## Class 18: Getting phonological evidence; course wrap-up

#### To do: just project

□ Presentations Monday—prepare a handout!

□ Papers due week from Friday—hard copy preferred, PDF ok if you're travelling

**Overview:** How can we find out what generalizations are real to the speaker? How can we find out whether some generalizations are better than others?

## 1 Back to the Chomskyan basics<sup>1</sup>

- Let a grammar consist of (at least)<sup>2</sup>
  - a function that labels any utterance as **grammatical** or **ungrammatical**.
  - a function that assigns truth conditions to any utterance
    - The grammar might be implemented as a lexicon and a list of rules, or a set of constraints, or something else.
- Let a **linguistic theory** be a function that, given a (finite) set of utterances (the **learning data**), produces a grammar.<sup>3</sup>
- These functions should ideally be accompanied by algorithms for calculating them.

So...

- a <u>descriptively adequate grammar</u> captures the psychologically real generalizations
- the real prize, an <u>explanatorily adequate theory</u>, will, given typical learning data, return an descriptively adequate grammar

But how do we figure out what the psychologically real generalizations are?????

| pior  |                   | P-u-u-s       |       |                   |                             |
|-------|-------------------|---------------|-------|-------------------|-----------------------------|
| cat   | k <sup>h</sup> æt | $k^{h}$ æts   | pea   | $p^{h}i$          | $\mathrm{p^{h}i}\mathbf{z}$ |
| sack  | sæk               | sæk <b>s</b>  | COW   | k <sup>h</sup> au | $k^{h}auz$                  |
| dog   | dag               | dag <b>z</b>  | man   | mæn               | m <b>e</b> n                |
| grub  | gıvp              | givpz         | foot  | fut               | fit                         |
| dish  | dı∫               | dı∫ <b>iz</b> | wife  | waif              | waivz                       |
| fudge | frdz              | fad3iz        | whiff | wıf               | wifs                        |
|       |                   |               |       |                   |                             |

## 2 Example: English noun plurals

<sup>&</sup>lt;sup>1</sup> Mostly Chomsky 1965 pp. 25-27 but an amalgam of various Chomsky works, simplified and colored by my own views.

<sup>&</sup>lt;sup>2</sup> We probably want the grammar to do much more. It could, given an utterance, return a gradient "goodness score" rather than a simple binary judgment. Given one utterance and some instruction, it could return some other utterance (e.g., *cat* + PLURAL = *cats*). And there's a lot more to meaning than truth conditions! (Chomsky also requires a grammar to assign a structural description to an utterance, but I wonder if this is begging the question: a structural description can be used to explain more-observable properties of a sentence like its truth-conditions, but we don't know *a priori* that it's necessary.)

<sup>&</sup>lt;sup>3</sup> Chomsky's definition of a linguistic theory is weaker: it need only define the set of possible grammars, independent of learning data. This allows Chomsky to define the term **descriptively adequate theory**, which is a theory that includes, as possible grammars, a descriptively adequate grammar for every language—but does not necessarily return that grammar given learning data for that language.

• Possible grammars

| <i>I</i> . ( | just | list | every | word | you | know) | ) |
|--------------|------|------|-------|------|-----|-------|---|
|--------------|------|------|-------|------|-----|-------|---|

| k <sup>h</sup> æt | k <sup>h</sup> æts | $p^{h}i$          | $\mathrm{p}^{\mathrm{h}}\mathrm{i}\mathbf{z}$ |
|-------------------|--------------------|-------------------|-----------------------------------------------|
| sæk               | sæk <b>s</b>       | k <sup>h</sup> au | k <sup>h</sup> au <b>z</b>                    |
| dag               | dag <b>z</b>       | mæn               | m <b>e</b> n                                  |
| gıvp              | gıvpz              | fut               | fit                                           |
| dı∫               | dı∫ <b>iz</b>      | waif              | waivz                                         |
| fadz              | fad3iz             | wıf               | wifs                                          |

I.e., the grammar's judgment function accepts utterances containing those items in positions where a plural is required (*I like cats*); its truth-condition-assigning function assigns the appropriate truth-conditions to utterances containing the items in the right column (*I like cats* is true iff I like members of the cat group—it has nothing to do with whether I like members of the dog group).

