Class 13 and 14: Process interaction I

Overview: Should processes be able to look forward into the derivation? How far? We'll contrast SPE, OT, and a major variant of classic OT, Harmonic Serialism. Then we'll start to revisit the typology of opaque process interaction and what each theory predicts.

1. Global power

- Can a rule "see" anything other than its immediate input? Can it look further ahead? Further back?
- In SPE, rules aren't supposed to have *global power* (term from Lakoff 1970).
- But global power follows naturally in OT: every candidate is the very end of a derivation, and "sees" the very beginning (through correspondence).
 - Now we have something that OT can handle easily but SPE can't.
 - So how robust are the claimed cases?

2. Case of global power in Walker 2010

• Basic metaphony rule again, as seen in many Romance "dialects":

basic rule:
$$\{\acute{e},\acute{o}\} \rightarrow [+high] / _C_0 + C_0 \begin{bmatrix} +syll \\ +high \end{bmatrix}$$

• <u>Venetan version</u> (inventory: $[i,e,\varepsilon,a,u,o,\sigma]$)—more info than we saw last time

tense Vs raise	kals-ét-o móv-o	kals-ít-i m ú v-i	'sock (m. sg/pl)' 'move (1 sg/2 sg)'
lax or low Vs don't	gát-o prét-e bél-o mód-o	gát-i prét-i bél-i mód-i	<pre>'cat (m sg/pl)' 'priest (m sg/pl)' 'beautiful (m sg/pl)' 'way (m sg/pl)'</pre>
[hi] can spread <u>through</u> unstr. V	órden-o	ú rd i n-i	'order (1 sg/2 sg)'
unless that V is /a/	lavór-a-v-a	lav ó r- a- v-i	'work (1 sg [3sg?] perf/2 sg impf)'
no spreading unless [+hi] will get all the way to the stressed V	ángol-o pérseg-o	ángol-i pέrseg-i	'angel (m sg/pl)' 'peach (m sg/pl)'

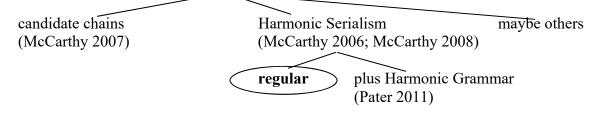
- Spreading shows "look-ahead"—it sees all the way to the end of its iterative application (hypothetical *[ángul-i], *[pɛ́rsig-i], where stressed V is still not high)
 - if the result doesn't solve the fundamental problem of the unraised stressed vowel, then no spreading is done at all ("sour grapes")
 - ? Let's sketch a rule analysis to see why this is problematic.

? Let's develop an OT analysis.

/mov-i/		
a móvi		
<i>☞ b</i> múvi		

/pérseg-i/		
æc pérsegi		
d pérsigi		
e pírsigi		

• See Kaplan 2011 for a seemingly contrasting case of *non*-lookahead or "myopia" in Chamorro.


3. Case of global power in the reverse direction

- Analysis briefly entertained (and rejected) in your Piggott 1980 reading:
- Odawa final deletion of glides and lax vowels
 - o /aniššināpēwiw/ → [aniššināpēwi], but doesn't self-feed to *[niššināpēw] or *[niššināpē]
 - One way to prevent self-feeding (if you want a theory that generally requires it) is to say that the deletion rule deletes only in the *underlying* environment __#

4. A major variant of OT: Harmonic Serialism

• Distinction between small-*h*, small-*s* and capital-*H*, capital-*S*:

harmonic serialism (Prince & Smolensky 2004)

• Difference #1: Gen()

<u>Harmonic Ser</u>. Gen(/input/) = {all results of applying just one <u>minimal change</u> to input} Gen(/ab/) = {ab, b, a, tab, abi, eb, ab, ãb, ap, am, ... }(finite set)

- A change is minimal iff it incurs just one faithfulness violation (so, <u>constraint inventory matters</u>).
- Difference #2: Overall architecture
 - In Harmonic Serialism, keep applying grammar to its own output until the result stops changing.

5. Example of how Harmonic Serialism operates: Dakota

- Siouan language, prairies of U.S. and Canada
- Fluent speakers in the hundreds
- Some English words of Dakota origin: tepee, Minnesota

Dakota Language immersion program, South Dakota¹

Ella Cara Deloria, linguist

Analysis adapted from Elfner 2016—data orig. Shaw 1985

	/čap/	WordMust	NoCoda	DON'TADD	STRESSIS	Dep-V	DON'TDELETE	MAX-V
		HAVESTRESS		STRESS	FINAL ²		STRESS	
a	čap	*!	*					
@ b	čáp		*	*				
С	ča.pa	*!				*		

Why is [ča.pá] not a candidate?

