Class 14: Upward interfaces: phonology and syntax II

To do
☐ last homework, phrasal phonology, posted Friday, due March 9
☐ project: abstract due next week

Overview: Mostly we work on rest of handout from last time, then (this handout) more about alternatives to the edge-driven view.

1 Truckenbrodt 1999: WRAP-XP

- Tohono O’odham example (Uto-Aztecan, Mexico & USA, 14,000 speakers; Ethnologue & Gordon 2005), based on discussion in Truckenbrodt 2007
- How do you diagnose a p-phrase?
 - H tone from first word stress to last word stress of the p-phrase
 - L tone elsewhere
 - Except, l p-phrase must end with L tone even if attached to a stressed syllable (in T’s example, result is a falling tone on a long vowel)
 - We can imagine rules or constraints to enforce this pattern

❔ Take a minute to convince yourself that the tones are correct:

Truckenbrodt 2007, p. 439
TP means “tone phrase”, which he takes to be the p-phrase.

❔ But what determines the p-phrase boundaries? Let’s try ALIGN…
• Truckenbrodt proposes \textsc{Wrap-XP}: “For each [lexical-projection] XP there must be a p-phrase that contains the XP” (p. 439)

? Let’s try a tableau—remember, the IP doesn’t count as an XP for \textsc{Wrap-XP}.

? If time, let’s also try this Catalan example from Prieto 2005. (P-phrase boundaries were diagnosed in Prieto’s corpus of speech by intonation criteria.)

\textit{Data}

\begin{align*}
&([\text{Comprava} \ [\text{mapes}]_{\text{NP}}]_{\text{VP}})\varphi \\
&\text{‘I used to buy maps’} \\
&\big(([\text{Comprava}) \varphi \ ([\text{mapes [de Barcelona}]_{\text{PP}}]_{\text{NP}}]_{\text{VP}})\varphi \\
&\text{‘I used to buy maps of Barcelona’} \\
&\big(([\text{Comprava} \ [\text{mapes}) \varphi \ ([\text{de [la Barcelona antiga]}_{\text{AP}}]_{\text{PP}}]_{\text{NP}}]_{\text{VP}})\varphi \\
&\text{‘I used to buy maps of old Barcelona’}
\end{align*}

\textit{Constraints to rank}—hint: first see if any of them is never violated

\begin{itemize}
 \item \textsc{Wrap-XP}
 \item \textsc{Align}(XP,__; P\text{-}phrase, __)
 \item \textsc{Max-Bin-End}: the final p-phrase of the utterance [more precisely, the p-phrase bearing the main stress of the utterance] contains at most two p\text{-}words
\end{itemize}
2 Hayes 1990: precompiled phrasal phonology

- Proposes that alongside the normal operation of domains, there are some phrasal rules that operate more lexically.

- Start with something uncontroversial, such as syntax-sensitive allomorphy—example from Spanish (p. 93)

 \[
 \begin{align*}
 \text{la torre (feminine)} & \quad \text{‘the tower’} \\
 \text{el agua (feminine, but starts with stressed [a])} & \quad \text{‘the water’} \\
 \text{la alta torre (fem., starts w/ stressed [a], but adj.)} & \quad \text{‘the high tower’}
 \end{align*}
 \]

- Expand the idea: allow “whole classes of words to acquire precompiled alternants” (p. 93)

- Example from Hausa: verb-final V shortens when followed by non-pronoun NP complement.
 - Hayes defines a “frame”, then has a lexical rule that refers to it

\[
\text{Frame 1} = [\text{VP} _ _ \text{NP} \ldots] (\text{NP} \neq \text{pronoun})
\]

\[
V: \rightarrow V / [_ _ _][\text{Frame 1}]
\]

- Ideally, we’d see languages where multiple rules refer to the same frame

- Q: How is this different from just allowing phonological rules/constraints to refer to as much syntax as they want (rather than using domains as a bottleneck at the interface)?
 - A: These precompiled rules are lexical rules, which means they...
 - have to precede any postlexical rules
 - can’t introduce anything not in the phoneme inventory (“structure preservation”)
 - shouldn’t care about pauses and speaking rate

3 Kaisse 1985: fast-speech rules

- Kaisse proposes that some rules simply don’t care about domains: fast-speech rules.
- For example, English nasalization (p. 28):

 I sãw Nora.
 I neither sãw nor heard him.
 Food you eat rãw needs careful preparation.
 The Shãh never left Egypt.
 He chose yõu, no doubt.

What might Selkirk say about a rule like this?

- Kaisse claims that unlike rules that just happen to have large domains, fast-speech rules...
 - are sensitive to speech rate (rather than register)
 - are blocked by pauses (unlike, say, French liaison)
• The post-lexical component then has to be expanded:

4 Zec & Inkelas 1990: arboreal mapping—this one already doesn’t use edges

• Hausa example (Afro-Asiatic; Nigeria, Niger, Burkina Faso & more; 25 million speakers plus many millions of L2 speakers; Ethnologue & Gordon 2005)

• Emphatic particle *fa* cliticizes to end of p-phrase (p. 369):

 \[(\text{Audu fa})\varphi (\text{ya tafi})\varphi\]

 ‘Audu left’

 Audu fa he leave

 \[(\text{Ya sayi fa})\varphi (\text{babban tebur})\varphi\]

 ‘He bought a big table’

 he bought fa big table

*Ya sayi fa teburin unless *teburin* is “intonationally emphasized” [i.e., focus?]

he bought fa table

❔ Ideas for what rules out the last one?

