEXP-free PG derivation of this result
has exactly n − 1 Conc steps and n − 1 GCON steps.

Proof: Since Conc is the only way to merge two elements, there must
be n− 1 Conc steps to produce a single expression. Furthermore, since
each of the n premises contains exactly 1 element of P, in a GEXP-
free derivation, GCON must apply n − 1 times to yield an atomic
expression. �

tpg.tex; 22/04/2004; 16:57; p.5

6 Edward P. Stabler

LEMMA 4. For any rl expressions e1, e2, if GCON(Conc(e1e2)) exists,
it is rl.

Proof: Consider any rl expressions e1, e2 with the types

t1 = al
1 . . . al

hbcr
1 . . . cr

i t2 = dl
1 . . . al

jef
r
1 . . . f r

k ,

respectively, for some h, i, j, k ≥ 0 such that GCON can apply to
Conc(e1, e2) which has the type

al
1 . . . al

hbc1 . . . cr
i d

l
1 . . . al

jef1 . . . f r
k .

Since GCON applies, i + j = 1 so that GCON can delete either b or e,
depending on which of i or j is 0, and the result is rl again. �

LEMMA 5. If e1 . . . en_
∗

PG
e, then it has a derivation in which all Conc

steps precede all GCON steps.

Proof: Consider a GCON step that cancels some a(i)b(i+1) immediately
before a Conc step, anywhere in any GEXP-free PG derivation. It is
clear from the definitions of GCON and Conc that we can move the
GCON step up the left or right branch to apply after the Conc step,
deriving the same result:

xyz:st

xy:s
☛

xa(i)b(i+1)y:s

. . .

z:t

. . .
⇒

xyz:st
☛

xa(i)b(i+1)yz:st

xa(i)b(i+1)y:s

. . .

z:t

. . .

zxy:ts

z:t

. . .

xy:s
☛

xa(i)b(i+1)y:s

. . .

⇒

zxy:st
☛

zxa(i)b(i+1)y:ts

z:t

. . .

xa(i)b(i+1)y:s

. . .

We can apply this step a finite number of times to change any derivation
into one in which all Conc steps are at the bottom of the derivation
tree, with a sequence of GCON steps following them at the top. �

Let’s say that the size of a derivation is the number of terms that
appear in it. Whenever we move a GCON upward across a Conc step,
we increase the size of the derivation by 2. Also, we can observe

tpg.tex; 22/04/2004; 16:57; p.6

Tupled Pregroup Grammars 7

LEMMA 6. We can move a GCON contraction of a(i)b(i+1) “down” in
a derivation tree across either a Conc or GCON step, so long as the
contracted pair a(i)b(i+1) is present (and adjacent) at the earlier step.

LEMMA 7. For rl expressions e1, . . . , en and atomic a, e1 . . . en_
∗

PG
a

iff e1 . . . en_
∗

mPG
a.

Proof: The (⇐) direction is trivial, so we need only show (⇒). Assuming
e1 . . . en_

∗

PG
a where the premises are rl and the conclusion atomic, we

show e1 . . . en_
∗

mPG
a by induction on n. If n = 1, then e1 = a and the

result is immediate. So suppose that (IH) for m ≤ n, e1 . . . em_
∗

PG
a iff

e1 . . . em_
∗

mPG
a, with rl premises and atomic conclusion. Now assume

e1 . . . em+1_
∗

PG
a. By Lemma 2, we know that there is an an atomic

ei (1 ≤ i ≤ m + 1), and that GCON applies to either CONC(ei−1ei)
or to CONC(eiei+1). Suppose the former case (the latter case can be
handled similarly). By Lemma 5, e1 . . . em+1_

∗

PG
a has a derivation in

which all Conc steps precede all GCON steps, and furthermore, since
Conc is associative, we can apply the initial Conc steps in any order. So
consider any Conc-steps-first derivation in which Conc applies to ei−1

and ei. After this step, GCON can apply, and so by Lemma 6, we can
move the cancellation of ei with its adjoint “down” in the tree so that
it immediately follows this Conc step. By Lemma 4, we know that the
result GCON(Conc(ei−1ei)) is rl, and so we know

e1 . . . ei−2GCON(Conc(ei−1ei))ei+1 . . . em+1_
∗

PG
a.

Since by the IH, this result has an mPG derivation, we see that

e1 . . . em+1_
∗

PG
a

does too. �

THEOREM 1. Among the PG derivations of any sentence from an rl
grammar, the mPG derivations are minimal.

Proof sketch: We observed above that the size of a derivation is reduced
by keeping GCON steps as low as possible, and we see by the construc-
tion in the previous proof that mPG derivations always apply Conc to
produce a result to which GCON applies immediately, minimizing the
size of the derivation. �

Lemma 7 relates PG and mPG derivations with rl premises, but with
results from the prior literature, it is now easy to relate all PG languages
(whether defined with rl lexicons or not) to mPG languages. First,
let a classical categorial grammar (CG) G = 〈Σ, P, I,S〉 where

tpg.tex; 22/04/2004; 16:57; p.7

8 Edward P. Stabler

Σ is a nonempty alphabet, P is a set of simple types, finite set I ⊂
closure(P, {\, /}) × ((Σ ∪ {ε}), and ‘start’ type S ∈ P. Let _

∗

CG
be

the reflexive, transitive closure of the binary relation defined by the
following two axioms:

α

(

A/B
s1

)(

B
s2

)

β_
CG

α

(

A
s1s2

)

β. α

(

B
s1

)(

B\A
s2

)

β_
CG

α

(

A
s1s2

)

β.

Such a grammar defines the language LG = {s| I
∗
_

∗

CG

(

S
s

)

}.

THEOREM 2. Language L is PG-definable iff it is mPG-definable.

Proof: Lemma 7 establishes that all mPG languages are PG languages,
so we need only show that all PG languages are mPG languages.
Buszkowski (2001) shows that the PG languages are exactly the CG
languages, which can be generated by CGs in which the types are all of
the form p, p/q, (p/q)/r, for atoms p, q, r.4 So it suffices to show that any
language defined by such a CG language is an mPG language. Given
any CG G = 〈Σ, P, I,S〉, it is easy to define an mPG G′ = 〈Σ, P,≤, I′,S〉
that generates the same language. We let ≤ be the identity on P and
let I

′ be the result of converting the CG types of I into PG types with
the following mapping:

p 7→ p p/q 7→ pql (p/q)/r 7→ pqlrl.

The equivalence is easily shown by an induction on derivation length:
each CG step corresponds to a Conc plus GCON sequence. �

3. Tupled pregroup grammars

PG expressions are typed strings, combined by concatenation, but
TPG expressions are tuples of typed strings, elements of E = (TP ×
(Σ∪{ε})∗)∗, combined in two steps: a kind of tuple-union called ‘merge’,
and concatenation of arbitrary coordinates of a tuple called ‘move’.
Expressions will sometimes be written with the types over the strings:

(

t1 . . . tk
s1 . . . sk

)

.

Alternatively, we sometimes write the types separated by commas,
followed by a colon, followed by the strings separated by commas:

t1, . . . , tk : s1, . . . , sk.

4 Buszkowski excludes type assignments to ε, which is natural in semigroup theory
but unecessary in the present context.

tpg.tex; 22/04/2004; 16:57; p.8

Tupled Pregroup Grammars 9

We define a merge operation which applies to any pair of tuples:
(

t1 . . . ti
s1 . . . si

)

•

(

ti+1 . . . tk
si+1 . . . sk

)

=

(

t1 . . . tk
s1 . . . sk

)

.

And for any k-tuple (k > 0) and any 1 ≤ i ≤ k, we define an operation
that deletes the i’th coordinate:

(

t1 . . . tk
s1 . . . sk

)

−i

=

(

t1 . . . ti−1 ti+1 . . . tk
s1 . . . si−1 si+1 . . . sk

)

.

A tupled pregroup grammar (TPG) G = 〈Σ, P,≤, I,S〉 exactly
like a PG, except now I ⊂ (T

P
× (Σ ∪ {ε}))∗.

Let _
TPG

be the binary relation on E
∗ that holds only in the

following 4 cases. For any tuples e1, e2 and sequences of tuples α, β:

(Mrg) α e1 e2 β_
TPG

α e1 • e2 β.

(Move) applies to any k-tuple (k > 1), for any 1 ≤ i ≤ k and 1 ≤ j < k,

(Move) α

(

t1 . . . tk
s1 . . . sk

)

β_
TPG

α

(

titj
sisj

)

•

(

t1 . . . tk
s1 . . . sk

)

−i−j

β.

The type in any coordinate can be contracted or expanded, for any
a, b ∈ T such that either a ≤ b and n is even, or b ≤ a and n is odd:

(GCON) α

(

. . .
xa(n)b(n+1)y

s
. . .

)

β_
TPG

α

(

. . .
xy
s

. . .

)

β

(GEXP) α

(

. . .
xy
s

. . .

)

β_
TPG

α

(

. . .
xa(n+1)b(n)y

s
. . .

)

β.