*II. Add* –*s* to everything, except for these exceptions:

| dag                                 | dagz                                   | k <sup>h</sup> au | $k^{h}a u z$ |
|-------------------------------------|----------------------------------------|-------------------|--------------|
| дллр                                | gīvp <b>z</b>                          | mæn               | m <b>e</b> n |
| dı∫                                 | dıʃiz                                  | fut               | fit          |
| frdz                                | fad3iz                                 | waif              | waivz        |
| $\mathbf{p}^{\mathbf{h}}\mathbf{i}$ | $\mathrm{p^{h}i}\mathbf{z}$            | •••               |              |
| III. Add –z to ev                   | erything, except for these exceptions: |                   |              |
| k <sup>h</sup> æt                   | k <sup>h</sup> æt <b>s</b>             | mæn               | m <b>e</b> n |
| sæk                                 | sæk <b>s</b>                           | fut               | fit          |
| dı∫                                 | dıʃiz                                  | waif              | waivz        |
| frdz                                | fad3iz                                 | wif               | wifs         |
|                                     |                                        |                   |              |

IV. Add  $-\partial z$  after "sibilant" sounds, -s after non-sibilant [-voice] sounds, and -z otherwise, except for these exceptions:

| mæn  | m <b>e</b> n |
|------|--------------|
| fut  | fit          |
| waif | waivz        |
|      |              |

*V.* Change final /f/ to [v], and then add  $-\partial z$  after "sibilant" sounds, -s after non-sibilant [-voice] sounds, and -z otherwise, except for these exceptions:

| mæn | m <b>e</b> n |
|-----|--------------|
| fut | fit          |
| wɪf | wifs         |
|     |              |

Ling 201A, Phonological Theory II, Kie Zuraw, Winter 2018

2.1 Which generalizations are real? How about a wug test.

| 1                                                   |                      |
|-----------------------------------------------------|----------------------|
| $\int_{\mathcal{T}}$                                |                      |
| THIS IS A WUG.                                      |                      |
|                                                     |                      |
| NOW THERE IS ANOTHER ONE.<br>THERE ARE TWO OF THEM. |                      |
| THERE ARE TWO                                       |                      |
| Figure 1. The plural allomorph in /-z/.             | (Berko 1958, p. 154) |

• Berko found that English-speaking adults (all highly educated, in her sample) consistently give the following plurals when presented with invented words (pp. 155-158):

| wлg  | WAGZ          | lлn | lʌnz          |
|------|---------------|-----|---------------|
| gats | g∧t∫iz        | nız | nız <b>iz</b> |
| kæ3  | kæz <b>iz</b> | kла | k.1a <b>z</b> |
| toı  | to.IZ         | tæs | tæs <b>iz</b> |

Which of the grammars above could be descriptively adequate, given these data?

? The adults disagreed about this word—what might we conclude?

heaf hifs, hivz

# 3 Why is it hard to develop a descriptively adequate theory in phonology?

- Words that the speaker already knows are uninformative!
  - They don't tell us anything about what generalizations the speaker has learned—she may have simply memorized that word.
- Constructing novel phonological situations to put speakers in is difficult.
  - Contrast this with syntax, where it's easy to construct sentences that—presumably—the speaker has not encountered before.
- We often can't be sure that these novel situations really test what we want them to test.
- Let's look at some methods beyond the wug test for probing speakers' knowledge...
- 4 Novel words from other languages—loan adaptation as a natural *wug*-test
- What do speakers do with words imported from other languages (loan adaptation), or when learning other languages (L2 phonology)?
- Context is less controlled than in *wug* test:
  - who did they first hear the word from?
  - do they know the spelling in the original language?
  - how well do they speak the foreign language?
  - are there established conventions for borrowing words from this language?

