Class 4: Structure above the segment IV

To do

 \Box Talk to me by the end of this week about your project topic

Overview

More about feet. Then, the next level up: the PWord. We'll see how far we get and save the rest for next time.

1 Fijian assignment: any post-mortem you'd like?

2 Arguments for feet, continued

- <u>Trochaic languages are far more common</u> than iambic
 - With feet, we can characterize one parameter setting as more common
 - But with just the grid, we have to describe certain *combinations* of parameter settings as common
 - % which ones?
- Various <u>consonantal rules</u> apply to the "strong" or "weak" syllable of a foot, even if the foot is not supposed to have any stress (i.e., in languages reported to have no secondary stress).
 - See González 2002, González 2005 for cases of this and a case of something even more complicated.
 - Her simplest example: Capanahua (Panoan, Peru) deletes /?/ in even-numbered syllables

 $\begin{array}{ll} \label{eq:constraint} \label{eq:constraint} \medskip \med$

- Only one stress per word is reported, suggesting it really is about feet
 - but this could possibly be because researchers don't realize that the cues to secondary stress are more subtle
- Another feet argument: *unfooted* unstressed syllable doesn't undergo rule

 $/2i2sap/ \rightarrow [2i2(sa)]$ 'bird'

• <u>Expletive infixation</u> in English (McCarthy 1982):

Mo(nònga)-(<u>fucking</u>)-(héla) (Òs)-(<u>fucking</u>)-(wégo) (Àpa)-(<u>fucking</u>)-(làchi)(cóla), (Àpa)(làchi)-(<u>fucking</u>)-(cóla) (Tàta)ma-(<u>fucking</u>)-(góuchi) ~ (Tàta)-(<u>fucking</u>)-ma(góuchi) ← this one is crucial

- Latin enclitic stress (Steriade 1988; Jacobs 1997):
 - Latin stresses the penult if it's heavy, otherwise the antepenult (data from Jacobs/Hayes).
 - Basic analysis:
 - final syllable doesn't want to be in a foot
 - heavy syllable must be stressed (unless final: NONFINALITY>>WEIGHTTOSTRESS)
 - trochaic feet

(cá.me)ram	(ár.bo)rem	pe(dés)trem	vo(lup)(tá:)tem
(sí.mu)la:	do(més.ti)cus	a(mí:)cus	(li:.be)(ra:.ti)(ó:)nem

- [?] Can you tell from this what counts as a heavy syllable in Latin?
- But, it's different when you add an enclitic ("=" boundary):

(í)ta	'so'	(i)(tá)=que	'and so'	*(í.ta)=que
(mú)sa	'Muse'	(mu)(sá)=que	'and the Muse'	*(mú.sa)=que
(líː.mi)na	'thresholds'	(li:.mi)(ná)=que	'and the thresholds'	*(li:)(mí.na)=que
(nó)bis	'us'	(no)(bís)=cum	'with us'	
		(no)(bis)=(cúm)=que	'and with us'	

- Steriade's cyclic solution: when a clitic is attached, only still-unfooted material can be footed: old feet can't be readjusted (let's step through a couple of these)
- To deal with the following data, Jacobs proposes that not only final syllables, but also final enclitics resist footing (are "extrametrical"):

*(id)=(cír)co	'therefore'	(íd)=circo:	'this'	(íd)
	'and therefore'	(id)=(cir)(có:)=que		
*(qua:)=(próp)ter	'wherefore'	(quá:)=propter	'which'	(quá:)
*e(a:)=(próp)ter	'therefore'	(e)(á:)=propter	'there'	(é)a:
	'and therefore'	(e)(a:)=(prop)(tér)=que		
	'wherever'	(u)(bí)=li.bet	'where'	(ú) <bi></bi>

[?] Bring on the dissent and counter-analysis for all of these...

3 Asymmetric inventory: another argument for feet

• Different languages require different types of feet:

	trochees	iambs
quantity-insensitive	attested	maybe unattested?
quantity-sensitive	attested: moraic (LL), (H)	attested: "uneven" (LH), (H), (LL)

- Hayes (1995) argues, through an extensive typological survey, that these 3 are the only foot types.
 - There are claimed to be <u>no languages with syllabic iambs</u>.
 - Altshuler 2006 proposes a counterexample—Osage (mostly iambic, quantity-insensitive)
 - So this is controversial! But certainly there seems to be a tendency...