Define the powers s_k
TPG

t and s_∗

TPG
t as for PGs, and the language

LG = {s| I
∗
_

∗

TPG

(

S
s

)

}.5

5 No TPG operation depends on the order of elements in a tuple, so why not
let an expression be a set of typed strings, and let Mrg be simply set-union? The
problem is that then the result of merging two occurrences of the same expression
would just be the same expression again. Tuples avoid this kind of problem, allowing
multiplicity of resources to be recognized. ‘Multisets’ or ‘numerations’ would do as
well. Even if non-logical restrictions somehow rule out multiple identical resources
in an expression, still it can be valuable to separate the logical structure from the
external constraints as cleanly as possible. Chomsky (1995, p.244) worries that set-
union is ‘contradictory’, but that is because he does not evaluate sets (or tuples) the
way we do, with adjoint contraction ‘checking and deleting’ ‘contradictory’ features.
Chomsky suggests expressions are sets and that merge maps sets S,T to {S,T}
or {γ, {S, T}} where γ is some function of S,T (Chomsky, 1995, pp.242-243). But
this merge increases the syntactic complexity of constituents without bound, and
unnecessarily – since complex constituents have much that cannot be syntactically
relevant.

tpg.tex; 22/04/2004; 16:57; p.9

10 Edward P. Stabler

We introduce a ‘performance restriction’ on TPGs analogous to the
earlier one for PGs. Let’s extend our earlier notions so that a tuple is
proper iff (i) every type in it has exactly one atom, (ii) no two types
have the same atom, and (iii) GCON does not apply to it or to any
result of applying Move to it. And a type it is saturated iff every type
in it is saturated. A minimalist TPG (mTPG) is a TPG in which

I is rl and proper;

Mrg applies to a pair of tuples only if both are proper and at least
one of them is saturated;

Move applies to a pair of typed strings in a tuple only if both are
proper and at least one of them is saturated.

These restrictions extend the earlier ones, and so of course they are
tentative. But note that, like the earlier restrictions, they do not add
any new rules or devices, but simply restrict the lexical types and the
domains of the rules. Keeping an eye on the comparisons we would like
to make, we can observe that, as before, not only does a head combine
with its arguments ‘locally’ before Mrg can apply to it, but the notion
of being ‘proper’ has been extended in such a way that an element
must be ‘licensed’ in the first available position before Mrg can apply
again – giving us a kind of ‘shortest move constraint’ (Chomsky 1995,
pp181ff) or ‘relativized minimality’ (Rizzi, 1990), where the domains
are relativized by the classification of ‘moving’ expressions into types.
The most revealing perspective on these constraints is provided by
their roles in establishing the formal results in §4 below. But first some
examples.

3.1. Example G0 extended: wh-movement and islands.

Formal results are presented in §4 below, but it is easy to see, for
example, that if relative clauses are formed by ‘extraction’ of a relative
pronoun with a feature w, two constituents of this same type cannot be
extracted at once. Ignoring the who/whom difference in (some varieties
of) English for the moment, let’s extend G0 by adding w to P and 3
new lexical items:

(

D w
ε who

) (

PDl
3s wwl

ε to

) (

wrNrNSl

ε

)

.

Intuitively, the first lexical item separates the D ‘chain’ into the empty
part selected by the verb or preposition, and the pronounced part that
moves to the wh-licensor.6 The second lexical item allows ‘pied piping’

6 Capturing chains with a set of the linked elements is a natural idea inspired by
Brody’s work. I am grateful to Greg Kobele for useful discussions of this connection.

tpg.tex; 22/04/2004; 16:57; p.10

Tupled Pregroup Grammars 11

of a P phrase with a wh-object. And the third is the ‘complementizer’
that can license a wh-phrase to form a phrase that modifies a noun.

This grammar gets sentences like the following:

a girl praised a boy whoi ti laughs

a girl praised a boy whoi ti praised a girl whoj tj laughs.

But in spite of the many alternative derivations of many strings, there
is no derivation at all for the following string, which would violate the
‘complex NP’ island constraint of Ross (1967):

* a boy whoi a girl whoj tj praised ti laughed.

That is, this string of words is not in L(G0); remember again that the
traces and indices are not part of the language. Similarly, the grammar
generates

a girl spoke to a boy whoi ti laughs

a girl [to who]i a boy spoke ti laughs

a girl whoi a boy spoke to ti laughs,

but not the island violations,

* a boy whoi a girl to whoj ti spoke tj laughs

* a boy to whoi a girl whoj tj spoke ti laughs.

Of course this tiny example is meant only to illustrate mTPG opera-
tion. It would interesting to consider how to handle the locality effects
treated by recent proposals in Chomskian syntax (Fitzpatrick, 2002)
and to compare alternative formal proposals about islands (Lambek,
2001; Fadda, 2002; Morrill, 2002; Lecomte and Retoré, 1999; Vermaat,
2004), but this is beyond the scope of this preliminary study.

In a standard derivation tree, binary branching indicates applica-
tions of (Mrg), unary branching indicates applications of (Move) or
GCON, and each leaf is an element of the lexicon I:

tpg.tex; 22/04/2004; 16:57; p.11

12 Edward P. Stabler

S:a girl to who a boy spoke laughs

D3sD
r
3sS:a girl to who a boy spoke laughs

Dr
3sS,D3s:laughs,a girl to who a boy spoke

Dr
3sS:laughs D3s:a girl to who a boy spoke

D3sN
lN:a girl to who a boy spoke

D3sN
l,N:a,girl to who a boy spoke

D3sN
l:a N:girl to who a boy spoke

NNrN:girl to who a boy spoke

NrN,N:to who a boy spoke,girl

NrN:to who a boy spoke

NrNSlS:to who a boy spoke

NrNSl,S:to who,a boy spoke

wwrNrNSl,S:to who,a boy spoke

wrNrNSl,S,w:ε,a boy spoke,to who

wrNrNSl:ε S,w:a boy spoke,to who

D3sD
rS,w:a boy spoke,to who

DrS,w,D3s:spoke,to who,a boy

DrS,w:spoke,to who

DrSPlP,w:spoke,to who

DrSPl,w,P:spoke,to who,ε

DrSPl:spoke w,P:to who,ε

P,wwlw:ε,to who

PDl
3sD3s,wwlw:ε,to who

wwlw,PDl
3s,D3s:to who,ε,ε

wwl,PDl
3s,D3s,w:to,ε,ε,who

wwl,PDl
3s:to,ε D3s,w:ε,who

D3s:a boy

D3sN
lN:a boy

D3sN
l,N:a,boy

D3sN
l:a N:boy

N:girl

The proper typing and saturation requirements rule out many of the
TPG derivation trees for this example; a computer implementation
counts 6144. (Adding the prefix and feature-driven conditions of Propo-
sition 1 below reduces the number to 8.)

tpg.tex; 22/04/2004; 16:57; p.12

Tupled Pregroup Grammars 13

3.2. Example G1: non-configurational aux-2.

Some human languages with relatively free word order allow an auxil-
iary or other reduced element to appear only in ‘second position’.7 To
illustrate the use of tupling to avoid order commitments, consider the
following extremely simple grammar. Let the vocabulary Σ = {Mary,
John, self nom, acc, aux, praises}, with P = {s, o, v,D,R,X,S}, and let
≤ be the reflexive transitive closure of the relation on P

D < R o < X s < X v < X.

Let the lexicon I consist of the following 5 tuples:

(

XrSXlXl

aux

) (

v Drs Rro
praises nom acc

) (

D
John

) (

D
Mary

) (

R
self

)

.

R is the category of determiners, including the reflexive self. Any el-
ement of R can be marked with accusative case (acc), but only non-
reflexive D can be marked with nominative case (nom). Clearly L(G1)
includes all six aux-2 orders:

Mary nom aux praises self acc Mary nom aux self acc praises

self acc aux praises Mary nom self acc aux Mary nom praises

praises aux Mary nom self acc praises aux self acc Mary nom,

For example:

7 E.g., Warlpiri, Pima, Papago (Munro, 1989; Hale, 1992; Smith, 2002).

tpg.tex; 22/04/2004; 16:57; p.13

14 Edward P. Stabler

S:self acc aux praises Mary nom

SXls:self acc aux praises Mary nom

SXl,s:self acc aux praises,Mary nom

SXlXlv,s:self acc aux praises,Mary nom

SXlXl,s,v:self acc aux,Mary nom,praises

oXrSXlXl,s,v:self acc aux,Mary nom,praises

XrSXlXl,s,o,v:aux,Mary nom,self acc,praises

XrSXlXl:aux s,o,v:Mary nom,self acc,praises

DDrs,o,v:Mary nom,self acc,praises

o,v,Drs,D:self acc,praises,nom,Mary

o,v,Drs:self acc,praises,nom

RRro,v,Drs:self acc,praises,nom

v,Drs,Rro,R:praises,nom,acc,self

v,Drs,Rro:praises,nom,acc R:self

D:Mary

A computer implementation counts 48 different mTPG derivation trees
for this example (but only 6 with the prefix and feature-driven condi-
tions of Proposition 1 below) and confirms that L(G1) does not include
things like,

John acc aux self nom praises self nom aux John acc praises

aux Mary nom praises John acc Mary nom John acc aux praises

John acc praises Mary nom aux John aux acc praises Mary nom.

