Class 18 (or more likely, 19): The too-many-solutions problem

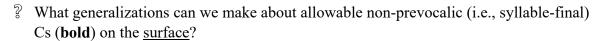
- 1. Heterogeneity of process (McCarthy 2001)
- There can be impressive cross-linguistic exuberance in solving markedness problems.
 - Write down some candidates for the input /pumili/ that satisfy the constraint *[labial](V)[labial]

- Some actual Western Austronesian solutions to this problem (Zuraw & Lu 2009)
 - a. change place of stem: /p-um-ili $/ \rightarrow [k$ -um-ili]
 - b. change place of infix: $/p-m-ili/ \rightarrow [k-n-ili]$
 - c. change consonantality of infix: /d-m-iim $/ \rightarrow [d$ -w-iim] or [d-u-iim]
 - d. fuse stem and infix consonants: /p-um-ili $/ \rightarrow [mili]$
 - e. move infix out of constraint's domain of application: /p-um-ili/ → [mu-pili]
 - f. delete the infix: /p-m-ili $/ \rightarrow [pili]$
 - g. paradigm gap: /p-m-ili/ \rightarrow unpronounceable

- /mp/ → ...
 - [mb]
 - [bp]
 - [m]
 - [p]

- Different ways to handle $\{1,0\}$ in Romance metaphony when raising $\{\epsilon,5\}$ (Walker 2005)
 - In a raising environment, $/\epsilon, \mathfrak{I}/...$
 - raise to [i,u]
 - fail to raise at all
 - raise to [e,o]
 - raise to [ie,uo] or [iε, uε]

2. Limits on heterogeneity


• Two prominent examples of non-exuberance:

- No language consistently deletes C₂ in VC₁C₂V sequences to solve a NoCoda or *CC problem (Wilson 2000; Wilson 2001).
- Many languages devoice to obey $*\begin{bmatrix} -son \\ +voice \end{bmatrix}$ #, but none delete, epenthesize, etc. (Lombardi 2001).

3. Loan adaptation: Shibatani on Japanese

• URs can end in consonants. Here are some verbs:1

UR	present	pres. polite	negative	past	
/ma t /	mats-u	mat͡∫-imasu	mat-anai	ma t -ta	'wait'
/ka k /	kak-u	kak-imasu	kak-anai	kai-ta	'write'
/aruk/	aruk-u	aruk-imasu	aruk-anai	arui-ta	'walk'
/jo b /	job-u	job-imasu	job-anai	jo n- da	'call'
/aso b /	asob-u	asob-imasu	asob-anai	aso n- da	ʻplay'
/iso g /	isog-u	isog-imasu	isog-anai	isoi-da	'hurry'
/hanas/	hanas-u	hana∫-imasu	hanas-anai	hana∫-ita	'speak'
/no m /	nom-u	nom-imasu	nom-anai	no n- da	'drink'
/kaer/	kaer-u	kaer-imasu	kaer-anai	kae t -ta	'return'
/gamba r /	gambar-u	gambar-imasu	gambar-anai	gamba t- ta	'hang in there'
/tabe/	tabe-ru	tabe-masu	tabe-nai	tabe-ta	'eat'
/mise/	mise-ru	mise-masu	mise-nai	mise-ta	'show'
/mi/	mi-ru	mi-masu	mi-nai	mi-ta	'see'
/deki/	deki-ru	deki-masu	deki-nai	deki-ta	'can'

¹ Not the only analysis out there, but I think it's close to what Shibatani has in mind. I don't remember where I originally got these data, but I checked them at www.japaneseverbconjugator.com.

• Some loanwords of the past century:²

'dress' doresu 'script' sukuriputo

'pen' pen (uvular-ish is the default place of articulation for a final nasal)

? How can we explain this in rule terms?

- Shibatani argues that there was no prior basis for a V-insertion rule in Japanese—but there was a basis for a surface constraint on non-prevocalic Cs.
 - In OT terms, I think we can explain why learners (even without seeing the loans) would arrive at a grammar that rules out *[dres], *[skript]. But how do they choose between MAX-C and DEP-V? How do they choose which vowel to insert? Looking ahead [if this is happening after the Steriade reading], what would Steriade say?

