Class 9: Structure below the segment II

To do

- □ Project: meet with me a second time by the end of this week. Goal is to solidly have a topic by end of this week.
- □ I'll post an autosegmentalism homework by end of Friday
- □ Next study questions: McCarthy & Prince 1994, but let's delay that till Wed., Feb. 14

Overview: More practice with autosegmental tone, then other autosegments.

- 1 Something else that autosegmentalism is good for: tonal stability
- *Margi* (Hoffman 1963, via Kenstowicz 1994) aka Marghi Central, Afro-Asiatic language from Nigeria with 158,000 speakers

sál	sál-árì	'man'	-árì/-ărì = definite suffix
kùm	kùm-árì	'meat'	
?ímí	?ímj-árì	'water'	_
kú	kw-árì	'goat'	
táqú	táaw ári	'horse'	
tayu	layw-all	noise	
tì	tj-ărì	'morning'	_
tì hù	tagw-all tj-ărì hw-ărì	'morning' 'grave'	_
tì hù ú?ù	tj-ărì hw-ărì ú?w-ărì	'morning' 'grave' 'fire'	_

- What's the underlying form of the suffix?
- **?** How could we describe the tonal alternation in rules?

What about with constraints—what's the problem with using IDENT(tone)?

- If we really are treating tones not as features (properties of segments) but as segments, then...
 - they have correspondence indices (that we sometimes write, sometimes don't write)
 - it makes sense to have the MAX and DEP constraints refer to them:

$/hu + ari/L_1 H_2L_3$	Onset	IDENT(syll)	MAX-Tone
a hu . ari L ₁ H ₂ L ₃	*!		
$ \stackrel{@}{=} b $ hwari $\land \land L_1H_2L_3 $		*	
c hwari H ₂ L ₃		*	*!

2 Sweater vs. eye color example (I'll explain)

3 Something else autosegmental representations are good for: floating tones

Igbo (Goldsmith 1976; Niger-Congo; 17,000,000 speakers; Nigeria)

• Subordinate clauses are preceded by a complementizer morpheme that is nothing but a H tone:

ònù	'yam'	ònų [rèré èré]	'the yam [that is rotten]'
ážų	ʻfish'	ážų [rèré èré]	'the fish [that is rotten]'
ánų́	'meat'	ánų [rèré èré]	'the meat [that is rotten]'
àkwhá	'eggs'	àkwhá [rèré èré]	'the eggs [that are rotten]'

[?] Fill in the tableau (gives you an idea of some typical OT autosegmental constraints)

/ $a\tilde{z}u + + rere + ere/$ H ₁ L ₂ H ₃ L ₄ H ₅ L ₆ H ₇	No Unattached Tones	Dep-V	Max- Tone	*>1Tone PerTBU	IDENT(tone)/ first syll of word	UNIFORMITY- TONE
a a žų rereere H ₁ L ₂ H ₃ L ₄ H ₅ L ₆ H ₇						
<i>b</i> a žų rereere H ₁ L ₂ H ₃ L ₄ H ₅ L ₆ H ₇						
☞ c a ž u rere ere H ₁ M _{2,3} L ₄ H ₅ L ₆ H ₇						
$ \begin{array}{c cccc} d & a \tilde{z} u & rereere \\ & & & & \\ & H_1 L_2 & M_{3,4} H_5 L_6 H_7 \end{array} $						
<i>e</i> a žų a rereere H ₁ L ₂ H ₃ L ₄ H ₅ L ₆ H ₇						
$ \begin{array}{c cccc} f & a \tilde{z} u & rere & ere \\ & & & & & \\ & H_1 L_2 & L_4 H_5 L_6 H_7 \end{array} $						

[What prefers $M_{2,3}$ over $H_{2,3}$ or $L_{2,3}$? Maybe we do need tonal features after all....]

4 Tones behaving as a block

- Shona (Odden 1980), via Kenstowicz; Niger-Congo; 7,000,000 speakers; Zimbabwe and Zambia)
- ? Fill in a possible autosegmental tone representation under each example

mbwá	'dog'	né-mbwà	'with dog'
hóvé	ʻfish'	né-hòvè	'with fish'
mbúndúdzí	'army worm'	né-mbùndùdzì	'with army worm'
hákátà	'diviner's bones'	né-hàkàtà	'with diviner's bones'
bénzíbvùnzá	'inquisitive fool'	né-bènzìbvùnzá	'with inquisitive fool'

 \Rightarrow sequences of the same tone undergo a rule together, <u>as though they were a single tone</u>.