¹ https://www.nativeshop.org/programs/language-and-culture/dakota-language-immersion.html

² Not the real constraint—see Elfner, who uses feet.

čáp	WordMust	NoCoda	DON'TADD	STRESSIS	DEP-V	DON'TDELETE	MAX-V
_	HAVESTRESS		STRESS	FINAL		STRESS	
<i>d</i> čap	*!	*				*	
<i>e</i> čáp		*!					
<i>☞f</i> čá.pa				*	*		

feed *čáp* into grammar—again, [ča.pá] is not a candidate (why not?)

feed *čá.pa* into grammar:

čá.pa	WordMust	NoCoda	DON'TADD	STRESSIS	Dep-V	DON'TDELETE	MAX-V
	HAVESTRESS		STRESS	Final		STRESS	
g ča.pa	*!					*	
<i>☞ h</i> čá.pa				*			
<i>i</i> čá.pá			*!				
<i>j</i> čáp		*!					*

Input=output, so stop iterating.

What does this grammar predict for input like /čite/?³

čite	WordMust	NoCoda	Don'tAdd	STRESSIS	Dep-V	DON'TDELETE	Max-V
	HAVESTRESS		STRESS	Final		STRESS	

WordMust	NoCoda	Don'tAdd	STRESSIS	Dep-V	DON'TDELETE	MAX-V
HAVESTRESS		STRESS	Final		STRESS	

Why can't we get *[ča.pá] in this Harmonic Serialism grammar?

³ hypothetical—real examples have clusters that muddy the issue

/čap/	NoCoda	WordMust	DON'TADD	STRESSIS	Dep-V	DON'TDELETE	MAX-V
		HAVESTRESS	STRESS	Final		STRESS	
<i>a</i> čap	*	*					
<i>b</i> čáp	*		*				
<i>c</i> ča.pa		*			*		

What happens if we switch the ranking of WORDMUSTHAVESTRESS and NOCODA?

NoCoda	WordMust	Don'tAdd	STRESSIS	Dep-V	DON'TDELETE	Max-V
	HAVESTRESS	STRESS	Final		STRESS	

? What happens if we try to analyze Veneto in Harmonic Serialism?

/pérseg-i/		
a pérsegi		
b pérsigi		

6. Classic look-ahead: Hill 1970's "peeking" rule in Cupeño

- Uto-Aztecan language from Southern California
- Cupeño people continue to lay claim to Cupa/Warner Springs, from which they were forcibly removed in 1903
 - Contributed to language attrition—forced to share territory with speakers of different language
- No fluent speakers today
- Hill, when a grad student at UCLA, worked with Roscinda Nolasquez, a survivor of the threeday forced march from Cupa to Pala

(currently closed for pandemic; near Temecula)

• Read the derivations from left to right:

	Underlying Forms	A Vowel Deletion	B -ine, yaxe Reduction	C a-Reduction	D HAB	E ? In- sertion	Final Form	
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)	cí, HAB hú, HAB yélice-ine, HAB céle-ine, HAB k ^{**} áwe-yaxe, HAB qá ² aye-yaxe, HAB píne ² wexe, HAB cáspele, HAB pácike, HAB qáwe, HAB cále, HAB těwě, HAB	cí, HAB hú, HAB yélic-in, HAB cél-in, HAB k ^w áw-yax, HAB qá ² ay-yax, HAB píne ² wex, HAB cáspel, HAB pácik, HAB qáw, HAB cál, HAB téw, HAB* hel ^y ép, HAB	yélic-i, HAB cél-i, HAB k ^w áw-ya, HAB qá ³ ay-ya, HAB	k™áw-ye, HAB qá?ay-ye, HAB	cí hú yélic-i cél-i k*áw-ye qá?ay-ye píne?wex cáşpe?el páci?ik qá?a?aw cá?a?al té?e?ew hel%é?e?ep	cí ^{>} hú ^{>}	cí ² hú ² yélici céli k ^w áwye qá ² aye píne ² wex cáşpe ² el páci ² ik qá ² a ² aw cá ² a ² al té ² e ² ew hel ^y é ² c ² ep	(Hill p. 536)