4. Loan adaptation remarks

- Not only must we explain why languages often agree on a repair; we also have to explain how speakers of the same language often agree on a repair when new items enter the language.
- Recall Shibatani 1973, writing in favor of surface constraints (as opposed to constraints on underlying forms, or no role for constraints at all):
 - "It is the SPCs [surface phonetic constraints] of his language which intrude into the pronunciation of a foreign language when an adult learner speaks. The SPCs are acquired in an early stage of mother-tongue acquisition, and they are deeply rooted in the competence of a native speaker." (p. 99)

5. Loan adaptation: Shibatani on Korean

• Before Chinese (\neq modern Mandarin!) loans came in:

- On the surface, no word-initial liquids \rightarrow surface constraint *[#1] (and its allophone [r])
- But also no morpheme-initial liquids underlyingly → could just as well have a constraint on underlying forms, */#l/

² We could also look at old loans from Chinese, maybe with a different result for final Cs.

Ling 200A, Phonological Theory I. Fall 2020, Zuraw

• These loans don't tell us if it's a constraint on underlying or surface forms (why not?):

nok- 'green' < Ch. lok nam- 'blue' < Ch. lam

namp^hu 'lamp' < Jp. rampu (archaic?³)

Solve the following miniature phonology problem. These morphemes are all loans from (Middle?) Chinese. It is significant that only the first three rows have [i].

jʌn-kɨm	'pension'	nε-njʌn	'next year'
年金	year+money	來 年	coming+year
jʌn-sɨp	'practice'	kjo-ljʌn	'military drill'
練 習	practice+practice	教 鍊	teach+practice
jʌn-ki	'performance'	teo-jan	'supporting role' assist+perform
演 技	perform+skill	助 演	
no-in	'old person	teo-lo	'premature old age'
老人	old +person	早老	early+old
nak-wʌn	'paradise'	kʰwε-lak	'enjoyment'
樂 園	pleasant+park	快 樂	refreshing+pleasant
nam-pʰʌn	'husband'	mi-nam	'good-looking man'
男 便	man+side	美 男	beautiful+man

- Passed on your solution, does the constraint *#l apply to (A) surface forms or (B) underlying forms? (Or does it depend?)
- Like Japanese, Korean is displaying an 'extra' rule here that wasn't previously needed/attested.
 - ? OT explanation for where this came from?

 3 Naver online dictionary (krdic.naver.com) instead has direct-from-English [remp $^h\!i$].

6. Answer #1: P-map (Steriade 2008)

- As you read (or will have read, if we get this far on Thursday), Steriade proposes that...
- a. Speakers have a "P-map", implicit knowledge of perceptual distance between pairs of sounds (potentially tagged for their contexts): e.g., $\Delta(d/V_\#, \emptyset/V_\#) > \Delta(d/V_\#, t/V_\#)$ [Δ for difference]
- b. Faithfulness constraints can refer to details of their target and their surface context:
 - not just DEP-V, but DEP-i, DEP-a, DEP-ə
 - not just Dep-V, but Dep-V/s_t, Dep-V/t_r
- c. Faithfulness constraints get their default rankings from the P-map: constraints penalizing big changes should outrank constraints penalizing small changes.
 - % MAX-d/V__#>> IDENT(voice)/V__# or IDENT(voice)/V__#>> MAX-d/V__#?

Zoom poll

- Presumably these default rankings can be overturned by the learner in response to contradictory data, but they will be a persistent influence on language change.
- Let's review how this plays out in final devoicing (simplest cases)

$I \rightarrow O$	faith. violated	perceptual comparison	distance between comparanda (arbitrary units, fake values)
$/rad/ \rightarrow [rat]$	IDENT(voice)/V_#	d/V#, t/V#	4
$/rad/ \rightarrow [ra]$	Max-C	d/V#, Ø/V#	8
$/rad/ \rightarrow [ran]$	IDENT(nasal)	d/V#, n/V#	6
$/rad/ \rightarrow [ratə]$	DEP-ə	Ø/C#, ə/C#	9

- What default constraint ranking does this imply?
- Fill in tableau to see winner under the following ranking