❔ Whatever we came up with probably won’t explain why this is ruled out too:

*Ya sayi fa teburin jiya

he bought fa table yesterday
• Z&I argue that it’s all about branchingness (algorithm from p. 370, originally from Inkelas 1988)
 ▪ intonationally emphasized item gets its own p-phrase
 ▪ “from the bottom up”, a branching node gets its own p-phrase
 ▪ a p-phrase can’t contain an XP boundary unless it includes all the material from each XP

❓ Let’s apply it to the four sentences above

• Inkelas & Zec 1995 acknowledge that this approach doesn’t work well for all languages (“cases in which branchingness is not relevant for phrasing”, p. 542). Moreover, the algorithm above was specific to Hausa.
 ▪ To me, this suggests an OT translation

5 Wagner 2005: relational domains
• Main idea: syntactic relations matter, rather than edges (Chen 1990 is an important precursor)
• No different labels for domains (p-phrase, intonational phrase, etc.)
• Rather, domains are just bigger or smaller—result is a grid whose rows don’t have labels, like so:

(p. 190)

• The lines are a way of representing bracketing, i.e.

 (x)(x) 3 big constituents
 (x)(x)(x)(x)(x)(x)(x) 5 smaller ones
 (x)(x)(x)(x)(x)(x) 6 even smaller ones
 (x)(x)(x)(x)(x) 7 of the smallest ones

 A or B or C and D

❓ Just for practice, draw the prosodic tree.
The above is for the phrase *A or B or (C and D).* Syntactically:
- How do we get from the syntactic tree to the prosodic tree?
 - Build a prosodic constituent for each syntactic cycle
 - An “associative domain” (series of *ors*, series of *ands*) is a cycle
 - Thus, *(C and D)* is a cycle
 - *A or B or (C and D)* is another cycle
- Here’s how structure-building works within a single cycle

start

First merge

Second merge
Spell-out: adds a new grid line

Adding A to an already-spelled-out cycle B C:

The result (I think this is a result, and not an additional principle), is…

“Scopally Determined Boundary Rank (SBR):
If Boundary Rank at a given level of embedding is n, the rank of the boundaries between constituents of the next higher level is n+1” (p. 109)

For example (p. 163—numbers on the right indicate boundary rank):

Note the non-local effects: compare A-B boundaries in #7 and #11

6 Kentner & Féry 2013: Proximity/Similarity model

- **Proximity:** weaken prosodic boundary after a terminal x if (1) x is not a child of the root node and (2) x is followed by a sister that either is a terminal or dominates a terminal
- **Anti-proximity:** strengthen boundary after x if the following terminal y is not x’s sister (p. 282)
- **Similarity:** strengthen boundary after x if it has a complex sister
Let’s try it on these items (German). K&F assume ternary branching for the first one.

(9) 3.1 N1 N2 N3
 Nino oder Willi oder Mila
3.2 (N1 N2) N3
 (Nino und Willi) oder Mila
3.3 N1 (N2 N3)
 Nino oder (Willi und Mila)

Production study, looking at duration and pitch:

(p. 288)
• An example where this makes different predictions from Wagner’s SBR:
 ▪ N1 or N2 or (N3 and N4)
 ▪ We’ve already seen what the SBR predicts (first boundary = second boundary > third boundary). How about Similarity/Proximity?
 ▪ Here are the results—is there a clear winner? (note that both theories predict all three boundaries are of equal strength for condition 4.1, so we can use that as a baseline to compare 4.2 to)
7 Elfner 2015: direct mapping of syntactic constituency to phonological constituency

- Connemara Irish: p-phrase begins with LH, ends with HL

- Every p-phrase ends with HL
- ...but it begins with LH only if that p-phrase dominates another p-phrase
• Wait, what? A p-phrase dominating another p-phrase?
 ▪ Selkirk (1984) originally proposed the Strict Layer Hypothesis, which includes the requirement that no prosodic category can dominate a node of the same category
 ▪ On the cusp of OT, Ito & Mester (1992) proposed exploding this into a number of violable constraints
 ▪ So, a p-phrase that dominates another p-phrase violates NORECURSION (Selkirk 1996), but depending on that constraint’s ranking, that could be OK.

• MATCH-PHRASE: For every XP, there must be a p-phrase that dominates all and only that XP’s terminal nodes (pp. 9-10)

• BINARY-MINIMUM(φ): a p-phrase must dominate at least two p-words (p. 12)

❓ Let’s check the example above.

• This is in line with a proposal by Ito & Mester (2006, and some later papers): the grammar can refer to the lowest in a recursive chain of p-phrases (or any category), or the highest.
 ▪ Those would be minimal and maximal p-phrases
 ▪ In this case, the grammar needs to refer to ___________________.

❓ Elfner gives tableaux to show that a theory with ALIGN and WRAP can’t rule out (V (DP) (DP))—let’s try it.

To sum up this week
• We’ve seen quite an array of proposals for how prosodic domains could be derived.
• Note that some of our domains have what we think of as prosodic signatures
 ▪ final lengthening, postlexical tones
• But others are posited only to serve as domains of segmental rules
• Ideally, a few segmental rules will line up with each intonational domain, and with each non-intonational domain too
• Worst-case scenario: different rules require contradictory domains!

Next week: “sideways” interfaces
• Phonology vs. the lexicon
• Phonology vs. processing
References