Figure 1. Application of Rules to Examples (1)-(13) of Section 1.1

- Step D, Habilitative Formation, adds glottal stop(s) and copied vowel(s) only if the word ends in a consonant at this point in the derivation.
- The key is that Habilitative copying applies as many times as needed to provide two syllables following the stressed syllable—including zero times.
 - So what's the look-ahead issue? Let's step through the derivation for (13) and think about the first application of copying.
- Hill points out that of course we *can* write complicated rules that will do this without look-ahead, but they seem to miss the point about word shape.

	feeding	bleeding	counterfeeding	counterbleeding
examples so far	 Guinaang Kalinga syncope/assimilation Tshiluba nasalization (self-) 	 English plurals Klamath glottalized Cs (self-) Eastern Ojibwa glide formation (self-) French schwa deletion (self-) 	 Palauan vowel reduction Tundra Nenets V deletion (self-) Morphological truncation (self-) 	 Polish vowel raising and devoicing Southern Kikuyu spirantization (self-)
OT	ОК	OK	no, except in some cases (scales)	no, except in some cases (fusion)
SPE	ОК	OK	OK	ОК

7. Back to process interaction types: (counter){f,bl}eeding

- In the rest of today we'll look at what some SPE variants predict
- Later we'll complicate the typology

8. The special cases I: Lena Asturian

- Asturian is a Romance language from Spain, around 100,000 native speakers
 - o Lena is a municipality is Asturias

Ramón Menéndez Pidal, philologist person most nominated for Nobel Prize

Santa Cristina de Lena church, Lena

• Another metaphony case from (Walker 2005)

fí-a	'daughter'
nén-a	'child (fem.)'
tsób-a	'wolf (fem.)'
gát-a	'cat (fem.)'

fí-u 'son' nín-u 'child (masc.)' tsúb-u 'wolf (masc.)' gét-u 'cat (masc.)'

? Account for this with two rules

Zoom poll

? What type of rule interaction is this?

What's the problem with translating this into OT (hint: [gét-u])?

/gátu/		
a gátu		
<i>☞ b</i> gétu		
С		

? Any ideas for playing with our faithfulness constraints to get this?

9. The special cases II: Bedouin Hijazi Arabic

- Variety of Arabic spoken by rural population in Western Saudi Arabia
- Case from Al-Mozainy 1981, via Hauser & Hughto 2016

	/ʃaribat/	/ħaːkim/	/ħaːkim-in/	(H&H p. 1)
Palatalization		ħaːk ^j im	ħaːk ^j imin	
Deletion	∫arbat		ħaːk ^j min	
	[∫arbat]	[ħaːkʲim]	[ħaːkʲmin]	

? What type of rule interaction is this?

Zoom poll

? What's the problem for OT?

/ħaːkim-in/		
a ħaːkim-in		
b ħaːk ^j im-in		
<i>☞ c</i> ħaːk ^j m-in		
d ħaːkm-in		

/ħaːkim-in/		
a ħaːkim-in		
b ħaːkʲim-in		
æc ħaːkʲm-in		
d ħaːkm-in		

? Let's try a fusion analysis—we'll have to use something different from plain IDENT(hi)

10. How about variants of SPE that you read about?

- SPE assumes that a language can impose any order it wants on rules. Many researchers have proposed that this is not the case—that at least sometimes, rules are *intrinsically* ordered.
- Let's see ways to do that...

11. Koutsoudas, Sanders, & Noll 1974: Simultaneous repeated application (review)

- = all rules apply simultaneously to the UR, then again to the result, and again until no more application is possible. This results in *maximal application* (feeding rather than counterfeeding, counterbleeding rather than bleeding).
 - ? Let's try /panipa/ with $V \rightarrow \emptyset / VC_CV$ and nasal place assimilation

/panipa/

Plus an additional principle, "proper inclusion precedence"

• Latin American varieties of Spanish, rather abstract analysis (Harris 1983?):

	/akeʎ/	/ake&+os/	
$1. \Lambda \rightarrow 1 / _ \#$	akel		
2. <i>K</i> → j		akej+os	
	'that'	'those'	(but see Lloret & Mascaró 2007)

- What kind of rule ordering is this?
- ? Try to apply these rules simultaneously and repeatedly to /ake Λ /—what's the issue?
- Koutsoudas & al. propose (p. 9):
 "For any representation R, which meets the structural descriptions of each of two rules A and B, A takes applicational precedence over B with respect to R if and only if the structural description of A properly includes the structural description of B."

the structural description (SD) of A properly includes the SD of B = you can match B's SD up with part of A's SD that it is nondistinct from, and still have part of A's SD left over.