- Let's assume there is some reason why $H \rightarrow L$ after né-, and consider only outputs that do so:
- Why [né-hòvè] and not *[né-hòvé]? What must be the surface representation of [hóvé]?
- Why [né-bènzìbvùnzá] and not *[né-bènzìbvùnzà]?
- ? Richness of the base: what if there were an input like $\binom{\text{hove}}{\text{H} \text{H}}$?

- The OCP (Obligatory Contour Principle) constraint says that adjacent identical elements (such as two Hs in a row) are not permitted. Does this help with the Richness of the Base question?
- ? We'll still have a puzzle if we add né- to hypothetical $\binom{hove}{HH}$... Will strata help?

5 What about East-Asian-type tone? (examples taken from Kenstowicz 1994, ch. 7)

- Seems to be different from African-type¹ tone:
 - often more than three levels (5 is typical)
 - often transcribed with Chao numbers (Chao 1930): [ma²¹³] means tone starts lowish (2), then dips to the bottom of the range (1) then goes up to the middle (3)
 - contour tones often behave as a unit rather than combination of H&L
- Various proposals—here's a simple one (Yip 1989): add another tier with features [hi register] and [lo register].

register	tone (aka "contour")	resulting pitch	example
[+hi register] (IL register)	h	5	
L-lo register	m	4	h 1
	1	3	\ /
[-hi register]	h	3	V = 53
L+lo register	m	2	
	1	1	H ←register

- Allows the register of an entire contour to change by just changing one feature, e.g. $53 \rightarrow 31$
- What is register, articulatorily?
 - It's been proposed to correspond to stiff vs. slack vocal folds.
 - But often this is true only in the language's history & not synchronically.
 - Can be associated with a voice quality difference, e.g. L register is breathy
- How do you know whether a 3 is H & l or L & h?
 - Normally the whole syllable has the same register tone. So if you see 53, 34, etc., it must be H; if you see 13, 32, etc., it must be L.
- But what if it's just 3 or 33?
 - You will have to use other facts about the language to deduce the right representation.

¹ Of course these labels are very approximate, and there are many other regions of the world with lots of tone languages.

⁴ Problematic for Mandarin 3rd tone, commonly claimed to be 214. See, e.g. Zhang & Lai 2006 for a 213 transcription.

6 Example: distribution of tones in Songjiang

(Bao 1990, via Kenstowicz 1994; apparently a Shanghai-area dialect of Wu Chinese [Sino-Tibetan; China; 77 million speakers] example words from Chen 2000)

voiced onset unchecked syll	voiced onset	voiceless onset	voiceless onset
volceu oliset, ulleneekeu syll.	voiced onset,	voiceless offset,	voicciess offset,
	checked syll.	unchecked syll.	checked syll.
22 di ²² 'younger brother'	3 ba $?^3$ 'white'	44 ti ⁴⁴ 'bottom'	5 pa? ⁵ 'hundred'
31 di ³¹ 'lift'		53 ti ⁵³ 'low'	
13 di ¹³ 'field'		35 ti ³⁵ 'emperor'	

"<u>checked</u>" syllable = syllable that ends in a glottal stop

? Draw the representation of each tone.

What markedness constraints can we develop to explain the inventory?

- 7 Turning to non-tone features... a morpheme that has no consonant or vowel: Japanese
- Rendaku ('sequential voicing') happens in compounds (data from Ito & Mester 2003)²

eda + ke	\rightarrow	eda-ge	'split hair' (branch+hair)
unari + koe	\rightarrow	unari-goe	'groan' (groan+voice)
me+tama	\rightarrow	me-dama	'eyeball' (eye+ball)
mizu + seme	\rightarrow	mizu-zeme	'water torture' (water+torture)
ori+kami	\rightarrow	ori-gami	'origami' (weave+paper)
neko+cita	\rightarrow	neko-dzita	'aversion to hot food' (cat+tongue)

? Ideas for what the compound-forming morpheme could be?

