Seoul National University Linguistics: seminar on quantitative models of phonological variation
Kie Zuraw (UCLA), September 2012

Class 8: Weighted constraints II; lab

To do for Monday
e Reading: Guy 1991
= Reading question: could any aspects of your own data be seen as belonging to different
levels? E.g., are there different morphological environments in which some rule applies?
Discuss why or why not briefly (about 1 page)

Overview: Another type of weighted grammar: Maximum Entropy OT. Smoothing/overfitting
revisitied. Lab on MaxEnt.

1 Noisy HG and probabilities

e We saw that noisy Harmonic Grammar grammars are not probability distributions over
classic OT grammars (ganging up, cumulativity)
= However, they are still interpretable as a probability distribution over (infinitely many)
non-noisy HG grammars:
= A candidate’s probability of winning, given certain weights, is the probability that the
weights+noise select it as the winner

e Today, in our last type of quantitative constraint model (MaxEnt OT), we’ll see a theory
where the grammar assigns probabilities to candidates directly.

2 Multinomial logistic regression

e To get to MaxEnt OT, we need to go back to logistic regression.

e Let’s try to predict whether a verb is irregular as a function of whether it ends with a nasal
consonant and whether the last syllable begins with a complex onset (Lieberman & al.
data modified)

==> Projector: I’ll show you the modified input file

> summary (irregs.glm)

Call:
glm(formula = Modern_Irregular ~ nasal_in_stressed_coda +
stressed_onset_complex,
family = binomial, data = irregulars)

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 0.7026 0.1775 3.957 7.58e-05 ***
nasal_in_stressed_coda 1.4504 0.4687 3.094 0.00197 *~*
stressed_onset_complex -0.4060 0.2937 -1.383 0.16679

1

+e —(0.7026+1.4504*nas—0.4060*complex)

e This means: probability(irregular) = |

=  What’s probability(irregular)?

e Now suppose we have a multi-valued dependent variable: “modern_type2”, with values
devoice (bend-bent), other (go-went), regular (talk-talked), suffix_shorten (feel-felt),
vowel (sing-sang), zero (bet-bet)
We have to use a different function from gim (). I used multinom() here, in the nnet package (Venables &
Ripley 2002)
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> summary (irregs.multinom)
Call:

multinom(formula = modern_type2 ~ nasal_in_stressed_coda + stressed_onset_complex +
ends_t_d, data = irregulars)

Coefficients:

(Intercept) nasal_in_stressed_coda stressed_onset_complex ends_t_d
devoice -27.4591746 5.0364303 -2.3401159 25.2147595
other -1.2613503 1.6038698 -1.3259646 -0.1535805
suffix_shorten -1.4963996 0.6211568 -0.4098574 -24.2012397
vowel -0.3154619 1.7520775 -0.3115235 0.8304717
zZero -16.9563332 -15.9293614 -0.6660790 17.7623345

e How to unpack this:

= First line compares “devoice” to “regular” (I used the relevel () command to
“regular” the baseline—see today’s R script, which I’1l post)

In prob(type = devoice)
prob(type = regular)

= Second line:

In prob(type = other)
prob(type = regular)

= etc.

make

] =—-27.46+5.04 * nas —2.34* complex +25.21*%¢t _d

]:—1.26+1.60*nas—1.33*complex—0.15*t_d

e Now we have to do some algebra on the board to find prob(type=regular) [hint:
remember that the probabilities of the 6 choices must sum to 1]

e  What we should get is:

1

prob(regular) =
1+

e (all the denominator in the expression above Z.

e Then prob(devoice) =%

e

line _ for _devoice

1
, prob(other) =—e
prob( ) ~

line _ for _other

, etc.

This should start to remind you of theory you read about in Martin 2007!!

3  Maximum Entropy OT" (Goldwater & Johnson 2003)

e (Goldwater & Johnson proposed applying to constraint grammars in linguistics a
technique well-known in Machine Learning.

® Machine-Learning people tend to call it “Maximum entropy classification” instead of
“multinomial logistic regression”

e Why “classification”? Just as we classify an e-mail message as spam, important, or
normal, we can classify an underlying form /da/ as having the input [da], [a], [ta], etc.

probability
of choosing

candidate x S P( x) —

e

linear _exp ression _ for _ devoice line _ for _ other line _ suff _ shorten line _vowel line _ zero
e P % + e/ +e 0 +e +e

N <« | for all N constraints, sum of
= w,C; (x)
i=1

constraint’s weight * how many times
candidate x violates that constraint

y/Ap—

sum of these numerators for all
the candidates

" some people don’t like to call it “OT” because it doesn’t involve strict domination
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ONSET *VOICEDOBS Max-C NoCoba kot
weight: 50 | weight: 19.9 | weight: 23.7 | weight: 16.4 weight: 4.5