3.3. Example G2: crossing dependencies.

Let the vocabulary Σ = {a,b}, with the simple types P = {P,Q,S}
ordered by identity, with the following 4 tuples in the lexicon I:

(

P Q
ε ε

) (

PrP QrQ
a a

) (

PrP QrQ
b b

) (

PrQrS 1
ε ε

)

.

Then the string abab ∈ L(G2) has a derivation like this:

tpg.tex; 22/04/2004; 16:57; p.14

Tupled Pregroup Grammars 15

S:a b a b

QQrS:a b a b

QrS,Q:a b,a b

PPrQrS,Q:a b,a b

PrQrS,P,Q:ε,a b,a b

PrQrS:ε P,Q:a b,a b

Q,PPrP:a b,a b

QQrQ,PPrP:a b,a b

PPrP,QrQ,Q:a b,b,a

PrP,QrQ,P,Q:b,b,a,a

PrP,QrQ:b,b P,Q:a,a

Q,PPrP:a,a

QQrQ,PPrP:a,a

PPrP,QrQ,Q:a,a,ε

PrP,QrQ,P,Q:a,a,ε,ε

PrP,QrQ:a,a P,Q:ε,ε

L(G2) = {xx| x ∈ {a,b}∗} is a non-context-free language.8

4. The power of mTPGs

For e =

(

t1 . . . tk
s1 . . . sk

)

, let the tuple type of e, tt(e) = 〈t1, . . . , tk〉. And

for S ⊆ E, tt(S) = {tt(e)| e ∈ S}. Let _
k
− be the results of restricting

the mTPG relation _
k

mTPG
to results obtained without GEXP. The

following lemma provides the starting point for assessing the expressive
power of mTPGs.

LEMMA 8. For any mTPG G, the set tt({e|I∗_∗

−e}) of derivable tuple
types is finite.

8 This grammar is simpler than the simplest MG grammar I know of that defines
the same language (Cornell, 1996; Stabler, 1997). This grammar is not only concep-
tually more straightforward, but also smaller in the sense of requiring fewer symbols
in its presentation.

tpg.tex; 22/04/2004; 16:57; p.15

16 Edward P. Stabler

Proof: Define

A = {p ∈ P| rpl ∈ type(I) for r, l ∈ T
∗},

R = {r ∈ T
∗| rpl ∈ type(I) for p ∈ P, l ∈ T

∗},
L = {l ∈ T

∗| rpl ∈ type(I) for r ∈ T
∗,p ∈ P}.

Since the lexicon I is rl, R is a set of sequences of right adjoints and L
is a set of sequences of left adjoints. Since the lexicon is finite, so are
A, R, and L. Let s(R) be the set of suffixes of elements of R (including
ε), and p(L) be the set of prefixes of elements of L (including ε). Since
the lexicon is proper, GCON applies only to derived expressions, con-
tracting an atom with a right adjoint at the beginning of some element
of R or with a left adjoint at the end of some element of L, and since
at least one of the arguments of Mrg and Move must be saturated, the
type of every coordinate of every derivable tuple will be in the finite
set:

{rpl| r ∈ s(R), p ∈ A, l ∈ p(L)}∪
{qrpl| r ∈ s(R), p, q ∈ A, l ∈ p(L)}∪
{rplq| r ∈ s(R), p, q ∈ A, l ∈ p(L)}.

So the lexical types fix a finite upper bound on the the size of the type
that can appear in any coordinate in a derived expression, and the
result follows if the number of coordinates in any derived expression is
also bounded. It is, since only Mrg can produce a result with more
coordinates than any of its arguments, but its arguments must be
proper, so no tuple can have more than 2 ∗ |A| coordinates. �

For any mTPG grammar G, define the relevant tuple types,

TTG ⊆ tt({e|I∗_∗

−e}) ⊂ T
∗
P

as the tuple types of expressions that occur in derivations of elements
of LG.

We characterize the power of mTPGs by comparing them to MCFGs
(Seki et al., 1991; Michaelis, 1998), using a MCFG variant, a ‘nor-
mal form’ introduced by Harkema (2001, Lemma 1). A MCFG G =
〈N,O,F,R,S〉 such that:

i. N is a finite, non-empty set of non-terminal symbols.

ii. O is a set of i-tuples of strings, i > 0: O ⊆
⋃

0<i

(Σ∗)i for Σ 6= ∅ and

Σ ∩ N = ∅.

iii. F is a finite set of functions from tuples of elements of O into O,
F ⊆ {g : On → O| any n > 0} meeting the following conditions.

a. The dimensions of the domain and range of each g ∈ F are
fixed in the following sense. For any g : On → O in F, there

tpg.tex; 22/04/2004; 16:57; p.16

Tupled Pregroup Grammars 17

are numbers r(g) ≥ 0 and di(g) ≥ 0 for 1 ≤ i ≤ n such that
g : (Σ∗)d1(g) × . . . × (Σ∗)dn → (Σ∗)r(g).

b. The values of each g : On → O in F are fixed in the following
sense. Let X = {xij | 1 ≤ i ≤ n, 1 ≤ j ≤ di(g)} be a set
of pairwise distinct variables and define xi = (xi1, . . . , xidi(g))
for 1 ≤ i ≤ n. Then for 1 ≤ h ≤ r(g) there are functions
gh : domain(g) → Σ∗ such that for any θ ∈ domain(g), g(θ) =
〈g1(θ), . . . , gn(θ)〉 and each such gh can be defined as concate-
nating components of its arguments as follows,

gh(x1, . . . , xn) = zh1 . . . zhlh(g),

for some lh(g) ≥ 0 and some zhl ∈ X, 1 ≤ l ≤ lh(g).

c. Furthermore, the functions g : On → O in F are ‘linear’ (non-
copying) and ‘non-deleting’ in the sense that for each pair (i, j),
1 ≤ i ≤ n, 1 ≤ j ≤ di(g), there is exactly one h, 1 ≤ h ≤ r(g)
and exactly one l, 1 ≤ l ≤ lh(g) such that the variable zhl in
the definition above is the variable xij ∈ X.

iv. R is a finite set of ‘rewrite rules’ which pair n-ary rules of F with
n + 1 nonterminals:

R ⊆
⋃

n≥0

({g ∈ F|g : On → O} × Nn+1).

Usually we write any (g,A,B1, . . . Bn) ∈ R in the form: A →
g[B1, . . . , Bn], unless n = 0 in which case g ∈ O and we have a
‘lexical rule’ written A → g. Furthermore we require:

a. Each A ∈ N has a dimension d(A) ≥ 0 such that for any rule
A → g[B1, . . . Bn], g : On → O, r(g) = d(A) and di(g) = d(Bi)
for all 1 ≤ i ≤ n.

b. If A ∈ N occurs in a lexical rule A → g, then d(A) = 1.

c. There are no ‘doublets’: nonterminals on the right side of every
rule A → g[B1, . . . Bn] are pairwise distinct.

v. S ∈ N is the ‘start’ symbol, and d(S) = 1.

Now, for each A ∈ N , define

L0
G(A) = {g|A → g},

Lk+1
G (A) = Lk

G(A)∪
{g(θ1 . . . θn)| A → g[B1, . . . , Bn], and θi ∈ Lk

G(Bi), 1 ≤ i ≤ n},

LG(A) =
⋃

n≥0

Ln
G(A).

So then we define LG = LG(S).

tpg.tex; 22/04/2004; 16:57; p.17

18 Edward P. Stabler

Example MCFG2. We show just the rules R, in which the vocabulary,
nonterminals and string functions (defined below) can be identified.
(For reasons that will become clear, the category names are either tuple
types or subscripted typle types of example mTPG G2.)

〈P,Q, ε, ε〉1 → ε
〈P,Q, ε, ε〉2 → ε
〈PrP,QrQ, a, a〉1 → a
〈PrP,QrQ, a, a〉2 → a
〈PrP,QrQ,b,b〉1 → b
〈PrP,QrQ,b,b〉2 → b
〈PrQrS, ε〉1 → ε

〈P,Q〉 → t1,2[〈P,Q, ε, ε〉1 〈P,Q, ε, ε〉2]
〈PrP,QrQ〉 → t1,2[〈P

rP,QrQ, a, a〉1 〈PrP,QrQ, a, a〉2]
〈PrP,QrQ〉 → t1,2[〈P

rP,QrQ,b,b〉1 〈PrP,QrQ,b,b〉2]
〈PrQrS〉 → id1[〈P

rQrS, ε〉1]

〈S〉 → id1[〈QQrS〉]
〈QQrS〉 → c21[〈Q

rS,Q〉]
〈QrS,Q〉 → id2[〈PPrQrS,Q〉]
〈PPrQrS,Q〉 → c31,2[〈P

rQrS,P,Q〉]
〈PrQrS,P,Q〉 → t1,23[〈P

rQrS〉, 〈P,Q〉]

〈P,Q〉 → id2[〈PPrP,Q〉]
〈PPrP,Q〉 → c31,2[〈P,Q,PrP〉]
〈P,Q,PrP〉 → id3[〈P,QQrQ,PrP〉]
〈P,QQrQ,PrP〉 → c1,42,3[〈P,Q,PrP,QrQ〉]
〈P,Q,PrP,QrQ〉 → t12,34[〈P,Q〉, 〈PrP,QrQ〉]