Zoom poll

? How does the definition apply to the two Spanish rules? Is $\Lambda \rightarrow 1 / _ \#$ Rule A or Rule B?

• <u>Aside</u>: if we adopt the analysis above I think it's a bit of a problem for OT. Why is the problematic $/\Lambda$ resolved by changing place in one instance, and manner in the other?

/akeʎ/	*\lambda *\lambda # \lambda V	IDENT(place)	IDENT(manner)	*j# *lV
a akeл	*(!) *(!)			
$\otimes b$ akel		*!		
● [™] c akej			*	*

	/ake&+os/	λ*	*\⁄#	*\langle V	IDENT(place)	IDENT(manner)	*j#	*lV
а	akeʎos	*(!)		*(!)				
b	akelos				*!			*
©₽C	akejos					*		

- The constraints at the bottom can't be ranked any higher, because of forms like *cielo* and (rarer) *ley*.
- Such "constraint-specific repairs" are predicted in SPE or in some versions of rules+constraints, but not in OT.
- I'm not saying OT can't capture the Spanish data—it just can't directly translate the analysis with $\Lambda \rightarrow 1/$ __ # and $\Lambda \rightarrow j$.

12. Bleeding: example originally from Kiparsky (1968?)

• Schaffhausen dialect of Swiss German:

1. V \rightarrow [-back] / complicated 'umlaut' context,	/bogə/	/bodə/	/bogə+PL/	/bodə+PL/
including plurals			bøgə	bødə
2. $o \rightarrow o / _ \begin{bmatrix} +cons \\ +cor \\ -lat \end{bmatrix}^4$		bədə		

? Why is this ordering crucial?

- What happens if we use the Koutsoudas & al. approach? (*3 minutes for breakout*)
- K & al. propose that in all apparent cases of bleeding (and counterfeeding?), the rules need to be revised. In this case, they propose a context-free rule $\alpha \rightarrow \emptyset$ (remember Myers's <u>persistent rules</u>, which apply everywhere in the derivation that they can).
 - ? Apply this solution to /bodə+PL/. (3 minutes for breakout)

What additional fact needs to be true in Schaffhausen for this to work?

⁴ In the original it's not [+cor] but [–grave]. *Grave* is an acoustic feature (roughly, lower frequencies are stronger for [+grave] segments), not much used these days. Labials and velars are [+grave]; dentals and alveolars are [–grave] (a.k.a. *acute*).

13. Some issues for the KSN proposal raised by Piggott 1980

- Odawa has a rule deleting final glides (*w*, *y*) and final lax vowels (vowel symbols them)
 - What issues do (217a) and (217b) raise (whether deletion is one rule or two)?

217.	(a)	ni-aniššināpēwi	'I am an Indian'
		[ntanššināpēw]	
	(b)	aniššināpēwi-w	'he is an Indian'
		[niššnāpēwi]	
	(c)	ki-aniššināpēwi-m	'you (pl.) are Indians'
		[kitanššināpēwim]	

Odawa has a rule inserting [i] in certain consonant clusters.
 ? What issues are raised by its interaction (or non-interaction) with t-palatalization and stress?

palatalization: $t \rightarrow \check{c} / _ + \begin{bmatrix} -\cos s \\ +high \\ -back \end{bmatrix}$ stress: stress all tense vowels, then any lax vowel that's after an unstressed syllable, plus the last syllable

14. Another intrinsic ordering idea: the Elsewhere Condition (Anderson 1969, Kiparsky 1973...)

• Recall once more disjunctive ordering of the rules that a schema expands into:

$$V \rightarrow [+stress] / _C_0(VC_0) \# \Rightarrow if applicable, V \rightarrow [+stress] / _C_0VC_0 \# else, V \rightarrow [+stress] / _C_0 \# C_0 \# C_0$$

[if the first rule is applicable, you don't get to apply the second]

• Kiparsky argues that disjunctive ordering doesn't really have anything to do with expansion conventions. He proposes that what really drives disjunctive ordering is...

 $(p. 305)^5$

⁵ Cf. Anishinaabe, a term for a large group of peoples including Ojibwe, or the Odawa version, Nishnaabe.