“a /da/ — da ¥

b jda/ —a ¥ *

¢ /lob/ — lob ¥ ¥
“d Jlob/ — lo *
e [tef] — tef *

I htefl — te * *

8 /kel — ke? ¥
T h kel — ke *

e—(50*0+19.9*0+23.7*0+16.4*1+4.5*0)

P(Ef) =

e—(50*O+19.9*0+23.7*0+16.4*1+4.5*0) +e—(50*0+19.9*O+23.7*1+16.4*0+4.5*1) = 0.9999925

How are the weights chosen?

e They’re chosen so that predicted probabilities for the correct outputs are as large as
possible

e More precisely, maximize the sum of the logs of the predicted probabilities of the M

N
pieces of data: Zln P(x;)
i=1
e  We’ll modify this below with a smoothing term.

How are the weights learned?
e OTSoft (and other software) will do it for you, using the Conjugate Gradient Algorithm
(see Shewchuk 1994 for tutorial), a fancy version of rolling downhill.

What about free variation?

e Suppose /da/ occurs 10 times, 90% [da], 10% [a].

e If we have weights that produce 99% [da], sum of log probabilities is
In(.99+.99+.99+.99+.99+.99+.99+.99+.99+.01) = -4.696

e But if we have weights that produce 90% [da] (matching the rate in the data), sum of log
probabilities is In(.90+.90+.90+.90+.90+.90+.90+.90+.90+.10) = -3.251, which is bigger.

Why “maximum entropy”?
¢ The entropy H of a random variable X is

n 1 )
H(X)= )1
(X) ;p(ﬁq) n(p(xi))

= That is, for every value that X can take on (e.g., regular, vowel, zero, etc.)...
= __.multiply the probably of X taking that value by the log (any base) of 1 divided by
that probability.
Entropy is a measure of how unpredictable the probability distribution for X is.
o Let’s consider a couple of different distributions on the board and see how their entropies
come out.

?TI'm using a base-e log here, but the base can be anything. Often in computer science it’s 2.
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4

Smoothing, also known as regularization

In the regression models we made earlier in the course, we asked the computer to find the

coefficients that best fit the data.

But we also worried about overfitting.

One response to overfitting is to do some model comparison to decide if some

independent variables should be removed.

But another response is to (decide how much to) penalize coefficients that are large.

=  We want to trade coefficient size off against fit: in order to have a large coefficient, an
independent variable must do a lot of work in explaining the data.

Smoothing in linear regression

Previously, we asked the computer to minimize this measure of error:

z (predicted _value _ for _x, — actual _value _y,)’

i=1

= That is, for each of the n data points, take the difference between its actual y value and
the y value that the model predicts, and square it.

= Minimize the sum of those squares.

Here’s how to smooth 1it—minimize this measure instead:

z (predicted _value _ for _x, —actual _value _y,)* + ﬂ,z (coeﬁ‘icientm )2

i=1 j=1

= That is, for each of the m coefficients in the model, square it, sum up those squares,
and multiply by a constant A.

What happens if we choose a very small A? A very big A?

Smoothing in MaxEnt

Here was our first approximation: just maximize how probable the observed data would

N
be under the current model: z In P(x,)
i=1
Second approximation: maximize that probability, minus a penalty for big weights:

N M
Y InP(x)-Ay w/’
i=1 j

Third approximation: what if it’s not big weights we want to penalize, but weights that
are different from whatever the default is for that weight? We can give each of the M
constraints ¢; its own default weight, 1;, and penalize departures from that weight.

N M 5

D InPx)—AD (w, —p1,)

i=1 j
And finally, instead of just one A, we can give each constraint ¢; its own “willingness” to

depart from ; o; : ZInP( )= zz_—'u)
i=1 o

Do humans smooth?

We saw that smoothing reduces overfitting, which tends to produce a better fit on future
data, so that’s a good reason to use it.

As you’ll experiment with in the lab, it’s also useful for getting an idea of how
worthwhile a constraint is.

But do human language learners smooth? Let’s look at some case studies
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8 Martin 2007a,b, 2011

Facts to be accounted for
¢ English does not allow geminates (long/double consonants) within a morpheme: there can
be no minimal pair [hapi]/[happi].