These rules use string functions which can be defined as follows:

t1,2(s, t) = 〈s, t〉
t1,23(s, 〈t, u〉) = 〈s, t, u〉
t12,34(〈s, t〉, 〈u, v〉) = 〈s, t, u, v〉
id1(s) = 〈s〉
id2(s, t) = 〈s, t〉
id3(s, t, u) = 〈s, t, u〉
c21(s, t) = 〈ts〉
c31,2(s, t, u) = 〈us, t〉
c1,42,3(s, t, u, v) = 〈s, vt, u〉

With these definitions, L(MCFG2)={xx| x ∈ {a,b}∗}, with derivations
like this:

tpg.tex; 22/04/2004; 16:57; p.18

Tupled Pregroup Grammars 19

〈S〉:aa

〈QQrS〉:aa

〈QrS,Q〉:a,a

〈PPrQrS,Q〉:a,a

〈PrQrS,P,Q〉:ε,a,a

〈PrQrS〉:ε

〈PrQrS,ε〉1

ε

〈P,Q〉:a,a

〈PPrP,Q〉:a,a

〈P,Q,PrP〉:ε,a,a

〈P,QQrQ,PrP〉:ε,a,a

〈P,Q,PrP,QrQ〉:ε,ε,a,a

〈P,Q〉:ε,ε

〈P,Q,ε,ε〉1

ε

〈P,Q,ε,ε〉2

ε

〈PrP,QrQ〉:a,a

〈PrP,QrQ,a,a〉1

a

〈PrP,QrQ,a,a〉2

a

Except for the special treatment of lexical items (in order to allow that
every lexical category in the MCFG has dimension 1), this derivation
tree is isomorphic to an mTPG derivation. So it is easy to show:

LEMMA 9. Every mTPG language is MCFG definable.

Proof: For any mTPG M = 〈Σ, P,≤, I,S〉, define MCFG GM as the
smallest grammar with the following rules, with the nonterminals N,
string tuples O, and string functions as specified:

i. For each

(

t1 . . . tk
s1 . . . sk

)

∈ I we have the following rules:

〈t1, . . . , tk, s1, . . . , sk〉1 → s1

. . .
〈t1, . . . , tk, s1, . . . , sk〉k → sk

〈t1, . . . , tk〉 → t1k[〈t1, . . . , tk, s1, . . . , sk〉1, . . . , 〈t1, . . . , tk, s1, . . . , sk〉k]

where the string function in the last rule is defined as follows:

t1k(s1, . . . , sk) = 〈s1, . . . , sk〉.

ii. For each 〈t1, . . . , ti〉, 〈ti+1, . . . , tk〉 ∈ TTG such that e1 • e2 ∈ TTG,
we have the rule

〈t1, . . . , tk〉 → t1...ti,ti+1...k[〈t1, . . . , ti〉, 〈ti+1, . . . , tk〉]

where the string function is defined as follows:

t1...ti,ti+1...k(〈s1, . . . , si〉, 〈si+1, . . . , sk〉) = 〈s1, . . . , sk〉.

tpg.tex; 22/04/2004; 16:57; p.19

20 Edward P. Stabler

iii. For each 〈t1, . . . , tk〉 ∈ TTG such that 〈titj〉•〈t1, . . . , tk〉−i−j ∈ TTG,
we have the rule

〈titj〉 • 〈t1, . . . , tk〉−i−j → cij,1...ti−2 [〈t1, . . . , tk〉]

where the string function is defined as follows:

cij,1...ti−2(s1, . . . , si) = 〈sisj〉 • 〈s1, . . . , si〉−i−j.

iv. For each 〈t1, . . . , tk〉 ∈ TTG such that ti = xa(n)b(n+1)y, either a ≤ b
and n is even, or b ≤ a and n is odd, and 〈t1, . . . , ti−i, xy, ti+1, . . . , tk〉 ∈
TTG we have the rule:

〈t1, . . . , ti−i, xy, ti+1, . . . , tk〉 → idk[〈t1, . . . , tk〉]

where idk is the identity on k-tuples of strings.

Since I and TTG are finite, so is the set of rules defined by the previous 4
clauses. We establish the lemma by showing that for 〈t1, . . . , tk〉 ∈ TTG,

〈s1, . . . , sk〉 ∈ LG(〈t1, . . . , tk〉) iff I
∗
_

∗

−

(

t1 . . . tk
s1 . . . sk

)

.

(⇒) We use an induction to show that for all n ≥ 0, 〈s1, . . . , sk〉 ∈

Ln
G(〈t1, . . . , tk〉) implies I

∗
_

∗

−

(

t1 . . . tk
s1 . . . sk

)

. By the definition of GM, it

is clear that when n = 0, Ln
G has no elements whose category is a tuple

type, and so the result holds vacuously. So consider,
(n = 1) By clause i of the definition of GM, 〈s1, . . . , sk〉 ∈ L1

G(〈t1, . . . , tk〉)

if

(

t1 . . . tk
s1 . . . sk

)

∈ I. And nothing else with a category 〈t1, . . . , tk〉 ∈

TTG is in L1
G since the rules introduced by clauses ii-iv act only on

constituents with categories in TTG, so the result holds.

(IH) for m ≤ n, 〈s1, . . . , sk〉 ∈ Lm
G (〈t1, . . . , tk〉) implies I

∗
_

∗

−

(

t1 . . . tk
s1 . . . sk

)

.

Now assume 〈s1, . . . , sk〉 ∈ Ln+1
G (〈t1, . . . , tk〉) for n > 0. Then

〈s1, . . . , sk〉 = g(θ1, . . . , θi),

where

〈t1, . . . , tk〉 → g[B1 . . . Bi] for 1 ≤ j ≤ i, θj ∈ Ln
G(Bj).

This rule must have been introduced by one of the clauses ii-iv in the
definition of GM, and it is easy to use IH and one application of Mrg,
Move or GCON (respectively) to see that the result holds.
(⇐) A similarly simple induction shows that for all n ≥ 0,

I
∗
_

n
−

(

t1 . . . tk
s1 . . . sk

)

implies 〈s1, . . . , sk〉 ∈ LG(〈t1, . . . , tk〉).

tpg.tex; 22/04/2004; 16:57; p.20

Tupled Pregroup Grammars 21

(n = 0) In this case,

(

t1 . . . tk
s1 . . . sk

)

∈ I and so the result holds by clause

i of the definition of GM.

(IH) for m ≤ n, I
∗
_

m
−

(

t1 . . . tk
s1 . . . sk

)

implies 〈s1, . . . , sk〉 ∈ LG(〈t1, . . . , tk〉).

Now assume I
∗
_

n+1
−

(

t1 . . . tk
s1 . . . sk

)

. In this case, Mrg, Move or GCON

applies to expressions for which we have IH to guarantee the existence
of a corresponding MCFG derivation which can be extended by one
application of a rule introduced by ii, iii or iv (respectively) to establish
the result. �

We can also establish the converse result. We first provide an exam-
ple to illustrate the basic idea.

Example. Consider an MCFG with the following rules:

S_g[A]
A_h[B,C,D,E]
B_a
C_b
D_c
E_d

where the string functions are defined as follows:

g(s, t, u, v) = 〈sv, ut〉
h(s, t) = 〈st〉

Then LG = {adcb}. We construct a mTPG which defines the same
language in a similar way. We have an mTPG lexical item for each
lexical productions,

(

B
a

) (

C
b

) (

D
c

) (

E
d

)

.

Corresponding to the rule A_h[B1, B2, B3, B4], we introduce an mTPG
lexical item which will properly build the components of A according
to the definition of h,

(

BrErA1 CrDrA2

ε ε

)

.

And finally, corresponding to the rule S_g[A] we introduce the lexical
item

(

Ar
2A

r
1S

ε

)

.

Now, corresponding to a MCFG derivation like the one on the left
below, we have the mTPG derivation on the right:

tpg.tex; 22/04/2004; 16:57; p.21

22 Edward P. Stabler

S:adcb

A:ad,cb

B

a

C

b

D

c

E

d

S:adcb

A1A
r
1
S:adcb

Ar
1S,A1:cb,ad

A2A
r
2
Ar

1
S,A1:cb,ad

Ar
2
Ar

1
S,A1,A2:ε,ad,cb

Ar
2
Ar

1
S:ε A1,A2:ad,cb

A1,DDrA2:ad,cb

A1,D
rA2,D:ad,b,c

A1,D
rA2:ad,b

A1,CCrDrA2:ad,b

A1,C
rDrA2,C:ad,ε,b

A1,C
rDrA2:ad,ε

BBrA1,C
rDrA2:ad,ε

BrA1,C
rDrA2,B:d,ε,a

BrA1,C
rDrA2:d,ε

EErBrA1,C
rDrA2:d,ε

ErBrA1,C
rDrA2,ε:ε,ε,d

ErBrA1,C
rDrA2:ε,ε E:d

B:a

C:b

D:c

These derivation trees are certainly not isomorphic, but the correspon-
dence between them is still fairly simple: the non-lexical MCFG rules
correspond to empty mTPG lexical items, and a succession of merges
and contractions constructs each component of each derived category.
Comparing the derivations above, notice the direct mTPG represen-
tation of (i) the MCFG lexical items, (ii) the two components of the
derived A, and (iii) the unique component of the derived S.