# Russian

• Kenstowicz & Kisseberth 1979, p. 46—native words:

| dative sg. | nominative pl. | nominative sg. |             |
|------------|----------------|----------------|-------------|
| xlebu      | xleba          | xlep           | 'bread'     |
| gribu      | griby          | grip           | 'mushroom'  |
| grobu      | groby          | grop           | 'coffin'    |
| čerepu     | čerepa         | čerep          | 'kull'      |
| xolopu     | xolopy         | xolop          | 'bondman'   |
| trupu      | trupy          | trup           | 'corpuse'   |
| sadu       | sady           | sat            | 'garden'    |
| prudu      | prudy          | prut           | 'pond'      |
| cvetu      | cveta          | cvet           | 'color'     |
| zakatu     | zakaty         | zakat          | 'sunset'    |
| razu       | razy           | ras            | 'time'      |
| zakazu     | zakazy         | zakas          | 'order'     |
| lesu       | lesa           | les            | 'forest'    |
| usu        | usy            | us             | 'whisker'   |
| storožu    | storoža        | storoš         | 'guard'     |
| dušu       | dušy           | duš            | 'shower'    |
| rogu       | roga           | rok            | 'horm'      |
| porogu     | porogy         | porok          | 'threshold' |
| raku       | raky           | rak            | ʻcrayfish'  |
| poroku     | poroky         | porok          | 'vice'      |

• K&K report that words borrowed into Russian behave the same way (p. 53):

| dative | nominativ | e        |
|--------|-----------|----------|
| garažu | garaš     | 'garage' |
| gazu   | gas       | 'gauze'  |
| klubu  | klup      | 'club'   |

- Moreover, final devoicing can be seen in a typical Russian accent when speaking English (p. 53)
  - Of course, when a Russian speaker gets more proficient in English they may suppress this
  - But this tends to be at least a phase that Russian learners of English go through
- Russian lacks /dz/, /j/,  $/\gamma/$ . So what do Russian learners typically do with these sounds?
  - K&K report (p. 337), for speakers who have already mastered /j/ in other environments,

| badge | ba[č]   |
|-------|---------|
| judge | [j]u[č] |

• Cf. the *Bach* test (What is the plural of [bax]?), proposed by Lise Menn (Halle 1978).

? Let's discuss pros and cons of this approach

(See Peperkamp 2005 for a model of loan adaptation that requires more than just the normal grammar.)

## 5 Explanatory adequacy

- Suppose we could somehow achieve description adequacy for real languages
  - figure out the "significant" generalizations in those languages.
- To build our linguistic theory, we still need to know which generalizations people tend to extract from learning data.
  - Are some preferred to others?
  - Are there hard limits on learnability?

## For example

- Suppose we're convinced by the wug test that English speakers' grammar includes "use the [əz] form of the plural after sibilants".
  - $\rightarrow$  Exposed to the English data, they prefer a grammar with that generalization to one without it.
- But we know nothing about the learnability of "use the [iz] form of the plural after **non-**sibilants".
- How can we investigate the relative learnability of generalizations?

# 6 Typology?

- Chomsky & Halle 1968 ("SPE") proceed more or less according to this logic:
  - Assume that languages change when members of one generation learn a slightly different grammar from the grammar that generated the data they were exposed to.
  - Further assume that these changes involve learners' constructing a more-preferred grammar than what would be strictly consistent with the learning data.
  - Therefore, if a certain phonological phenomenon is predominant cross-linguistically, it must be because learners prefer it (and therefore have introduced it into many languages).
  - Thus, we can tell what learners prefer by inspecting cross-linguistic tendencies.
- <sup>?</sup> I'm sure you can think of a lot of problems with this approach (see Blevins 2003, Ohala 1992)

# 7 Poverty-of-the-stimulus experiments

(See Wilson 2006, White 2012 for other nice artificial-language cases; Zuraw 2007 for within-language)

• Kim 2012

- Teach people two alternations in an artificial language:
  - mapi + alop + a → mapalopa ('dog's kiwi')
  - $nat + ipul + a \rightarrow nat \int ipula (`monkey's watermelon')$
- In testing phase, sneak in some items like
  - kito + ilip + a  $\rightarrow$  ?
- ? Discuss possible outcomes and what they'd tell us.