3.1 Why the asymmetry?

• Rice 1992, ch. 5 Reviews and replicates Woodrow 1909, 1911, 1951b.¹ Schematically,

- Grouping preference is stronger for duration-varying stimuli than for amplitude-varying stimuli.
- Subjects were played various binary, 7-repetition sequences of tones varying in tone duration, intertone pause duration, and tone pitch (Rice didn't test intensity; Woodrow did) and had to say whether each was weak-strong or strong-weak.

	Stimulus 1	Stimulus 2	Stimulus	s 3		
Group 1	59.62	67.31	71.15	equa	l duration, equal pitch, equal pause	
Group 2	46.15	38.46	32.69	alternating duration, equal pitch, equal pause		
Group 3	57.69	50.00	59.62	equal duration, equal pitch, alternating pause		
Group 4	51.92	57.69	44.23	equal duration, alternating pitch, equal pause		
	difference in (except Grou	creases p 1, where durati	> on changes)		

Percent trochaic (strong-weak) response (Rice p. 195)

¹ Apparently Fraisse 1963 is a good source on classic time-perception research too, if you're interested.

 \Rightarrow The duration-alternating stimuli (Group 2) produce the most "iambic" responses, more strongly so as the duration difference increases.

Hayes 1995 cites also

- similar evidence from musicians' judgments (Cooper & Meyer 1960):
 - "Durational differences...tend to produce end-accented groupings; intensity differentiation tends to produce beginning-accented groupings" (p. 10; as quoted by Hayes p. 80)
- a study of Swedish poetry (Fant, Kruckenberg & Nord 1991) in which...
 - reciters produced greater durational contrasts in iambic verse than in trochaic
 - musicians transcribing verse into musical notation "likewise reflected the pattern of the law in their choice of note values"
 - poets use greater contrast in number of phonemes (for accented vs. unaccented syllables) in iambic verse than in trochaic

(see also Newton 1975 for English verse)

- → "Iambic/Trochaic Law (Hayes 1995, p. 80)
 - a. Elements contrasting in intensity naturally form groupings with initial prominence.
 - b. Elements contrasting in duration naturally form groupings with final prominence."

3.2 A consequence of the asymmetry: trochaic shortening

<u>Middle English</u>. This is apparently a bit controversial, but here's the standard story (Mellander 2004):

- Assume footing as shown—I'm leaving as open/unsolved why these footings (issues: don't-foot-the-end or don't-stress-the-end? which consonants are moraic?)
- **?** How can we analyze these?

(sú:ð)	'south'	(sú.ðer)ne	'southern'
di(ví:n)	'divine'	di(ví.ni)tie	'divinity'

• I couldn't get clear Middle English data easily, so here are some Modern English examples that reflect the same phenomenon (whether or not it's now synchronically real), from Prince 1990, pp. 13-14, with a couple of substitutions:

?	² Analysis from above should extend straightforwardly:					
	(óː)mən	'omen'	(ámə)nəs	'ominous'		
	(séin)	'sane'	(sǽnə)ri	'sanity'		

[?] How do these work? (These examples show that the term "trisyllabic shortening", if you've run into it, is a bit of a misnomer) [Prince, following Myers 1987, says that the suffix *-ic* is, exceptionally, not extrametrical.]