² If you're curious how a system like this came about, it's been argued that historically, the genitive-like particle [no] "s' occurred in the middle of most compounds (eda+no+ke 'branch's hair'). Then, the vowel deleted in most cases (eda+n+ke) and the *n* merged with the following consonant, which became voiced (for the same reason that, as you read in Kager ch. 2, many languages don't allow a sequence of *nasal+voiceless*, many languages also dissallow voiceless prenasalized voiceless obstruents): [eda-ⁿge]. Later, the prenasalization was lost.

- [?] Unresolved issue to discuss: What faithfulness constraint(s) does [eda-ge] violate?
- 8 A feature that moves from one segment to another: Tyneside English (Newcastle, England; via Kenstowicz 1994)

		assume
skæm?i	'scampi'	/skɐnpi/
en?i	'aunty'	/enti/
hɐŋ?i	'hanky'	/hɐnki/
hø3ù	'happen'	/hɐpn/
ps3'n	'button'	/bɐtn/
t∫i?ŋ	'chicken'	/t∫ıkn/

? First, analyze this with two (non-autosegmental) rules: place assimilation and place loss.

[?] In OT, we can avoid the question of rule ordering if we let [place] be autosegmental. Give it a try...(I've left room under the candidates to draw in a [place] tier)

/tʃɪkn/	
☞ a t∫i?ŋ	
b tʃiʔņ	
c t∫ìkņ	
d t∫ikņ	

9 A feature associated to multiple segments: nasal harmony

Paraguayan Guaraní (Tupí language from Paraguay with 4,850,000 speakers). Data taken from Beckman 1999, originally from Lunt 1973, Rivas 1975.

• Nasality is contrastive, but not freely distributed:³

t̃ũ'p̃ã pĩ'rĩ	ʻgod' 'to shiver'	tu'pa pi'ri	'bed' 'rush'	*tu'pã *pi'rĩ	<u>Aside</u> : How do we represent prenasalized stops like [ⁿ d]? Just like a contour tone!
mã'Ŷẽ	'to see'	^m ba'?e	'thing'	* ^m ba'?ẽ, * ^m bã'?ẽ, *ma'?e	[-cont, +COR, etc.] [+nas] [-nas]
ĥũ'?ũ	'to be bland'	hu'?u	'cough'	*hu'?ũ	This explains why the segment behaves as
ã'kĩ	'to be tender'	a'k i	'to be wet'	*a'kĩ	[+nasal] on the left side and [-nas] on the
põ'tĩ	'to be done for'	po'ti	'to be clean'	*po'tĩ	right side.

. . .

Warm up by drawing autosegmental representations for some of these surface forms. Assume that if more than one segment in a row is [+nasal], they share the same [+nasal] feature.

 $\ensuremath{\mathfrak{P}}$ How do you explain the alternations in the prefixes?

nõ-řõ- nũ'p̃ã-i ⁴	'I don't beat you'
not-I.you-beat-negation	
nõ-řõ- ĥẽ' ⁿ du-i	'I don't hear you'
not-I.you-hear-negation	
ⁿdo-ro- hai ['] hu-i	'I don't love you'
not-I.you-love-negation	
r̃õ-^mbo- ywa'ta	'I made you walk'

rõ-mbo-ywa'ta	'I made you walk'
I.you-causative-walk	
řõ-mõ- põ'řã	'I embellished you'
I.you-causative-nice	
řõ-mõ- x̃ẽ ^{'n} du	'I made you hear'
I.you-causative-hear	

 \Rightarrow The feature [nasal] seems to be behaving autosegmentally too.

³ Phonetics puzzler: What's the articulatory difference between [p] and [p̃]? What's the acoustic difference? Walker 1999 argues based on acoustic and nasal-airflow data that voiceless stops don't actually get articulatorily nasalized in Guarani. So the real analysis will be more complicated...

⁴ Actually, this last [i] is nasalized, but the nasality of final vowels is complicated and controversial in Guaraní so let's pretend it's not—see Beckman's book on positional faithfulness for more.

10 More about Guaraní, if we have extra time

• Compare these data to what we saw above:

ũ'mĩ-∫a-'γwa	'like those'
re-ˈxo -ťã-r̃ãˈmõ	'if you go'
ã-nẽ-ĩẽ¹ndu	'I hear myself'
^m ba'?e ^m bɨa'∫ɨ	'sadness'

Why doesn't spreading go all the way in these cases? Hint: in addition to IDENT(nas), let's have a special IDENT(nas) constraint for a particular environment.