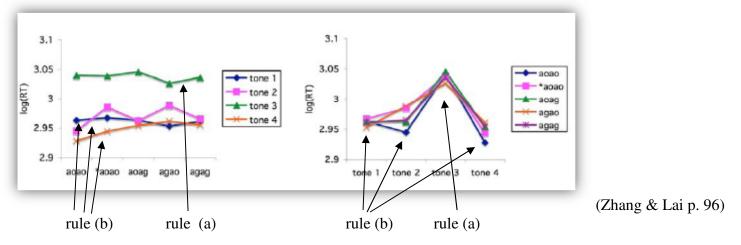
# 8 Surfeit-of-the-stimulus experiments

- Becker, Ketrez & Nevins 2011
  - Turkish has words whose final C alternates in voicing...
    - [kebap] 'kebab-citation' [kebab-u] 'kebab-accusative'
    - ... and words whose final C doesn't alternate in voicing
    - [ketfap] 'ketchup-citation' [ketfap- u] 'ketchup-citation'
  - Turkish speakers could have learned various generalizations about whether a final obstruent alternates in voicing under suffixation.
  - When tested on new words, they showed evidence of generalizations referring to syllable count and place
    - e.g., monosyllables tend not to alternate
    - labial Cs tend to alternate

- But they didn't show evidence of knowing generalizations about preceding vowel quality.
  - more alternation after a high vowel ← *true in lexicon but no effect in wug test*
- Becker & al.'s conclusion:
  - constraints like  $\begin{bmatrix} V \\ +hi \end{bmatrix} \begin{bmatrix} C \\ -voice \end{bmatrix} V$  just don't exist.
  - But constraints like \*VpV do.

# 9 Processing of native-language rules (Zhang & Lai 2006)

- Chinese languages often have tone sandhi
  - when two syllables are put together into a word, their tones change:


| (2) | М  | andarin tone sandhi:                                   |                |
|-----|----|--------------------------------------------------------|----------------|
|     | a. | 213 → 35 / 213                                         |                |
|     |    | xaw213-t¢ju213 → xaw35-t¢ju213                         | 'good wine'    |
|     |    | tşan213-lan213 $\rightarrow$ tşan35-lan213             | 'exhibit'      |
|     | b. | 213 → 21 / {55, 35, 51}                                |                |
|     |    | xaw213-şu55 → xaw21-şu55                               | 'good book'    |
|     |    | xaw213- <sub>4</sub> ən35 → xaw21- <sub>4</sub> ən35   | 'good person'  |
|     |    | xaw213-k <sup>h</sup> an55 → xaw21-k <sup>h</sup> an51 | 'good-looking' |

(Zhang & Lai p. 80)

- Various reasons to think that rule (b) should be "better" than rule (a):
  - Both rules simplify a complex contour, so that it is easier to realize in a shorter time
    being nonfinal makes the first word shorter—see Zhang 2000.
  - But (a) also involves raising of pitch, which increases articulatory demands in a short time.
  - (b), on the other hand, involves straightforward simplification of the original tone
  - (Zhang & Lai discuss other reasons...)
- Mandarin speakers use both rules very frequently—but is (b) nevertheless "easier" than (a)?

## Experiment

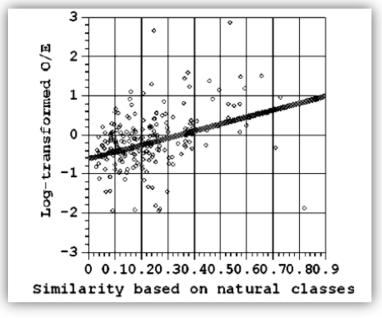
- Zhang & Lai presented Mandarin speakers with a variety of real and "wug" combinations.
- Subjects hear the two syllables and had to pronounce them as a single word.



- Subjects responded <u>more slowly</u> (higher values) when applying rule (a), for all types of words (real and wug).
  - (There are other interesting results concerning how the words were produced.)
- Zhang & Lai's conclusion: Mandarin speakers have learned both rules, but have more difficulty using the "unnatural" one.