(kó:n)	'cone'	(ká.n i k)	'conic'
(májm)	'mime'	(mí.m i k)	'mimic'

? Can we explain the different pronunciations of the prefix? (Never mind why the final syllable is now getting footed—probably something to do with the = boundary that separates unproductive prefixes from their stems)

(led.àt.)	'rebel'	(ıíː)(bè:t)	'rebate'
(ıé.kəd)	'record' (noun)	(ıí:)(flèks)	'reflex'
(.ıɛ̀.zɨ)(dɛ́n.∫əl)	'residential'	(.ıì:)(làk)(sé:)∫ən	'relaxation'
(pıć.fəs)	'preface'	(p.ií:)(fêkt)	'prefect'
(pıć.lət)	'prelate'	(pıí:)(lè:t)	? "not late yet"??
(pıć.məs)	'premise'	(p.í:)(fiks)	'prefix'
(pıè.zən)(té:.∫ən)	'presentation'	(p.ì:)(mè.rɨ)(té:)∫ən	'premeditation'

4 Phonological word

- We keep referring to the **word**, as in ALIGN(Word, Left; Foot, Left), or * [-son +voice] #
 - So what counts as a word, anyway?
- This was already an issue in SPE. Take a rule like...

 $\{u,i\} \rightarrow \emptyset / + _ \#$ (Chomsky & Halle 1968, p. 129, 239)

accounts for alternations in *#bile#, #bil+i+ous#* and *#reptile#, #reptil+i+an#*, because their underlying forms are argued to be /bIl+i/, /reptIl+i/

- What determines whether there's a #? In SPE...
 - some #s are generated by syntactic brackets
 - some affixes have a # in their lexical entry (/#iv/)
 - #s can also be deleted, inserted, or changed by phonological rules
- In OT, one popular way to do it is with ALIGN constraints that turn certain syntactic boundaries into phonological word boundaries (e.g. Peperkamp 1997).
 - ALIGN(LexicalWord, L; PWord, L)
 - And there can be conflicting constraints that disturb the relationship

5 What counts as a word? Descriptive example from Samoan

- The domain of footing in Samoan is a lexical root (Noun, Verb, Adj), plus any associated bound morphemes after it (Zuraw, Yu & Orfitelli 2014):
 - Primary stress is trochee at right edge:

la(vá:)	'energized'	le(léi)	'good'	(mánu)	'bird'	ma(nóŋi)	'smell good'
				(sámi)	'sea'	pu(líŋi)	'pudding'
				(áta)	'picture'	i(ŋóa)	'name'
(ŋífo)	'tooth'		ŋi(fó-a)		'having t	eeth'	
sa(váli)	'walk _V '		(sàva)(lí-	ŋa)	'parade _N	,	
(màfa)(tía)	'stress ou	ıt _v '	(màfa)ti(á-ŋa)	'distress _N	, I	

• In a compound, each root starts its own stress domain:

a(lòfi)-(váe)	'sole of foot' (assembly+foot)	*(àlo)fi-(váe)
(àŋa)-le(áŋa)	'bad behavior' (bad+behavior)	*a(ŋàle)(áŋa)

• (HL) foot not tolerated \rightarrow "trochaic shortening"—domain again includes suffixes

	(fúsi)	'hug'		fu(sí-a)	'hug-ERG'	/fusi/
vs.	(túsi)	'write'		(tù:)(sí-a)	'write-ERG'	/tu:si/
	(mà:)(lò:)(ló:)	'rest _V '	(mà	a:)(lò:)(ló-ŋa) 'rest	N'

• Certain vowels have to foot together, e.g. /ai/, /au/:

(m <u>ái</u>)le	'dog'	cf.	m <u>a(é</u> la)	'hollow'
(m <u>áu</u>)ŋa	'mountain'	cf.	m <u>a(ó</u> ta)	'pastors house'

• ...but not across a boundary that includes the beginning of a root:

(fà? <u>a)-(ù</u> lu)-(úlu)	'be subject to' (<i>ulu</i> 'head')	$fa(2\underline{\hat{a}}-\underline{u})(lu)-(\hat{u}lu)$
(fàn <u>a)-(í</u> ?a)	'dynamite for fishing' (shoot	+ fish)
(pòn <u>a)-(ú</u> a)	'Adam's apple' (knot + neck))

- In summary, if p-word is domain of footing,
 - [root]_{p-wd}
 - [root-suffix]_{p-wd}
 - prefix-[root]_{p-word}
 - [root]_{p-word}-[root]_{p-word}

 \rightarrow every root initiates a new p-word.

• This is a very common pattern cross-linguistically (see Peperkamp 1997 for a review and some in-depth case studies).