	/rad/	* \begin{bmatrix} -\son \ +\voice \end{bmatrix} #	DEP-ə	Max-C	IDENT(nasal)	IDENT(voice)/V#
а	[rad]					
b	[rat]					
С	[ra]					
d	[ran]					
e	[ratə]					

Reeping the default ranking fixed, possible winners in some language are:

Zoom poll A: any of the six candidates

B: *a, b, or c* C: *a or b*

D: other

- Personally, I find the traditional faithfulness constraints unwieldy in a P-map theory
- I prefer (Zuraw 2007, Zuraw 2013) to use a constraint format that directly penalizes mappings, which you can then look up in the P-map:
 - e.g., *MAP($^{V}d^{\#}$, $^{V}t^{\#}$)
 - See Löfstedt 2010 for application to paradigm gaps; White 2013 for application to "saltation", a type of underapplication opacity.

7. Some things to ponder about the P-map

- Exactly what is being compared when a faithfulness constraint gets its default ranking?
 - Output vs. input?
 - That's kind of funny because the input isn't a pronounced form, so its perceptual properties are hypothetical.
 - Output vs. faithful output (candidate *a* in the above)?
 - Output vs. related output? E.g., [rat] vs. plural [rad-im].
 - Those are both real, pronounced forms, but it's tricky because the target segments are in different contexts. Do we measure $\Delta(d/V + V,t/V)$ #)?
- How well connected is the P-map?
 - Can $\Delta(X,Y)$ be measured for absolutely any X,Y? Or only for close-enough pairs?

8. Answer #2: targeted constraints (Wilson 2000; Wilson 2001 Baković & Wilson 2000)

- We won't cover this, but the idea relies on relaxing some assumptions about the <u>ordering</u> relation that a constraint imposes on candidates.
 - o (Though see McCarthy 2002 for issues with targeted constraints and final devoicing specifically.)

9. Answer #3: Evolutionary Phonology (Blevins 2003)

- Blevins gives a very important caution about using typological data:
 - Does final devoicing prevail because learners prefer it?
 - Or simply because it tends to arise diachronically?
- Moreton 2008 refers to this distinction as analytic bias vs. channel bias.

• Assume the same perception facts that Steriade does, except assume that speakers don't internalize perceptual facts, and instead simply misperceive.

- Suppose there is a language that tolerates final voiced obstruents: $/rad/ \rightarrow [rad]$.
- Suppose that the most common misperception of [rad] is as [rat].
- Then learners will think they're hearing a certain amount of alternation like [rad-im] \sim [rat], and not much, e.g., [rad-im] \sim [rad-] or [rad-im] \sim [ran].
- If this happens enough and catches hold, the language will eventually acquire final devoicing (rather than epenthesis after final voiced obstruents), but not because learners prefer it.
- What can we do then to understand what analytic bias, if any, exists?
 - A popular approach is to put speakers in a position where their behavior is not constrained by their language-specific learning (see lit reviews in Moreton 2008, Zuraw 2007, Hayes et al. 2009, Moreton & Pater 2012 for examples).
 - o Artificial Grammar Learning experiments
 - o The "Bach test" (Lise Menn): see how loans with novel structures are treated
 - o Corpora of poetry, puns

10. Another example of heterogeneity of process (if time)

- Kennedy 2005:
 - In various Micronesian languages, initial geminate consonants were created by CV-reduplication followed by deletion of the reduplicant's V.
 - Word-initial position is a tough place to maintain a C-length distinction, especially for stops, because you need to perceive when the consonant begins ([pa] vs. [ppa], as opposed to [apa] vs. [appa])
 - If a diachronic change were to happen, we'd expect it to just be degemination.
 - But the changes turn out to be diverse.

Pohnpeian	*ppek	>	mpek	IDENT(nasal)
Marshallese—Ratak	*kkan	>	kekan	DEP-V/C_C
Marshallese—Ralik	*kkan	>	yekkan	DEP-V/#C
Pingelapese	*ttil	>	iitil	IDENT(syllabic)
Woleaian	*kkaše	>	kkaše	
	*kaše	>	xaše	IDENT(continuant)

11. So what makes some repairs homogeneous and others heterogeneous?

- Who knows, but here are some speculations (from Zuraw & Lu 2009):
- The origin of the markedness constraint
 - Is it driven by articulatory considerations?
 - by perceptual difficulties?
 - by motor planning difficulties?