## 10 If we have time: Literary invention

• Also challenging to interpret, but has the advantage of getting speakers out of zone of memorization


*Imperfect rhyme in Japanese rap lyrics* (Kawahara 2007; see also Steriade 2003 on imperfect rhymes in Romanian translated poetry):

| (2) | Mastermind (DJ HASEBE feat. MUMMY-D & ZEEBI |              |           |      |            |
|-----|---------------------------------------------|--------------|-----------|------|------------|
|     | a.                                          | kettobase    | kettobase |      |            |
|     |                                             | kick it      | kick it   |      |            |
|     | 'Kick it, kick it'                          |              |           |      |            |
|     | b.                                          | kettobashita | kashi     | de   | gettomanee |
|     |                                             | funky        | lyrics    | with | get money  |
|     | 'With funky lyrics, get money'              |              |           |      |            |
|     |                                             |              |           |      |            |

(Kawahara p. 115)

- Unlike typical English rhyme where stressed syllable to end should be similar
  - *I hate par<u>ading</u> my serenading* (Cole Porter, You're the Top)
- Instead, whole word or phrase should be similar

• Overall, sounds that belong to more natural classes together occur more often in rhymes:



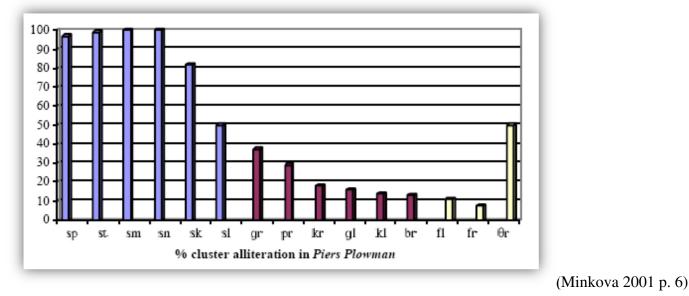
#### Cluster splittability

# (Kawahara p. 121)

- There is diverse evidence that languages treat *sp*, *st*, *sk* as less splittable than other cluster (*bl*, *kr*, ...).
- Fleischhacker 2006: reduplication, loan adaptation, (also puns)
  - e.g., Farsi: *esparta* 'Sparta' vs. *pelutus* 'Plutus'
- Is there a real preference for grammars that don't split *s*{*p*,*t*,*k*}?
  - or is it just a matter of mis-hearing or mis-articulation?
- Minkova 2003: evidence from alliteration in Middle English.
  - When words that start with 2 or more consonants alliterate, poets allow C<sub>1</sub>C<sub>2</sub> to alliterate with just C<sub>1</sub> (*sl...s..*; *dr...d...*; *b...br...*):

 $\partial$ urh sliπne niπ / sawle bescufan<sup>4</sup>Beo 184druncen 7 dolhwund. / Næs  $\partial$ a dead πa gyt<sup>5</sup>Judith 107πe πær baldlicost / on πa bricge stop<sup>6</sup>Maldon 78

(Minkova 2001 p. 1)


• But *s*-*stop* clusters alliterate in full:

CONTIGUITY in OE (sp-, st-, sk-) sca∂an scirhame / to scipe foron<sup>1</sup> stopon styrnmode, / stercedferh∂e<sup>2</sup> and πæt spere sprengde, / πæt hit sprang ongean<sup>3</sup> Maldon 137

(Minkova 2001 p. 1)

- 100 Sibilant-initial 90 Stop-initial 80 Fricative-initial 70 60 50 40 30 20 10 0 st sp sk sn sm sl sw gr br gl kl dr tr fl fr θr % Contiguity in the Wars of Alexander
- How often do different C<sub>1</sub>C<sub>2</sub> clusters alliterate with C<sub>1</sub>C<sub>2</sub> rather than just C<sub>1</sub>:

(Minkova 2001 p. 3)



- 11 Where have we been?
- Structure above the segment: mora, syllable, grid, foot, p-word; prosodic morphology
- "Downwards" interfaces
  - phonetic motivation in phonology
  - phonologization of phonetic effects
  - autosegmentalism and its relation to articulation
- "Upwards" interfaces
  - phonology-morphology interactions
  - paradigms
  - syntax-phonology interface, phrasal phonology
  - prosodic structure above the p-word
- "Sideways" interfaces
  - phonology vs. the lexicon
  - phonology vs. processing

## 12 Where can you go?

## Next quarter

- Phonological Theory III! (Ling 219; Bruce Hayes)
- the exclamation mark is because it's rarely offered
- Phonetic Theory (Ling 203; Pat Keating)
- April 6: Junko Itô colloquium
- June 1: Adam Albright colloquium

## Any time

- You're always free to drop by the phonology seminar—you don't have to enroll and commit to the whole quarter.
  - Journal club episodes are a particularly efficient time to visit: learn about 10 or more phonology articles in just 2 hours!