6 How can an analysis capture what counts as a word?

- Following Peperkamp 1997, we can do it with ALIGN constraints (McCarthy & Prince 1993), such as ALIGN(LexWord, L; PWord, L).
- ? Let's try some tableaux for Samoan.

7 English example

• Many English function words (i.e., not Nouns, Verbs, or Adjectives) have weak and strong forms.

	strong	weak
to	t ^h u	thə
at	æt	ət
for	foı	fə
a	еі	ə
and	ænd	ņ

- ?
 I'm going ____ London next summer.
 Where are you going ____?

 I'm looking ____ Campbell Hall.
 What are you looking ____?
- Selkirk 1995 proposes two possible structures:

• To avoid cluttering the tableau, assume that the "t[u]"s form a foot with stress; "t[ə]"s are unfooted.

	to London	ALIGN	Align	FootMust
		(LexWd,L,PWd,L)	(PWd,R,LexWd,R)	BEDOMINATED
				ByPWord
а	[t ^h u London] _{PWd}			
b	[t ^h ə London] _{PWd}			
С	t ^h u [London] _{PWd}		1 1 1 1 1	
d	t ^h ə [London] _{PWd}			
e	[t ^h u] _{PWd} [London] _{PWd}			
f	[t ^h ə] _{PWd} [London] _{PWd}			

? Fill in the tableau. What's the winner?

(Focus changes things: I need a flight TO London, not FROM London.)

? looking at: draw a phonological tree that causes *at* to be pronounced in its full form

Fill in the tableau (we needed to add some constraints). Assume "[æ]t" is footed, "[ə]" isn't. What's the winner?

looking at	ALIGN	ALIGN	ALIGN	FOOTMUST	PWORDMUST
looking u	T ILION		7 ILION	100111051	I WORDNICSI
	(LexWd,R,	(PPhrase,R,	(PWd,R,	BEDOMINATED	Contain
	PWord,R)	Pwd,R)	LexWd,R)	ByPWord	Foot
a [looking æt] _{PWd}					
b [looking ə t] _{PWd}					
c [looking] _{PWd} [æt] _{PWd}		1 1 1 1			
d [looking] _{PWd} [ə t] _{PWd}		1 1 1 1			
e [looking] _{PWd} æt					
f [looking] _{PWd} ə t					

 \Rightarrow *looking* needs to end a p-word, but phrase also wants to end w/ a p-word, so *at* must end its own p-word.

8 Dutch example (Gussenhoven & Jacobs 1998, p. 250)

- In Dutch, resyllabification applies across some morpheme boundaries but not others.
 - I'm including an inserted glottal stop since I think that's what's intended as the evidence for syllabification.

[?ont.[?ei.xən]v]v	'dispossess'	[[kɛrk] _N .[?œyl] _N] _N	'barn owl'	[[teː.kə.n]v ıŋ] _N	'drawing'
[?on.[?e:.vən] _A] _A	'uneven'	[[rɛin] _N .[? aːk] _N] _N	'Rhine barge'	[[van.də.l]v aːr] _N	'walker'

• G&J propose that resyllabification is blocked across a p-word boundary (parentheses below mark p-words)...

(?ont.)-(?ɛi.χən)	(kɛrk.)-(?œyl)	(teː.kə.nıŋ)
(?on.)-(?e:.vən)	(rɛin.)-(?aːk)	(van.də.la:r)

? Let's fill in the alignment constraints:

	/[ɔn [ɛːvən] _A] _A /		Dep-?	NoCoda
ŀ	(?ən.)(?ɛː.vən)			
	(?ɔ.n)(ɛː.vən)			
	(?ɔ.nɛː.vən)			

	/[[te:kən] _V in] _N /		Dep-?	NoCoda
¢,	(teː.kə.nıŋ)			
	(teː.kən.)(?ıŋ)			
	(teː.kə.)(nıŋ)			

What should happen to function words, like pronouns and determiners, assuming the same ranking?