LEMMA 10. Every MCFG language is mTPG definable.

Proof: Consider any MCFG G = 〈N,O, F,R, S〉. We define an mTPG
grammar M with the following 2 clauses that specify its lexicon, from
which its types and vocabulary can be inferred:

i. For each lexical rule A → g,
(

A1

g

)

∈ I.

ii. For each non-lexical rule A → g[B1, . . . , Bn]
(

x1A1 . . . xd(A)Ad(A)

ε . . . ε

)

∈ I,

tpg.tex; 22/04/2004; 16:57; p.22

Tupled Pregroup Grammars 23

where for 1 ≤ i ≤ d(A), xi = Bi1
r
j1

. . . Bik
r
jk

where by the definition
of g, the i’th component of its value is the concatenation of the jk’th
component of its ik’th argument with. . . with the j1’th component
of its i1’th argument.

So I has |R| elements. We establish LG = LM by showing that for all

A ∈ N, 〈s1, . . . , sd(A)〉 ∈ LG(A) iff I
∗
_

∗

−

(

A1 . . . Ad(A)

s1 . . . sd(A)

)

.

(⇒) We use an induction to show that for all n ≥ 0, 〈s1, . . . , sk〉 ∈

Ln
G(A) implies I

∗
_

∗

−

(

A1 . . . Ak

s1 . . . sk

)

.

(n = 0) By the definition of MCFGs, all lexical categories have dimen-
sion 1, and so in this case k = 1, and by clause i of the definition of M,
(

A1

s1

)

∈ I.

(IH) for m ≤ n, 〈s1, . . . , sk〉 ∈ Lm
G (A) implies I

∗
_

∗

−

(

A1 . . . Ak

s1 . . . sk

)

.

Now assume 〈s1, . . . , sk〉 ∈ Ln+1
G (A). Then

〈s1, . . . , sk〉 = g(θ1, . . . , θi),

where
A → g[B1 . . . Bi] for 1 ≤ j ≤ i, θj ∈ Ln

G(Bj).

For each Bj and θj (for 1 ≤ j ≤ i), the IH guarantees that we have

mTPG derivations of

(

(Bj)1 . . . (Bj)d(Bj)

(sj)1 . . . (sj)d(Bj)

)

. And by clause ii of the

definition of M and the definition of mTPG operations, the components
of A will be properly assembled by merging these mTPG results and
performing all possible contractions. The ‘no doublet’ condition in the
definition of MCFGs ensures that each component will be unambigu-
ously named. And clause ii of the definition of M, with the ‘linearity’
and ‘non-deleting’ conditions on MCFGs, guarantees that each such
element will be placed in exactly the position defined by g.
(⇐) We use an induction again to show that for all A ∈ N and all

n ≥ 0, I
∗
_

n
−

(

A1 . . . Ak

s1 . . . sk

)

implies 〈s1, . . . , sk〉 ∈ LG(A).

(n = 0) In this case,

(

t1 . . . tk
s1 . . . sk

)

∈ I and so the result holds by clause

i of the definition of M.

(IH) for m ≤ n, I
∗
_

m
−

(

A1 . . . Ak

s1 . . . sk

)

implies 〈s1, . . . , sk〉 ∈ LG(A).

Now assume I
∗
_

n+1
−

(

A1 . . . Ak

s1 . . . sk

)

for some A ∈ N. In this case, Mrg,

Move or GCON derive this expression and by the definition of M, it

tpg.tex; 22/04/2004; 16:57; p.23

24 Edward P. Stabler

can only be from a lexical item

(

x1A1 . . . xd(A)Ad(A)

ε . . . ε

)

introduced by

clause ii, together with constituents (proper, unsaturated constituents,
by the definition of mTPG) that contract with all of the xj (for 1 ≤ j ≤
d(A)). By clause ii, these contractions must assemble the components
of B1, . . . , Bn for some A → g[B1, . . . , Bn] in G, and for each of these,
the IH guarantees that the components 〈t1, . . . , td(Bi)〉 ∈ LG(Bi). The
definition of the xj guarantees that these components are assembled
according to g so that 〈s1, . . . , sk〉 ∈ LG(A). �

THEOREM 3. Language L is mTPG-definable iff it is MCFG-definable.

Proof: Immediate from the previous two lemmas. �

Note that mTPG derivations are not all minimal in size. For example,
after applying move to two components to produce a result that can
contract, we can apply Move again to to different components before
contracting. We can add a requirement to Move in order to block this.
Let’s say a derivation is feature-driven iff every Move step is imme-
diately followed by a GCON step that contracts the new type formed
by that step. We can restrict things further by requiring derivations to
be prefix form in the sense that the second argument of Mrg is always
saturated. The following ‘normal form’ result is straightforward:

PROPOSITION 1. For rl expressions e1, . . . , en and atomic a,
e1 . . . en_

∗

mTPG
a iff it has a prefix, feature-driven mTPG derivation.

5. More challenging phenomena

5.1. Example G3: remnant movement.

Recently, some linguists have proposed analyses in which a phrase
from which something has been extracted – a ‘remnant’ – can move
(Kayne, 1994; Koopman and Szabolcsi, 2000). This was impossible in
some earlier theories of movement. The following mTPG is inspired by
Mahajan (2000), with ≤ the identity:

(

D k
ε Bea

) (

D k
ε Ben

) (

VDl i
ε see

) (

irkrTvl

-s

) (

krDrvVl

ε

)

.

The idea here is that ‘determiner phrases’ like Bea and Ben move to
have their ‘case’ feature k checked, so the object of a verb phrase is
extracted for case by the (empty) transitivizing v, and then the verb
phrase remnant moves to have its ‘inflection’ feature i checked. We see
this in the following derivation, with start type T:

tpg.tex; 22/04/2004; 16:57; p.24

Tupled Pregroup Grammars 25

T:Bea see -s Ben

Tvlv:Bea see -s Ben

Tvl,v:Bea see -s,Ben

kkrTvl,v:Bea see -s,Ben

krTvl,v,k:see -s,Ben,Bea

iirkrTvl,v,k:see -s,Ben,Bea

irkrTvl,v,i,k:-s,Ben,see,Bea

irkrTvl:-s v,i,k:Ben,see,Bea

DDrv,i,k:Ben,see,Bea

Drv,i,D,k:Ben,see,ε,Bea

Drv,i:Ben,see

DrvVlV,i:Ben,see

DrvVl,V,i:Ben,ε,see

kkrDrvVl,V,i:Ben,ε,see

krDrvVl,V,i,k:ε,ε,see,Ben

krDrvVl:ε V,i,k:ε,see,Ben

VDlD,i,k:ε,see,Ben

VDl,i,D,k:ε,see,ε,Ben

VDl,i:ε,see D,k:ε,Ben

D,k:ε,Bea

5.2. Example G4: head movement and affix hopping.

Lambek (1999) presents an analysis of English auxiliaries and tense9

but does not treat the regular affixes as part of the syntax, as suggested
by Chomsky (1956) and much following work. Many recent Chomskian
proposals assume that the tense and aspectual affixes are placed by
some kind of ‘head movement’, and sometimes also by ‘affix hopping’.
A simplistic formulation of this idea is defined in Stabler (2001), and
we can now get a similar analysis with mTPGs like the following. We
use start category C, and the familiar categories T (tense), N (noun),
D (determiner), M (modal), H (have), B (be), plus the features w
(wh-requirement), k (case requirement), q (question movement require-
ment), t (requiring tense affix), e (requiring affix -en), i (requiring affix

9 Cf. also categorial unification grammars: Bach (1983) and others.

tpg.tex; 22/04/2004; 16:57; p.25

26 Edward P. Stabler

-en or -ing), x (requiring adjunction to little v for external argument),
and h (needs affix hop):

(

CTl

ε

) (

qrCTl

ε

) (

qrwrCTl

ε

) (

kNl D
the ε

) (

k D
he ε

)

(

wNl k D
which ε ε

) (

N
king

) (

N
pie

) (

x krVDl

eat ε

) (

x V
laugh ε

)

(

hrkrTvl

-s

) (

xrh Drvvl

ε ε

) (

trkrTMl

-s

) (

trkrTvl

-s

) (

trq krTMl

-s ε

)

(

t MHl

will ε

) (

t Mvl

will ε

) (

HEl

have

) (

t HEl

have ε

) (

erEBl

-en

)

(

erEvl

-en

) (

BIl

be

) (

e BIl

be ε

) (

irIvl

-ing

) (

xrDrvvl

ε

) (

xri Drvvl

ε ε

)