## References

- Becker, Michael, Nihan Ketrez & Andrew Nevins. 2011. The surfeit of the stimulus: analytic biases filter lexical statistics in Turkish laryngeal alternations. *Language* 87(1). 84–125.
- Berko, Jean. 1958. The child's learning of English morphology. Word 14. 150–177.
- Blevins, Juliette. 2003. *Evolutionary phonology. The emergence of sound patterns*. Cambridge: Cambridge University Press.
- Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, Mass.: MIT Press.
- Fleischhacker, Heidi. 2006. Similarity in phonology: evidence from reduplication and loan adaptation. UCLA Ph.D. dissertation.
- Halle, Morris. 1978. Knowledge unlearned and untaught: what speakers know about the sounds of their language. In Morris Halle, Joan Bresnan & George A Miller (eds.), *Linguistic theory and psychological reality*, 294–303. Cambridge, MA and London: MIT Press.
- Kawahara, Shigeto. 2007. Half rhymes in Japanese rap lyrics and knowledge of similarity. *Journal of East Asian Linguistics* 16(2). 113–144. doi:10.1007/s10831-007-9009-1.
- Kenstowicz, Michael & Charles Kisseberth. 1979. *Generative Phonology: Description and Theory*. New York: Academic Press.

- Kim, Yun Jung. 2012. Do learners prefer transparent rule ordering? An artificial language learning study. Paper presented at the Chicago Linguistic Society.
- Minkova, Donka. 2001. Testing CONTIGUITY in Middle English alliteration. Handout. Paper presented at the 15th ICHL, Melbourne. www.english.ucla.edu/faculty/minkova/Handout\_Melbourne.pdf.

Minkova, Donka. 2003. Alliteration and Sound Change in Early English. Cambridge University Press.

- Moreton, Elliott. 2008. Analytic Bias and Phonological Typology. *Phonology* 25(01). 83–127. doi:10.1017/S0952675708001413.
- Ohala, John. 1992. What's cognitive, what's not, in sound change. In G. Kellerman, M. D Morrissey, G. Kellerman & M. D Morrissey (eds.), *Diachrony within Synchrony: Language History and Cognition*, 309–355. Frankfurt: Peter Lang Verlag.
- Peperkamp, Sharon. 2005. A psycholinguistic theory of loan adaptations. In Marc Ettlinger, Nicholas Fleischer & Mischa Park-Doob (eds.), *Proceedings of the 30th Annual Meeting of the Berkeley Linguistics Society*, 341–352. Berkeley, CA: Berkeley Linguistics Society.
- Steriade, Donca. 2003. Knowledge of perceptual similarity and its uses: evidence from half-rhymes. In M.J. Solé, D Recasens & J Romero (eds.), *Proceedings of the 15th International Congress of Phonetic Sciences*, 363–366. Barcelona: Futurgraphic.
- White, James. 2012. Evidence for a learning bias against "saltatory" phonological alternations in artificial language learning. Paper presented at the Linguistic Society of America Annual Meeting, Portland, OR.
- Wilson, Colin. 2006. Learning Phonology with Substantive Bias: An Experimental and Computational Study of Velar Palatalization. *Cognitive Science* 30(5). 945–982.
- Zhang, Jie. 2000. The effects of duration and sonority on contour tone distribution typological survey and formal analysis. University of California, Los Angeles PhD dissertation.
- Zhang, Jie & Yuwen Lai. 2006. Testing the role of phonetic naturalness in Mandarin tone sandhi. Kansas Working Papers in Phonetics(28). 65–126.
- Zuraw, Kie. 2007. The role of phonetic knowledge in phonological patterning: Corpus and survey evidence from Tagalog. *Language* 83. 277–316.