Peckman has argued that we do need a special faithfulness constraints and not a special markedness constraint (e.g., "*[+nasal] unless associated to a stressed syllable" vs. general *[+nasal]). Can you see how 'if you go' supports her claim?

Words like *[mã'?e] do not occur. Does our analysis so far explain this fact (and if not, how can we fix it)?

11 If yet more time, exercise: Tibetan compounds

- Data from Meredith (1990). (I am simplifying some of the tones!! For instance, 3 is really 2. Sorry for missing data; Meredith often doesn't give concrete examples, just schematics)
- ? Draw representations for tones 5, 53, 31 (there's also 3 but worry about that later)
- ? Look at the data and develop an analysis of the tone changes that occur in compounds
 - ? You'll need to invent a constraint on tones in non-word-final syllables
 - ? You'll need to invent a quite arbitrary constraint on tones in the second member of a compound.

1st member	2nd member	compound	
5	5	5-5	
53	5	5 -5	
yum 3	chẽẽ 5	yum-chẽẽ 3-5	'mother-hon.' (mother+great)
31	5	3 -5	
5	53	5-53	
thuu 53	caa 53	thuu-caa 5-53	'iron banner fixture' (banner+iron)
3	53	3-53	
31	53	3 -53	
5	3	5- 5	
see 53	yöö 3	see-yöö 5-5	'intellectual' (knowledge+possessor)
phöö 3	mi 3	phöö-mi 3- 5	'Tibetan' (Tibet+person)
ree 31	see 3	ree-see 3-5	'cotton robe' (cotton+robe)
cu 5	kee 31	со-ркее 5- 53	'eighteen' (eight+ten)
53	31	5-53	
3	31	3- 53	
31	31	3-53	

To sum up

- Many features seem to behave not as properties of segments but an entities in their own right.
- This can be captured by autosegmental representations (and, in OT, including autosegments in correspondence relations).

Next week

- We allow ourselves to get one day behind the syllabus by continuing structure below the segment/downward interfaces
- Relation to phonetics: locality, gestural scores, feature geometry, excrescent vowels, illusory deletion...

References

- 12 Bao, Zhi-ming. 1990. On the Nature of Tone. MIT.
- 13 Beckman, Jill N. 1999. Positional Faithfulness: An Optimality Theoretic Treatment of Phonological Asymmetries. Routledge.
- 14 Chao, Yuen-ren. 1930. A system of tone-letters. *Le Maître Phonétique* 45. 24–27.
- 15 Chen, Matthew Y. 2000. *Tone sandhi: patterns across Chinese dialects*. Cambridge: Cambridge University Press.
- 16 Goldsmith, John. 1976. Autosegmental Phonology. Massachusetts Institute of Technology.
- 17 Hoffman, Carl. 1963. *A Grammar of the Margi Language*. London: Oxford University Press.
- 18 Ito, Junko & Armin Mester. 2003. *Japanese Morphophonemics: Markedness and Word Structure*. Cambridge, Massachusetts: MIT Press Linguistic Inquiry Monograph Series 41.
- 19 Kenstowicz, Michael. 1994. *Phonology in Generative Grammar*. 1st ed. Blackwell Publishing.
- 20 Lunt, Horace. 1973. Remarks on Nasality: the Case of Guarani. In Stephen R Anderson & Paul Kiparsky (eds.), *A Festschrift for Morris Halle*, 131–139. New York: Holt, Rinehart and Winston.
- 21 Meredith, Scott. 1990. Issues in the Phonology of Prominence. MIT.
- 22 Odden, David. 1980. Associative tone in Shona. *Journal of Linguistic Research* 1. 37–51.
- 23 Rivas, Alberto M. 1975. Nasalization in Guaraní. In Ellen M Kaisse & Jorge Hankamer (eds.), *Proceedings of NELS 5*, 134–143. Cambridge, MA: Harvard University Linguistics Department.
- 24 Walker, Rachel. 1999. Guaraní voiceless stops in oral versus nasal contests: an acoustical study. *Journal of the International Phonetic Association* 29(1). 63–94.
- 25 Yip, Moira. 1989. Contour Tones. *Phonology* 6(01). 149–174. doi:10.1017/S095267570000097X.
- 26 Zhang, Jie & Yuwen Lai. 2006. Testing the role of phonetic naturalness in Mandarin tone sandhi. Kansas Working Papers in Phonetics(28). 65–126.