,

with ≤ the reflexive, transitive closure of B < H < M and i < e < t.
This grammar mimics a traditional Chomskian analysis, and is English-
like on a range of constructions:

the king eat -s the pie the king will -s eat the pie

*eat -s the king the pie will -s the king eat the pie

the king be -s eat -ing the pie the king have -s eat -en the pie

be -s the king eat -ing the pie have -s the king eat -en the pie

*eat -ing the king be -s the pie *eat -en the king have -s the pie

the king will -s have be -en eat -ing the pie

which pie will -s the king have be -en eat -ing

*which pie have -s the king will be eat -ing

We have the following derivation, for example:

tpg.tex; 22/04/2004; 16:57; p.26

Tupled Pregroup Grammars 27

C:have -s he be -en laugh -ing

CTlT:have -s he be -en laugh -ing

CTl,T:have -s,he be -en laugh -ing

qqrCTl,T:have -s,he be -en laugh -ing

qrCTl,q,T:ε,have -s,he be -en laugh -ing

qrCTl:ε q,T:have -s,he be -en laugh -ing

T,ttrq:he be -en laugh -ing,have -s

TMlH,ttrq:he be -en laugh -ing,have -s

TMl,ttrq,H:he,have -s,be -en laugh -ing

kkrTMl,ttrq,H:he,have -s,be -en laugh -ing

ttrq,krTMl,H,k:have -s,ε,be -en laugh -ing,he

trq,krTMl,H,t,k:-s,ε,be -en laugh -ing,have,he

trq,krTMl:-s,ε H,t,k:be -en laugh -ing,have,he

HElE,t,k:be -en laugh -ing,have,he

t,HEl,E,k:have,ε,be -en laugh -ing,he

t,HEl:have,ε E,k:be -en laugh -ing,he

EBlB,k:be -en laugh -ing,he

EBl,B,k:be -en,laugh -ing,he

eerEBl,B,k:be -en,laugh -ing,he

erEBl,B,e,k:-en,laugh -ing,be,he

erEBl:-en B,e,k:laugh -ing,be,he

BIlI,e,k:laugh -ing,be,he

e,BIl,I,k:be,ε,laugh -ing,he

e,BIl:be,ε I,k:laugh -ing,he

Ivlv,k:laugh -ing,he

Ivl,v,k:laugh -ing,ε,he

iirIvl,v,k:laugh -ing,ε,he

irIvl,v,i,k:-ing,ε,laugh,he

irIvl:-ing v,i,k:ε,laugh,he

i,vVlV,k:laugh,ε,he

xxr i,vVlV,k:laugh,ε,he

vVlV,xri,k,x:ε,ε,he,laugh

vVl,xri,k,x,V:ε,ε,he,laugh,ε

vVl,xri,k:ε,ε,he

DDrvVl,xri,k:ε,ε,he

xri,DrvVl,k,D:ε,ε,he,ε

xr i,DrvVl:ε,ε k,D:he,ε

x,V:laugh,ε

As complex as it is, this analysis is very much simpler than the one
in Stabler (2001) which requires many special generating functions.
It would be interesting to simplify it further and to try cover the

tpg.tex; 22/04/2004; 16:57; p.27

28 Edward P. Stabler

range of data treated by more serious recent proposals in this tradition
(Rizzi 1990, pp.20-24; Roberts 1993, §3.2.1; Lasnik 1995; Culicover
1999, §§3.4,3.6.3; Merchant 2003).

5.3. Partial wh-movement and successive cyclicity.

When wh-phrases move out of an embedded clause, it is often assumed
that they move through an intervening empy operator position of some
kind. Some languages like German, Hindi and Hungarian allow con-
structions in which the matrix clause has a reduced wh-element and an
intervening operator position holds the regular question word (Fanselow
and Mahajan, 2000; Horvath, 2000):

Wasj

what
hast
have

Du
you

tj geglaubt
thought

[weni

who
sie
she

ti gesehen
seen

hat]j?
has

‘who do you think she has seen’

There is a stage at which similar constructions seem natural even
to children learning English (Thornton, 1990; McDaniel et al., 1995).
There are many ways to introduce wh-associates like this in mTPGs. To
quickly illustrate one kind of option, we extend the previous grammar
G4 to get:

What have -s he think -en who he have -s see -en,

by adding the following lexical items (introducing the new simple type
O for the embedded ‘operator’ position):

(

x krVDl

see ε

) (

x VCl

think ε

) (

w k D
who ε ε

) (

w COl

what ε

) (

wrOTl

ε

)

.

Various kinds of ‘domain registration’ phenomena can be handled with
methods like this. When the domain is not overtly registered – when
there is no phonetically overt intermediate element – we may never-
theless want intervening positions (‘traces’) for successive cyclic wh-
movement, as would result from empty versions of these lexical items
for O and C.

6. Interpreting mTPGs

We quickly sketch a first, simple idea for specifying denotations of
mTPG expressions. Moortgat (2003) points out that the associativity
of pregroup types has the nice effect of avoiding overcommitment to
the order in which arguments are provided to the verb, and this should
be mirrored in the semantics (cf. Vermeulen and Visser; Kracht). We

tpg.tex; 22/04/2004; 16:57; p.28

Tupled Pregroup Grammars 29

specify meanings with a higher order logic L (cf. Church’s simple theory
of types).The denotation of a sequence of n terms (a type) is a sequence
of n semantic values, represented by logical forms. So a k-tuple of types
in the syntax denotes a k-tuple of sequences of values in the semantic
domain. By Proposition 1, any mTPG result has an feature-driven
derivation, so we can compose Move and GCON to get MCON. And
when two terms are contracted, we unify their logical forms.

imTPG expressions are elements of E =
⋃

n≥0

(Rn
P
×(Σ∪{ε})∗×Ln)∗,

written





t1 . . . tk
s1 . . . sk

i1 . . . ik



, or t1, . . . , tk : s1, . . . , sk : i1, . . . , ik. A imTPG

G = 〈Σ, P,≤,L, I,S〉, now with rl I ⊂
⋃

n≥0

(Rn
P
×(Σ∪{ε})×Ln)∗. _

∗

imTPG

is the reflexive, transitive closure of the relation on E
∗ defined by Mrg

and MCON as follows. For any proper tuples e1, e2, with at least one
saturated, and any sequences of tuples α, β,

(Mrg) α e1 e2 β_
imTPG

α e1 • e2 β.

Where k > 1, 1 ≤ i ≤ k, 1 ≤ j < k, and ti, tj are proper, and at least
one is saturated, and where

θ ∈ mgu(ii, ij) ti = xa(n) tj = b(n+1)y,

and either a ≤ b and n is even, or b ≤ a and n is odd:

(MCON) α





t1 . . . tk
s1 . . . sk

i1 . . . ik



β_
imTPG

α (





xy
sisj

ii



 •





t1 . . . tk
s1 . . . sk

i1 . . . ik





−i−j

)θ β.

Note that we write substitution θ in postfix position – it applies to the
whole tuple that MCON creates, possibly affecting all the logical forms
in it. And recall that by the definition of most general unifier (mgu),
iiθ = ijθ. See for example Huet (1975) and Nadathur and Miller (1998)
on computational issues in higher order unification.
Example iG0, adding semantic coordinates to lexical items of G0. If
there is more than one logical form in a sequence, in a single coordinate,

tpg.tex; 22/04/2004; 16:57; p.29

30 Edward P. Stabler

we separate them with dots for readability.





D3sN
l

a
(A X).X









N
boy
BOY









N
girl

GIRL









Dr
3s

S
laughs

X.(X LAUGHS)









DrSDl

praised
X.((PRAISED Y)X).Y









DrSPl

spoke
X.((SPOKE Y) X).Y









PDl

to
(TO X).X









D
we
WE









DrDDl

and
X.((AND Y) X).Y









D3s w
ε who
X (WHO X)









wrNrNSl

ε
X.Y.((X Z) Y).Z









wwl PDl
3s

to ε
X.X (TO Y).Y





Note that the interpretation of every adjoint is a variable (the scope
of which is the tuple), and the interpretations of atoms are terms that
include the variables of the adjoints, if any. As before, D3s < D, and so
we have derivations like this:

S:a boy who laughs laughs:(LAUGHS (A (((WHO X) (LAUGHS X)) BOY)))

Dr

3s
S,D3s:laughs,a boy who laughs:X.(LAUGHS X),(A (((WHO Y) (LAUGHS Y)) BOY))

Dr

3s
S:laughs:X.(LAUGHS X) D3s:a boy who laughs:(A (((WHO X) (LAUGHS X)) BOY))

D3sNl,N:a,boy who laughs:(A X).X,(((WHO Y) (LAUGHS Y)) BOY)

D3sNl:a:(A X).X N:boy who laughs:(((WHO X) (LAUGHS X)) BOY)

NrN,N:who laughs,boy:X.(((WHO Y) (LAUGHS Y)) X),BOY

NrN:who laughs:X.(((WHO Y) (LAUGHS Y)) X)

wrNrN,w:laughs,who:X.Y.((X (LAUGHS Z)) Y),(WHO Z)

wrNrNSl,S,w:ε,laughs,who:X.Y.((X Z) Y).Z,(LAUGHS A1),(WHO A1)

wrNrNSl:ε:X.Y.((X Z) Y).Z S,w:laughs,who:(LAUGHS X),(WHO X)

Dr

3s
S,D3s,w:laughs,ε,who:X.(LAUGHS X),Y,(WHO Y)

Dr

3s
S:laughs:X.(LAUGHS X) D3s,w:ε,who:X,(WHO X)

N:boy:BOY

Example iG1. This example is inspired by the slightly nonstandard
grammar in Keenan and Stabler (2003,§2.2), in which the subject and
object take their predicate as argument. The functions NOM, ACC and
SELF are explicitly defined in Keenan and Stabler (2003), and can be
the same here. Since the fronting of a constituent typically does not
affect truth conditions, the truth conditions are given by the v phrase,
and the other fronted constituents are interpreted as the identity on

tpg.tex; 22/04/2004; 16:57; p.30

Tupled Pregroup Grammars 31

the semantic domain, represented by 1:




FrSFlFl

aux
X.(ASP (X (Y Z)).Y.Z









v Drs Rro
praises nom acc

(NOM Y) ((ACC X) PRAISES) Y.1 X.1









D
Mary

MARY









D
John
JOHN









R
self

SELF





We extend the identity partial order with these

D < R o < F s < F v < F.