® English does allow geminates in compounds and affixed words: no[nnjegotiable,
soufll]ess, boo[kk]ase.
e Martin discovered, however, that geminates are less common than would be expected by

chance—that is, there are not as many words like bookcase as expected:

+ Mumber of CELEX noun-noun compounds with geminates
(out of 4 578):

Actual number Range predicted by chance

/ (Monte Carle 83% CI)

140 160 180 200 220 240

Compare to legal CC clusters across compound boundarny:

1750 1800 1850 1900

+ Geminates are legal in compounds, but undemepresented

(Martin 2007b)
Martin discovered similar compound underrepresentation for sibilant harmony in Navajo and
vowel harmony in Turkish.

Martin’s approach
® It’s easy to construct a learner that can learn these facts.

e What Martin set out to do was construct a learner that, presented with no bias in
compounds, will learn a bias anyway.

Martin’s toy language—contains only two sounds

+ The training data consists of biconsonantal clusters of [p] and [i],
with an optional morpheme boundary:

MNumber of

examples

pt | monomorphems | 2000

ip manomorphems 2000

Cluster Structure

p+t |  compound | | 1000] | Mo bias in
t+p compound 1000 training data
| p*p | compound | | 1000
t+t compound 100
« Tautomaorphemic geminates [pp], [it] do not ocour in training
data, but heteromorphemic geminates occur freely (Martin 2007b)

Constraints available to learner

Structure-sensitive constraints:

Pp no geminates within morphemes

tp no non-geminate clusters within morphems

pHp no geminates across morpheme boundary

t+p no non-geminate clusters across morpheme boundary

Structure-blind constraints:
*pl+)p no geminates

*t(+)p  nonon-geminate clusters (Martin 2007b)
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Grammar
*pp - *tp *p(+)p *t(+)p *p+p *t+p score
weight = | weight=0.13 | weight=.03 | weight=.00 | weight=.00 | weight=.00
4.01 : 5 i i
a  pp * * e *%=0.02
b tp . * . * e °=0.87
c_p+p i | * | e"%'=0.96
d__t+p | | L F * e =1.00
® pp gets a low score, as expected—because *pp has a big weight
® p gets a high score, as expected—because *tp has a small weight
® (+p gets a high score, as expected
[

Why does *p(+)p get non-zero weight?
¢ The smoothing term uses (w-0>=w

2

= So, it’s better to account for data like the absence of pp by spreading the responsibility
over two constraints—*pp and *p(+)p—than by loading all the blame onto one

constraint. (Let’s try the math)

e Thus, if there are structure-blind constraints like *p(+)p, generalizations that are true of
one type of word (here, monomorphemes) will “leak” onto other types of word (here,

compounds).

9 Wilson 2006: making the smoothing term do even more work
Velar palatalization

but p+p gets a slightly lower score—because *p(+)p has a non-negligible weight

¢ Cross-linguistically, it’s common for /k/ and /g/ to become [tf] and [d3] before [i]

= and to a lesser extent before [e] and other “front” vowels (these examples, from Guion

1996, are of diachronic sound change):
(1)  k=tf/_ {.1. i e e 8

Pre-Proto-Slavic OCs Gloss

*wilk-e iitfe ‘wolf” (voc.)

#la oo latf & T e

platej-o-m platf Lery (Guion ch. 2 p. 4)
(9) kK x=tltf.]/ 17

Proto-Salish Cowlitz Salish Gloss

#[e*illc tf "ilk “witndow”

*litag- tf &qg- ‘argue’

*filxik- lf is- “hint®

14 Sept. 2012
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Confusability

e This is presumably because the “fronter” articulation of /k/ and /g/ before [i,e] creates a
sound that is hard to distinguish from [tf]/[d3], as can be seen for [i] in this confusability
table from Guion 1998:

Confusions of velars and palatoalveolars

Response

Stimulus [ki] [£]i] [gi] [d3i] [ka] [ta] [ga] [dza]
[ki] 43 35 10 12

[t]i] 10 85 0 5

[ai] 4 4 71 21

[d3i] 9 28 12 51

[ka] 84 13 3 0
[t]a] 10 87 0 3
[ga] 4 0 87 9
[d3a] 2 23 10 65

Note. From “The Role of Perception in the Sound Change of Welar Palatalization.” by 5. G. Guion, 1998,

Wilson p. 949
(English-speaking subjects, stimuli masked by noise.)

Bias: [k.g] should be more confusable before [i] than [e], and more before [e] than [a]
Wilson devises a measure of similarity based mainly on peak spectral frequency, fitted to
Guion’s confusion data that would predict intermediate status for [e]:

Maximum likelihood estimates of perceptual similarities in three vowel contexis

[ki]/[t]i] [ke][t[e] [ka]/[tJa] [ai]/[d3i] [ge]/[d3e] [ga]/[d3a]

0.23-1 12 681 BR.T2-1 21.13-1 40,601 126.93-1

Note. i denotes bz Values in italics are interpolated.