- Elsewhere Condition (revised in later Kiparsky works)
- (p. 94) "Two adjacent [in the ordering] rules of the form

$$\begin{array}{c} A \rightarrow B / P _ Q \\ C \rightarrow D / R \end{array} \begin{array}{c} S \end{array}$$

are disjunctively ordered if and only if:

- (a) the set of strings that fit [are nondistinct from] *PAQ* is a subset of the set of strings that fit *RCS*, and
- (b) the structural changes of the two rules are either identical or incompatible"
 - We also need to define 'incompatible'—possibly it means that the results of applying the two rules are *distinct*, in our technical sense.
- What does the Elsewhere Condition say about the pair of stress rules above?

[?] How does the Elsewhere Condition compare to proper inclusion precedence? Are there cases where the two conditions apply differently? (Let's try Spanish)

- 15. Anderson 1974 ch. 10: natural order (if time), example from Icelandic
- Indo-European language from Iceland with 250,000 speakers

Björk, musician

Halldór Kiljan Laxness, Nobel Prize in Literature winner

- syncope, roughly: certain unstressed Vs $\rightarrow \emptyset / C _ \{l,r,n,\delta,s\}+V$
- $a \rightarrow \ddot{o} / C_0 u$ (where "u" usu. = [Y], " \ddot{o} " = [α]) u-*umlaut*:

barn svangt kalla (<i>lax, unstresse</i>	<pre>'child' 'hungry-neut.nom.sg.' '[I] call' d vowels deleteV)</pre>	b ö rn+um sv ö ng+u k ö ll+um	'child-dat.pl.' 'hungry-neut.dat.sg.' '[we] call'
ham a r	'hammer'	hamr+i	'hammer-dat.sg.'
fifill	'dandelion'	fifl+i	'dandelion-dat.sg.'
morgunn	'morning'	morgn+i	'morning-dat.sg.'

morgunn 'morning' morgn+i

(*ll*, *nn* stand for long *l*s and *n*; syncope is meant to be applicable)

- 2 If syncope precedes umlaut, what kind of process interaction results for the UR /katil+um/ 'kettle-dat.pl'?
- ? For /jak+ul+e/ 'glacier-dat.sg.'?
- ? What about umlaut before syncope for /katil+um/?
- ? For /jak+ul+e/ (see data below)?

→ Whether a rule ordering is feeding, bleeding, etc. depends on the particular forms involved

/katil/ /ragin/ /alen/	+ <i>r/Ø</i> ketil+l regin alin	'kettle' 'gods' 'ell of cloth'	+ <i>um</i> k ö tl+um rögn+um öln+um	'kettle-dat.pl' 'gods-dat.pl' 'ell of cloth-dat.pl'
/bagg/ /jak/ /þag/	+ <i>ul+r</i> bögg+ul+l jök+ul+l þög+ul+l	'parcel' 'glacier' 'taciturn'	+ul+e, +ul+an bögg+l+i jök+l+i þög+l+an	'parcel-dat.sg.' 'glacier-dat.sg.' 'taciturn-masc.acc.sg.'

- If the rules are right, we have an ordering paradox! ٠
- Here's how Anderson resolves it: •
 - Some pairs of rules are left unordered by a language's grammar and so apply in their natural order in each case.
 - Other rules are ordered, but only pairwise (so ordering is not transitive, for instance).

"where only one of the two possible orders for a given pair of rules is feeding, the feeding order is the natural one; and that where only one of the two possible orders is bleeding, the other order [i.e. counterbleeding] is the natural one. In all other cases [...] no natural order is (yet) defined." (p. 147)

Zoom poll

Is this different from the Koutsoudas & al. proposal? (Let's apply their theory to the crucial forms.)

[?] If a grammar consists of a list of rules and some statements about their orderings, what does a diachronic change from, say, counterfeeding to feeding involve? (Notice the extension of the evaluation metric to rule orderings, and not just the rules themselves.)

• See (Kiparsky 1984) for a totally different analysis of Icelandic in Lexical Phonology.

16. Summary: now we have three main theories...

- Classic OT. All candidates are considered: powerful Gen(), Eval() runs just once
- **OT with Harmonic Serialism**. Only "close" candidates are considered: restricted Gen(), Eval() applies repeatedly to its own output
- **SPE**. Fixed sequence of operations (each applied simultaneously to all targets): deterministic Gen(), trivial Eval() (because there is only one candidate)
- ...Plus some SPE variants, not so well developed
 - All rules are iterative (apply to their own output till it stops changing).
 - or rules can be tagged as either iterative or not
 - Rules can apply left-to-right or right-to-left
 - maybe this has to be learned for each rule, or maybe it follows somehow from the form of the rule.
 - No rule ordering: all rules apply simultaneously to the underlying form
 - No rule ordering: all rules apply simultaneously to the underlying form; repeat this until no more changes
 - Rules apply in order, but the order needn't be learned, because it follows from the content or potential interaction of the rules themselves
 - This can mean that rules apply in a different order to different underlying forms

Next time: Looking more carefully at the typology of process interaction—how do the main theories fare?