This yields derivations like the following, together with the 5 other
truth-functionally equivalent aux-2 orders of these same constituents:

S:self acc aux praises Mary nom:(ASP (1 (1 ((NOM MARY) ((ACC SELF) PRAISES)))))

FrS,o:aux praises Mary nom,self acc:X.(ASP (X (1 ((NOM MARY) ((ACC SELF) PRAISES))))),1

FrSFl,s,o:aux praises,Mary nom,self acc:X.(ASP (X (Y ((NOM MARY) ((ACC SELF) PRAISES))))).Y,1,1

FrSFlFl,s,o,v:aux,Mary nom,self acc,praises:X.(ASP (X (Y Z))).Y.Z,1,1,((NOM MARY) ((ACC SELF) PRAISES))

FrSFlFl:aux:X.(ASP (X (Y Z))).Y.Z s,o,v:Mary nom,self acc,praises:1,1,((NOM MARY) ((ACC SELF) PRAISES))

o,v,Drs,D:self acc,praises,nom,Mary:1,((NOM X) ((ACC SELF) PRAISES)),X.1,MARY

o,v,Drs:self acc,praises,nom:1,((NOM X) ((ACC SELF) PRAISES)),X.1

v,Drs,Rro,R:praises,nom,acc,self:((NOM X) ((ACC Y) PRAISES)),X.1,Y.1,SELF

v,Drs,Rro:praises,nom,acc:((NOM X) ((ACC Y) PRAISES)),X.1,Y.1 R:self:SELF

D:Mary:MARY

7. First comparisons and alternatives

7.1. Formal minimalist grammars (MGs)

The mTPGs defined here allow derivations very similar to MG deriva-
tions, especially in the prefix, feature-driven normal form defined above.
We could pull these two formalisms even closer by adding further
constraints on the lexicons and grammatical operations, like these:

a. We could require that at most one coordinate in a lexical element
is phonetically non-empty.

b. We could require that no lexical item have two unsaturated types.

c. We could require that the derivations be ‘complement-first’ in the
sense that a right adjoint in a type cannot be contracted if it has
a left adjoint. Then ‘complements’ – elements selected on the right
– must be attached before ‘specifiers’ on the left.

tpg.tex; 22/04/2004; 16:57; p.31

32 Edward P. Stabler

But as our examples illustrate, for some constructions in human lan-
guages, mTPGs seem simpler and more natural than MGs because
they allow more than one unsaturated component in an expression, and
because they allow more than one component (more than one ‘link’) to
be phonetically non-empty. Versions of Chomskian syntax with these
properties have not been carefully explored. We have not specified a
mapping from mTPG derivations to Chomskian X-bar like derivation
structures with traces, but, especially from a prefix, complement-first,
feature-driven normal form, this should not be much more difficult than
for MGs.

7.2. Broader perspectives

Lambek (1958) differs with Bar-Hillel (1953) over whether the binary
operations in grammar should be associative. As noted by Moortgat,
Steedman and many others, a certain degree of associativity provides
the structural flexibility that seems to be necessary for reasonable
treatments of right-node raising and certain other constructions. The
particular characteristics of MGs make it difficult to see any reasonable
approach to combinations of unsaturated constituents as we would like
to be able to have in even simple coordination and adjunction. A care-
ful exploration of approaches to coordination in mTPG-like systems
is beyond the scope of this paper, but Lambek’s work on pregroup
grammars shows how coordination could be handled if we allow non-rl
types and relax the saturation requirement slightly.

In this vein, mTPGs allow an approach to Chomskian-style move-
ment that may be worth some attention. Suppose a language learner
was competent with a language like G0 except for the wh-movement
constructions, and knew some non-human nouns (e.g. dog, cat, class,
group,. . .) and several prepositions which could be used with the verb
spoke (e.g. to, with, for). Studies of child language acquisition of wh-
questions have shown that children notice and sometimes even use the
wh-words before they are capable of placing them properly. So a child
would typically learn various relative pronouns for human and non-
human referents (who, which) one at a time, but there is evidence that
the realization of how these elements should be placed in the sentence
happens at once for all of them (e.g. van Kampen, pp.74-75). We might
similarly expect that once the child learns how to ‘pied pipe’ phrases
built with one preposition, phrases built with other prepositions would
be mastered at the same time:

tpg.tex; 22/04/2004; 16:57; p.32

Tupled Pregroup Grammars 33

the girl who we spoke to laughs the group which we spoke to laughs

the group to which we spoke laughs the girl to who we spoke laughs

the group with which we spoke laughs the girl with who we spoke laughs

The extension of G0 suggested above would not predict that the differ-
ent relative pronouns would be mastered together, or that the different
pied piped phrases would be mastered together, but there is a different
and simpler extension which would make this prediction. If we had
recognized several relative pronouns,

(

Dwh

who

) (

Dwh

which

)

,

they can all be properly enabled in the syntax at once by the addition
of a single element which, when combined with these, yields categories
like the one we proposed in our earlier treatment, namely:

(

D wDl
wh

ε ε

)

.

Clearly, the combination of this new element with who will yield exactly
the expression we proposed for the lexicon in §3.1, but now we will also
get similar lexical entries for all the relative pronouns. Similarly, if we
have several prepositions

(

PDl

to

) (

PDl

with

) (

PDl

for

)

,

we can add a single new element to allow all these phrases to ‘pied pipe’
in exactly the way we saw in the derivation displayed in §3.1, namely

(

DPrwwl PDl

ε ε

)

.

Notice that this last element is not rl, but a slight relaxation of the
mTPG constraints, a relaxation already motivated by the straight-
forward approach to coordination, could allow it. A wide range of
possibilities of this sort remains to be explored.

8. Summary and prospects

PGs have less categorial structure than CGs – they are associative – but
still define any CFL. Adding non-logical constraints, mPGs also define
any CFL, with minimal PG derivations. Extending mPGs to mTPGS,

tpg.tex; 22/04/2004; 16:57; p.33

34 Edward P. Stabler

mTPG operations are simpler than MG operations but in spite of
that, mTPGs for common constructions sometimes simpler. mTPGs
also keep less structure in their moving components than conventional
grammars and formalizations like MGs – intuitively, the order in which
chain links are attached is free, and the chains passing through any
point of an analysis are amalgamated – but still mTPGs can define
any language MGs can. Prospects for reasonable model theories look
good (though our look was very brief). It might be necessary to extend
the power of the formalism slightly (Michaelis and Kracht, 1997), but
these grammars are already quite powerful.

The ‘nonlogical’ constraints – proper types and saturation – predict
islands and play an essential role in our results and applications. It
seems likely that these are not the right ones, but they are especially
simple and may be a useful, computationally tractable starting point for
later more sophisticated proposals. Relations to other proposals remain
to be explored: the system proposed here is in some ways closer to the
ideas of Lecomte and Retoré (1999) than MGs are; Moortgat, Morrill,
Fadda and others are exploring logically defined locality conditions.

Acknowledgements

This work would not have been possible without the inspiring achieve-
ments and generous encouragement of Joachim Lambek.

References

Bach, E.: 1983, ‘Generalized categorial grammars and the English auxiliary’. In:
F. Heny and B. Richards (eds.): Linguistic Categories, Volume 2. Dordrecht:
Riedel.

Bar-Hillel, Y.: 1953, ‘A quasi-arithmetical notation for syntactic description’. Lan-

guage 29, 47–58. Reprinted in Y. Bar-Hillel, Language and Information: Selected

Essays on their Theory and Application. NY: Addison-Wesley, 1964.
Brody, M.: 1995, Lexico-Logical Form: A Radically Minimalist Theory. Cambridge,

Massachusetts: MIT Press.
Brody, M.: 1998, ‘Projection and phrase structure’. Linguistic Inquiry 29, 367–398.
Brody, M.: 2000, ‘Mirror theory: syntactic representation in perfect syntax’.

Linguistic Inquiry 31, 29–56.
Buszkowski, W.: 2001, ‘Lambek grammars based on pregroups’. In: P. de Groote,

G. Morrill, and C. Retoré (eds.): Logical Aspects of Computational Linguistics,
Lecture Notes in Artificial Intelligence, No. 2099. NY: Springer.