(Wilson p. 954)

Wilson’s artificial-language-learning experiment

e Subjects in the “High” group were taught palatalization only before [i]—Wilson predicts
that they won’t generalize to [e], and they didn’t.

e Subjects in the “Mid” group were tadght palatalization only before [e]—as predicted, they
generalize that the rule applies g¥erywhere equally.

Mid

= o
= ) = ]
5 27 L=
= 8
m o w [
R =] i|: - =]
=1 1 [=
5 & = | I
£ @ £t ©
=) g
g o | g &
o = I ) . I . o =

D. | A =

= [~ T

ki i ke ge ka ga ki g ke e ka ga
[mitial CW |mitial CW
Fig. 2. Results of Experiment 1 by condition. Nete. Error bars represent standard error of the mean. (Wilson p

966)
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The learner

e Wilson uses the similarity values derived above to assign to each of the markedness
constraints below its own 62,3 which determines how reluctant that constraint is to move
from its default weight p (0 in all cases here).

Markedness constraints on palatalization

Prior Walues

Biased Unbiased
Constraint I ot 1) a2
*ki 0.0 §.23-2 0.0 10-2
*ke 0.0 12.68-2 0.0 10-2
*ka 0.0 BR.72-2 0.0 10-2
eV gow 0.0 12.68-2 0.0 10-2
RV highy 0.0 88.72-2 0.0 10-2
W 0.0 88.72-2 0.0 10-2
*0i 0.0 21.13-2 0.0 -2
e 0.0 406072 0.0 -2
*00a 0.0 126.93-2 0.0 10-2
OV Lo 0.0 40.60-2 0.0 10-2
*OV Lhighy 0.0 126,932 0.0 10-2
gV 0.0 126,932 0.0 10-2

e For example, in the biased learner (on left) it requires little data to increase the weight of
*ki (big °), but much more data to increase the weight of *ka.
¢ Also faithfulness constraints, one against changing /k/ and one against changing /g/.

Results

e For the High condition, where the subjects are essentially repeating back what they were
taught, the learner does OK at matching the experimental results with or without bias.

e But for the Mid condition, the learner matches the experimental results much more
closely with bias:

Correlations (r) between observed and predicted rates of palatalization in Experiment |

Condition Model All Trems Critical Items
High Substantively biased 0910 (783 BT0(.76)
LInbiased O13 (.83 BT (76
Mid Substantively biased RS9 (.T4) 758 (.58)
Unbiased 5500300 396 (.16)
Nete. Values in parentheses are percentage variance explained (2). Wilson p. 968

10 Another interesting case: affix order in Ryan 2010

® A case where each input can have 3 or more output candidates with non-zero frequency.
e Ryan gives learner only basic data (most-frequent candidate for each input), and imposes
smoothing on a noisy Harmonic Grammar by limiting the number of learning iterations.
= Result: learner still yields a good match to the frequencies for each candidate
= Conclusion: the speaker doesn’t need to track detailed variation rates; just needs to
note the main trends and be conservative (smoothing)

? “the prior 6 of a Markedness constraint is equal to the perceptual similarity of the sounds in the greatest change

that is motivated by the constraint” (p. 959)
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11 Summary of the constraint models we’ve seen this week
name type of theory learning algorithm software for learning algorithm
partial ordering probability none, as far as | NA
(Anttila) distribution over | know
classic OT
grammars
Stochastic OT prob. dist. over | Gradual Learning OTSoft, Praat
(Boersma) classic OT Algorithm (esp. with
grammars asymmetrical
plasticity—see
Magri)
Noisy Harmonic Grammar | prob. dist. over | GLA Praat
(Boersma & Pater) Harmonic
Grammars
MaxEnt various hill-climbing | OTSoft, Praat,
(Goldwater & Johnson) methods MaxEnt grammar tool
12 Presentations on Tuesday
¢ 10 minutes each (I realized that’s all we really have time for)
e This is not much time! You will have to be brief—I recommend practicing to make sure
you can really do it in just 10 minutes.
Bring a handout
What to cover
= Explain the phenomenon to us
=  What kind of variation is it? (free, lexical... is there multi-site variation?)
=  Where do the data come from? Or, if you don’t have them yet, how will you get them?
= Have you tried a model where you were happy with the results? If so, show us
=  Or, you could compare your values from 2 models
Lab on MaxEnt
13 MaxEnt grammar for Finnish in OTSoft
e  Open OTSoft
® Work with different file...:choose the OTSoft input for Anttila’s Finnish data.
® (Choose Maximum Entropy and click the Rank button
[ ]