- The formal complexity of the markedness constraint:
 - How long a string must be inspected to determine if there is a violation?
 - Is the constraint sensitive to morphological information or other hidden structure?
 - How many features are involved?
- The nature of the changes available—is there one that can count as "smallest change"?
 - Is one change perceptually closer to the original than the others?
 - If so, does it achieve the status of "only solution" by falling below some threshold of perceptual distance?
 - Or must the difference between the closest change and the next-closest fall above some threshold?
 - Does one change affect fewer segments, fewer features, or less-important features?
 - If each change is formulated as a rule, does one change have a simpler structural description?

References

Baković, Eric & Colin Wilson. 2000. Transparency, strict locality, and targeted constraints. In Roger Billerey & Brook Danielle Lillehaugen (eds.), *Proceedings of the 19th West Coast Conference on Formal Linguistics*, 43–56. Somerville, Mass.: Cascadilla Press.

Blevins, Juliette. 2003. Evolutionary phonology. The emergence of sound patterns. Cambridge: Cambridge University Press.

Hayes, Bruce, Kie Zuraw, Zsuzsa Cziráky Londe & Peter Siptár. 2009. Natural and unnatural constraints in Hungarian vowel harmony. *Language* 85. 822–863.

Kennedy, Bob. 2005. Reflexes of initial gemination in Western Micronesian languages. *Austronesian Formal Linguistics Association*. UCLA, Los Angeles, CA.

Löfstedt, Ingvar. 2010. Phonetic Effects in Swedish Phonology: Allomorphy and Paradigms. UCLA Ph.D. Dissertation.

Lombardi, Linda. 2001. Why Place and Voice are Different: Constraint-Specific Alternations and Optimality Theory. In Linda Lombardi (ed.), *Segmental Phonology in Optimality Theory: Constraints and Representations*, 13–45. Cambridge: Cambridge University Press.

McCarthy, John J. 2001. A Thematic Guide to Optimality Theory. Cambridge: Cambridge University Press.

Moreton, Elliott. 2008. Analytic bias and phonological typology. *Phonology* 25(1). 83–127.

Moreton, Elliott & Joe Pater. 2012. Structure and substance in artificial-phonology learning. *Language and Linguistics Compass* 6(11). 686–701, 702–718.

Pater, Joe. 1999. Austronesian Nasal Substitution and Other *N\textbackslashtextsubringC Effects. In René Kager, Harry van der Hulst & Wim Zonneveld (eds.), *The Prosody–Morphology Interface*. Cambridge University Press.

Pater, Joe. 2001. Austronesian nasal substitution revisited: What's wrong with *NC (and what's not). In Linda Lombardi (ed.), Segmental Phonology in Optimality Theory: Constraints and Representations, 159–182. Cambridge: Cambridge University Press.

Shibatani, Masayoshi. 1973. The role of surface phonetic constraints in generative phonology. *Language* 49. 87–106. Steriade, Donca. 2008. The phonology of perceptibility effects: the P-map and its consequences for constraint organization. In Kristin Hanson & Sharon Inkelas (eds.), *The nature of the word: studies in honor of Paul Kiparsky*, 151–180. MIT Press.

Walker, Rachel. 2005. Weak Triggers in Vowel Harmony. *Natural Language & Linguistic Theory* 23(4). 917–989. White, James. 2013. Bias in phonological learning: evidence from saltation. UCLA PhD dissertation.

Wilson, Colin. 2000. Targeted Constraints: An Approach to Contextual Neutralization in Optimality Theory. Johns Hopkins University.

Wilson, Colin. 2001. Consonant Cluster Neutralisation and Targeted Constraints. *Phonology* 18(1). 147–197.

Zuraw, Kie. 2007. The role of phonetic knowledge in phonological patterning: Corpus and survey evidence from Tagalog. *Language* 83. 277–316.

Zuraw, Kie. 2013. *MAP constraints. Manuscript. UCLA, ms. http://www.linguistics.ucla.edu/people/zuraw/dnldpprs/star map.pdf.

Zuraw, Kie & Yu-An Lu. 2009. Diverse repairs for multiple labial consonants. *Natural Language and Linguistic Theory* 72. 197–224.