Let's close with muddiest point in the chat

References

- Al-Mozainy, Hamza Q. 1981. Vowel Alternations in a Bedouin Hijazi Arabic Dialect: Abstractness and Stress. University of Texas, Austin.
- Anderson, Stephen R. 1969. West Scandinavian vowels systems and the ordering of phonological rules. MIT dissertation.
- Anderson, Stephen R. 1974. The Organization of Phonology. New York: Academic Press.
- Elfner, Emily. 2016. Stress-epenthesis interactions in Harmonic Serialism. In John J McCarthy & Joe Pater (eds.), *Harmonic Grammar and Harmonic Serialism*, 261–300. Sheffield: Equinox Press.
- Harris, James. 1983. Syllable Structure And Stress in Spanish: a Nonlinear Analysis. Cambridge, Mass.: MIT Press.
- Hauser, Ivy & Coral Hughto. 2016. Faithfulness-based opacity in Harmonic Serialism. Presented at the Annual Meeting on Phonology, University of Southern California.
- Hill, Jane. 1970. A peeking rule in Cupeño. Linguistic Inquiry 1. 534-539.
- Kaplan, Aaron F. 2011. Harmonic Improvement without Candidate Chains in Chamorro. *Linguistic Inquiry* 42(4). 631–650. https://doi.org/10.1162/LING_a_00063.
- Kiparsky, Paul. 1968. Linguistic universals and linguistic change. In Emmon Bach, Robert Harms, Emmon Bach & Robert Harms (eds.), *Universals in Linguistic Theory*, 170–202. New York: Holt, Rinehart and Winston.
- Kiparsky, Paul. 1973. "Elsewhere" in phonology. In Stephen R Anderson & Paul Kiparsky (eds.), A Festschrift for Morris Halle, 93–106. New York: Holt, Rinehart and Winston.
- Kiparsky, Paul. 1984. On the lexical phonology of Icelandic. In C. C Elert, I. Johansson, E. Stangert, C. C Elert, I. Johansson & E. Stangert (eds.), *Nordic prosody III*, 135–164. Ume? University of Ume?
- Koutsoudas, Andreas, Gerald Sanders & Craig Noll. 1974. The application of phonological rules. Language 50. 1–28.
- Lakoff, George. 1970. Global Rules. Language 46(3). 627-639.
- Lloret, Maria-Rosa & Joan Mascaró. 2007. Depalatalization in Spanish revisited. In Fernando Martínez-Gil & Sonia Colina (eds.), *Optimality-Theoretic Studies in Spanish Phonology*, 74–98. John Benjamins Publishing Company.
- McCarthy, John J. 2006. Restraint of Analysis. In *Wondering at the Natural Fecundity of Things: Essays in Honor of Alan Prince*. Linguistics Research Center. http://repositories.cdlib.org/lrc/prince/10.
- McCarthy, John J. 2007. Hidden generalizations: phonological opacity in Optimality Theory. London: Equinox.
- McCarthy, John J. 2008. The Gradual Path to Cluster Simplification. *Phonology* 25(02). 271–319. https://doi.org/10.1017/S0952675708001486.
- Pater, Joe. 2011. Serial Harmonic Grammar and Berber syllabification. In *Prosody matters: essays in honor of Elisabeth O. Selkirk*. London: Equinox Press.
- Piggott, Glyne L. 1980. Aspects of Odawa Morphophonemics. Routledge.
- Prince, Alan & Paul Smolensky. 2004. *Optimality Theory: Constraint interaction in generative grammar*. Malden, Mass., and Oxford, UK: Blackwell.
- Shaw, Patricia. 1985. Modularism and substantive constraints in Dakota lexical phonology. In *Phonology yearbook* 2, 173–202.
- Walker, Rachel. 2005. Weak Triggers in Vowel Harmony. Natural Language & Linguistic Theory 23(4). 917-989.
- Walker, Rachel. 2010. Nonmyopic Harmony and the Nature of Derivations. *Linguistic Inquiry* 41(1). 169–179. https://doi.org/10.1162/ling.2010.41.1.169.