	/[rip] _V [ən] _{det} [kat] _N /		Dep-?	NoCoda
	called a cat			
а	(ri:p.)(?ən.)(kat)			
b	(ri:.pən)(kat)			

9 More evidence in Dutch

9.1 Long-vowel diphthongization (G & J p. 252)

• /e:, ø:, o:/ become [e[°], ø[°], o[°]] before [r], regardless of syllabification:

[me ^ə r] _N [χø ^ə r] _N	'more' 'smell'	[kø ^ə .raːl] _N [[ko ^ə r] _V ŋ] _N	'coral' 'test'
Why doesn't the alt	ernation apply here:		
[[[m e : [r ɛiz] _V] _V ən] _V	'to accompany'	[[k ø:] n [r ɪŋ] _N] _N	'cue ring'
[[milj ø:]n [r iːziːkoː] _N] _N	'environmental hazard'	[ne: o: [[r e:v] _N ia:ns] _A] _A 'neo-Revian' ²

9.2 Conjunction reduction (see also Booij 1985)

just spo	elling here, not IPA [[land] _N [bau] _N] _N ɛn [[tœyn] _N [bau] _N] _N agriculture and horticulture	optionally becomes	land- ɛn tœynbau agri- and horticulture
but:	$[[apsyrd]_Ait\epsilon it]_N \epsilon n [[bana:l]_Ait\epsilon it]_N absurdity and banality$	cannot become	*apsyrd- en bana:liteit absurd- and banality

- ? Why not * apsyrd- en bana:liteit?
- Check that it works for prefixed words too—data point from shopping bag from Record Mania in Amsterdam:

[In $[ko:p]_V$]_N en $[ver [ko:p]_V$]_N 'buying and selling'

can become

² Revian = akin to or evoking the style of Dutch writer Gerard Reve

10 The phonological word in some other languages

- Sanskrit, Turkish, Hungarian, Malagasy, Tagalog, Bengali, and Italian have pretty much the same p-word boundaries as Samoan or Dutch, with some slight wrinkles.
- In Italian, for example, only prefixes that are semantically transparent stand outside the stem's p-word (Peperkamp 1997, van Oostendorp 1999):
 - (a)-(sociale) 'asociale' but (re-sistenza) 'resistance'
 - Provides a way to test Italian speakers' morphological intuitions: see Baroni 2001 on N. Italian intervocalic voicing of /s/, which applies only if the surrounding vowels are in the same p-word.
- *Yidin^y* (Australian language, with very few remaining speakers. Nespor & Vogel 1986, data from Dixon 1977)
 - Penults of odd-syllabled p-words lengthen—no long vowels otherwise.

gu.da:.ga	'dog'	gu.da.gagu	'dog-purp.'
mu.dam	'mother'	mu.daːmgu	'mother-purp.'
ma.diːn.da-ŋ	'walk up-pres.'	ga.liːna	ʻgo- <i>purp</i> .'
ga.liŋ	'go-pres.'	ŋu.naŋ.ga.raː-n.da	'what-dat.'

- **?** Based on the data above, are suffixes part of the p-word?
- [?] So what should we make of examples like these, with longer suffixes:

gu.ma:.ri-da.ga:.-nu 'red-inch.-past' ma.di:n.da-ŋa.liŋ 'walk up-pres'

11 Do we need the p-word?

- In 2006, a group of us spent about 40 hours debating the issue (see <u>www.linguistics.ucla.edu/people/zuraw/courses/prosword_2006.html</u> for handouts). Results were inconclusive:
 - Often, interleaving phonology and morphology can do the job (add some affixes too late for certain processes to see them).
 - But there was a residue of cases where it seemed like we really might need the p-word. The last handout at the link above sums up the pro and con arguments.

To sum up

• We've seen more arguments for feet, and looked at the next level of structure up, the PWord

Next time

- Maybe some practice with p-words and footing (if time)
- Lower down in the representation: the CV skeleton

References

Altshuler, Daniel. 2006. Osage fills the gap: the quantity insensitive iamb and the typology of feet.