Casadio, C. and J. Lambek: 2002, ‘A tale of four grammars’. Studia Logica 71(3),
315–329.

tpg.tex; 22/04/2004; 16:57; p.34

Tupled Pregroup Grammars 35

Chomsky, N.: 1956, ‘Three models for the description of language’. IRE Transactions

on Information Theory IT-2, 113–124.
Chomsky, N.: 1995, The Minimalist Program. Cambridge, Massachusetts: MIT

Press.
Church, A.: 1940, ‘A formulation of the simple theory of types’. Journal of Symbolic

Logic 5, 56–68.
Cornell, T. L.: 1996, ‘A minimalist grammar for the copy language’. Technical

report, SFB 340 Technical Report #79, University of Tübingen.
Culicover, P. W.: 1999, Syntactic Nuts: Hard Cases, Syntactic Theory, and Language

Acquisition. NY: Oxford University Press.
Fadda, M.: 2002, ‘Towards flexible pregroup grammars’. In: Proceedings 2002 Roma

Workshop.
Fanselow, G. and A. Mahajan: 2000, ‘Toward a minimalist theory of wh-expletives,

wh-copying and successive cyclicity’. In: U. Lutz, G. Müller, and von Stechow
(eds.): Wh-Scope Marking. NY: John Benjamins, pp. 195–230.

Fitzpatrick, J. M.: 2002, ‘On minimalist approaches to the locality of movement’.
Linguistic Inquiry 33, 443–463.

Hale, K.: 1992, ‘Basic word order in two ‘free word order’ languages’. In: D. L. Payne
(ed.): Pragmatics of Word Order Flexibility. Philadelphia: John Benjamins, pp.
63–82.

Harkema, H.: 2001, ‘A characterization of minimalist languages’. In: Proceed-

ings, Logical Aspects of Computational Linguistics, LACL’01. Port-aux-Rocs,
Le Croisic, France.

Horvath, J.: 2000, ‘On the syntax of ‘wh-scope marker’ constructions: some com-
parative evidence’. In: U. Lutz, G. Müller, and von Stechow (eds.): Wh-Scope

Marking. NY: John Benjamins, pp. 271–316.
Huet, G.: 1975, ‘A unification procedure for the typed λ-calculus’. Theoretical

Computer Science 1, 27–57.
Joshi, A.: 1985, ‘How much context-sensitivity is necessary for characterizing struc-

tural descriptions’. In: D. Dowty, L. Karttunen, and A. Zwicky (eds.): Natural

Language Processing: Theoretical, Computational and Psychological Perspectives.
NY: Cambridge University Press, pp. 206–250.

Kayne, R.: 1994, The Antisymmetry of Syntax. Cambridge, Massachusetts: MIT
Press.

Keenan, E. L. and E. P. Stabler: 2003, Bare Grammar. Stanford, California: CSLI
Publications.

Kobele, G. M.: 2002, ‘Formalizing Mirror theory’. Grammars 5, 177–221.
Koopman, H. and A. Szabolcsi: 2000, Verbal Complexes. Cambridge, Massachusetts:

MIT Press.
Kracht, M.: 2002, ‘Referent systems and relational grammar’. Journal of Logic,

Language and Information 11, 251–286.
Lambek, J.: 1958, ‘The mathematics of sentence structure’. American Mathematical

Monthly 65, 154–170.
Lambek, J.: 1999, ‘Type grammars revisited’. In: A. Lecomte, F. Lamarche, and

G. Perrier (eds.): Logical Aspects of Computational Linguistics, Lecture Notes in
Artificial Intelligence, No. 1582. NY: Springer, pp. 1–27.

Lambek, J.: 2000, ‘Pregroups: a new algebraic approach to sentence structure’.
In: C. Martin-Vide and G. Pǎun (eds.): Recent Topics in Mathematical and

Computational Linguistics. Bucharest: Editura Academici Române.
Lambek, J.: 2001, ‘Type grammars as pregroups’. Grammars 4, 21–35.

tpg.tex; 22/04/2004; 16:57; p.35

36 Edward P. Stabler

Lasnik, H.: 1995, ‘Verbal morphology: Syntactic Structures meets the minimalist
program’. In: H. Campos and P. Kempchinsky (eds.): Evolution and Revolution

in Linguistic Theory: Essays in Honor of Carlos Otero. Baltimore: George-
town University Press, pp. 251–275. Reprinted in H. Lasnik, editor, Minimalist

Analysis, NY: Blackwell, 1999.
Lecomte, A. and C. Retoré: 1999, ‘Towards a minimal logic for minimalist

grammars’. In: Proceedings, Formal Grammar’99. Utrecht.
Mahajan, A.: 2000, ‘Eliminating head movement’. In: The 23rd Generative Lin-

guistics in the Old World Colloquium, GLOW ’2000, Newsletter #44. pp.
44–45.

McDaniel, D., B. Chiu, and T. L. Maxfield: 1995, ‘Parameters for wh-movement
types: evidence from child English’. Natural Language and Linguistic Theory

13, 709–753.
Merchant, J.: 2003, ‘Subject-auxiliary inversion in comparatives and PF output

constraints’. In: K. Schwabe and S. Winkler (eds.): The Interfaces: Deriving and

Interpreting Omitted Structures. Philadelphia: John Benjamins.
Michaelis, J.: 1998, ‘Derivational minimalism is mildly context-sensitive’. In: Pro-

ceedings, Logical Aspects of Computational Linguistics, LACL’98. NY, Springer.
Michaelis, J. and M. Kracht: 1997, ‘Semilinearity as a syntactic invariant’. In:

C. Retoré (ed.): Logical Aspects of Computational Linguistics. NY, pp. 37–40,
Springer-Verlag (Lecture Notes in Computer Science 1328).

Miller, D. A.: 1998, λ-Prolog: An Introduction to the Language and its Logic.
Pennsylvania State University: forthcoming.

Moortgat, M.: 1996, ‘Categorial type logics’. In: J. van Benthem and A. ter Meulen
(eds.): Handbook of Logic and Language. Amsterdam: Elsevier.

Moortgat, M.: 2003, ‘Categorial grammar and formal semantics’. In: Encyclopedia

of Cognitive Science. MacMillan: NY. Preliminary (long) version. Publication
forthcoming.

Morrill, G. V.: 2002, ‘Towards generalized discontinuity’. In: Formal Grammar 2002,

Proceedings of the Conference. Trento.
Munro, P.: 1989, ‘Postposition incorporation in Pima’. Southwest Journal of

Linguistics 9, 108–127.
Nadathur, G. and D. A. Miller: 1998, ‘Higher order logic programming’. In: D. M.

Gabbay, C. J. Hogger, and J. A. Robinson (eds.): Handbook of Logics for Artificial

Intelligence and Logic Programming, Vol. 5. Oxford: Clarendon, pp. 499–590.
Oehrle, R. T.: 2002, ‘A multi-modal perspective on Lambek’s pregroups’. Lecture

notes, University of Edinburgh.
Pentus, M.: 1993, ‘Lambek grammars are context free’. In: Eighth Annual IEEE

Symposium on Logic in Computer Science. pp. 429–433.
Rizzi, L.: 1990, Relativized Minimality. Cambridge, Massachusetts: MIT Press.
Roberts, I. G.: 1993, Verbs and Diachronic Syntax. Boston: Kluwer.
Ross, J. R.: 1967, ‘Constraints on Variables in Syntax’. Ph.D. thesis, Massachusetts

Institute of Technology.
Seki, H., T. Matsumura, M. Fujii, and T. Kasami: 1991, ‘On multiple context-free

grammars’. Theoretical Computer Science 88, 191–229.
Smith, M.: 2002, ‘Partial Agreement in Pima’. UCLA M.A. thesis.
Stabler, E. P.: 1994, ‘The finite connectivity of linguistic structure’. In: C. Clifton,

L. Frazier, and K. Rayner (eds.): Perspectives on Sentence Processing. Hillsdale,
New Jersey: Lawrence Erlbaum, pp. 245–266.

tpg.tex; 22/04/2004; 16:57; p.36

Tupled Pregroup Grammars 37

Stabler, E. P.: 1997, ‘Derivational minimalism’. In: C. Retoré (ed.): Logical Aspects

of Computational Linguistics. NY: Springer-Verlag (Lecture Notes in Computer
Science 1328), pp. 68–95.

Stabler, E. P.: 2001, ‘Recognizing head movement’. In: P. de Groote, G. Morrill, and
C. Retoré (eds.): Logical Aspects of Computational Linguistics, Lecture Notes in
Artificial Intelligence, No. 2099. NY: Springer, pp. 254–260.

Stabler, E. P. and E. L. Keenan: 2003, ‘Structural similarity’. Theoretical Computer

Science 293, 345–363.
Thornton, R.: 1990, ‘Adventures in Long-Distance Moving: The Acquisition of

Complex Wh-Questions’. Ph.D. thesis, University of Connecticut.
van Kampen, J.: 1997, ‘First steps in wh-movement’. Ph.D. thesis, University of

Utrecht.
Vermaat, W.: 2004, ‘The minimalist move operation in a deductive perspective’.

Research on Language and Computation 2(1), 69–85.
Vermeulen, K. and A. Visser: 1996, ‘Dynamic bracketing and discourse representa-

tion’. Notre Dame Journal of Formal Logic 37, 321–365.
Weir, D.: 1988, ‘Characterizing mildly context-sensitive grammar formalisms’. Ph.D.

thesis, University of Pennsylvania, Philadelphia.

tpg.tex; 22/04/2004; 16:57; p.37

tpg.tex; 22/04/2004; 16:57; p.38