- Baroni, Marco. 2001. The representation of prefixed forms in the Italian lexicon: Evidence from the distribution of intervocalic [s] and [z] in northern Italian. In Geert Booij & Jaap van Marle (eds.), *Yearbook of Morphology 1999*, 121–152. Dordrecht: Springer.
- Booij, Geert E. 1985. Coordination reduction in complex words: a case for prosodic phonology. In Harry Van der Hulst & Norval Smith (eds.), *Advances in Nonlinear Phonology*, 143–160. Dordrecht: Foris.
- Chomsky, Noam & Morris Halle. 1968. The Sound Pattern of English. Harper & Row.
- Cooper, Grosvenor & Leonar Meyer. 1960. The rhythmic structure of music. Chicago: University of Chicago Press.
- Dixon, Robert M. W. 1977. A Grammar of Yidiny. Cambridge: Cambridge University Press.
- Fant, Gunnar, Anita Kruckenberg & Lennart Nord. 1991. Stress patterns and rhythm in the reading of prose and poetry with analogies to music performance. *Music, language, speech, and brain*, 380–407. London: Macmillan.
- Fraisse, Paul. 1963. The psychology of time. Harper & Row.
- González, Carolina. 2002. The effect of prosodic structure in consonantal processes. University of Southern California dissertation.
- González, Carolina. 2005. Phonologically-conditioned allomorphy in Panoan: towards an analysis. UCLA Working Papers in Linguistics 11. 39–56.
- Gussenhoven, Carlos & Haike Jacobs. 1998. *Understanding Phonology*. Oxford: Oxford University Press. Jacobs, Haike. 1997. Latin Enclitic Stress Revisited. *Linguistic Inquiry* 28(4). 648–661.
- McCarthy, John J. 1982. Prosodic Structure and Expletive Infixation. Language 58(3). 574–590.
- McCarthy, John J & Alan Prince. 1993. Generalized Alignment. In Geert E Booij & Jaap van Marle (eds.), *Yearbook of Morphology*, 79–153. Dordrecht: Kluwer.
- Mellander, Evan. 2004. The iambic law: quantitative adjustment in typological perspective. (Ed.) Osama Abdel-Ghafer, Brad Montgomery-Anderson & Maria del Carmen Parafita Couto. *Kansas Working Papers in Linguistics* 27. 21–43.
- Myers, Scott. 1987. Vowel shortening in English. Natural Language and Linguistic Theory 5. 485–518.
- Nespor, Marina & Irene Vogel. 1986. Prosodic Phonology. Dordrecht: Foris.
- Newton, Robert P. 1975. Trochaic and iambic. Language and Style 8. 127-156.
- Oostendorp, Marc van. 1999. Italian s-voicing and the structure of the phonological word. In S.J. Hannahs & Mike Davenport (eds.), *Issues in Phonological Structure*, 197–214. Benjamins.
- Peperkamp, Sharon. 1997. Prosodic Words. The Hague: Holland Academic Graphics.
- Prince, Alan. 1990. Quantitative consequences of rhythmic organization. In Michael Ziolkowski, Manuela Noske & Karen Deaton (eds.), *Parasession on the Syllable in Phonetics and Phonology*, 355–398. Chicago: Chicago Linguistic Society.
- Rice, Curtis. 1992. Binarity and Ternarity in Metrical Theory: Parametric Extensions. University of Texas.
- Selkirk, Elisabeth. 1995. The prosodic structure of function words. In Jill Beckman, Laura Walsh Dickey & Suzanne Urbanczyk (eds.), *University of Massachusetts Occasional Papers: Papers in Optimality Theory*, 439–470. Amherst, Mass.: GLSA Publications.
- Steriade, Donca. 1988. Greek accent: a case for preserving structure. *Linguistic Inquiry* 19. 271–314.
- Woodrow, Herbert. 1909. A quantitative study of rhythm: the effects of variations in intensity, rate, and duration. *Archives of Psychology* 14. 1–66.
- Woodrow, Herbert. 1911. The role of pitch in rhythm. Psychological Review 18. 54-77.
- Woodrow, Herbert. 1951. Time perception. In S. S Stevens & S. S Stevens (eds.), *Handbook of Experimental Psychology*. New York: Wiley.
- Zuraw, Kie, Kristine Mak Yu & Robyn Orfitelli. 2014. Word-level prosody in Samoan. *Phonology* 31(2). 271–327.