A new window appears. There are not many options. You can’t choose pu or o, for
example.
Click run , then when it’s done, View results.
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e Paste the weights you get into a spreadsheet so you can make comparisons in next step:

lg Microsoft Excel - 08_MaxEnt_resultsxls Ii"i“él
i) File Edit View Inset Format Tools Data Window Help Type a question for help O B 52
i Avial p0 DB ru|SE==F8 % o i E
B11 - A& CLL
A | B | = D F [ 6 [ H ] ]
| 1 |OTSoft, default values
g2 1 NoStressedLight
Lt 1.196856 NoUnstressedHeavy
| 4 | 2144963 NoStressed[i]
| 5 | (0.253196 NoStressed|[o]
| 6 | 0.711919 NoStressed[a]
e 0.727427 NoUnstressed[i]
| 8 | 1.877593 NoUnstressed[o]
ek 4.824249 NoUnstressed[a]
1 10| 2.733401 *HH
| 11] 2.445138|“LL _l =|
112 | 1.09184 NolLapse |
1 13| 50 /NoClash
| 14 | 1.613254 NoHeavy(i]
| 15| 0.877501 NoHeavy[o]
| 16 | 0.681349 NoHeavy[a]
| 17 | 0.428423 NoLighti]
| 18 | 1.257869 NolLight[o]
| 19| 0.080993 NoLight[a]
| 20| 0.941032 NoStressedHeavy
121 | 0.826943 NoUnstressedLight
| 22|
123 |
|24 i
W 4 » M|\ Sheetl/ Sheet2 / Sheet3 / 7 - - L .
Ready UM
[

SN | — | [ | g— T ——— T

e — T T = m

14 Finnish with the MaxEnt Grammar Tool

From Bruce Hayes’s webpage, download and unzip the MaxEnt grammar tool

(http://www .linguistics.ucla.edu/people/hayes/MaxentGrammarTool/)

Save the Finnish OTSoft input file as a *.txt file.

Open the MaxEnt grammar tool

Click open tableaux button and choose your Anttila *.txt file

Click the select output file button and give a name to the file where the results will

g0

¢ C(lick the Learn and report button—so far, you haven’t changed mu or sigma from the
defaults

® Go and open the results file

® Paste your results into the spreadsheet where you’re keeping track:

@ Microsoft Excel - 08_MaxEnt_resultsads Ii"i“é‘
E_I] File Edit View Inset Format Tools Data  Window Help Type a question for help -8 X
; Arial -0 - B L UE==]8 % o0 S E
B6 - # NoStressed(a)
A | B | C | D I e [ F | &6 [ H ] il
| 1 |OTSoft, default values MaxEnt grammar tool, default values
| 2 | 1 MoStressedLight MNoStressedLight (mu=0.0, sigma*2=100000.0) 1.282832104
| 3 | 1.198856 NoUnstressedHeavy NoUnstressedHeavy (mu=0.0, sigma®2=100000.0) = 4.958377777
| 4 | 2.144963 NoStressed[i] MNoStressed[i] (mu=0.0, sigma"2=100000.0) 1.85353658
| 5 | 0.253196 NoStressed|o MNoStressed[o] (mu=0.0, sigma*2=100000.0) 0.732443769
| 6 | 0.711919|NoStressed[a INoStressed[a] (mu=0.0, sigma*2=100000.0) 0.1652686267
| 7 | 0.727427 NoUnstressed[i] NoUnstressed[i] (mu=0.0, sigma*2=100000.0) 0.712127628
| 8 | 1.877593 NoUnstressed[o] MNoUnstressed[o] (mu=0.0, sigma*2=100000.0} 1.833220439
| 9 | 4.824249 NoUnstressed[a] MoUnstressed[a] (mu=0.0, sigma"2=100000.0) 2.400377941
| 10 | 2.733401 *HH *HH (mu=0.0, sigma"2=100000.0) 4.928593547
| 11] 2445138 "LL *LL (mu=0.0, sigma"2=100000.0) 0.174638633 L
112 | 1.09184 NolLapse Nolapse (mu=0.0, sigma*2=100000.0) 3.855908374 T
| 13 | 50 NoClash MNoClash (mu=0.0, sigma*2=100000.0} 1.282832104
| 14| 1.613254 | NoHeawy(i] MNoHeawy[i] (mu=0.0, sigma"2=100000.0) 2.637106165
| 15| 0.877501 NoHeavy[o] MNoHeawy[o] (mu=0.0, sigma*2=100000.0) 1.450337329
| 16| 0.681349 NoHeavy[a] NoHeavy[a] (mu=0.0, sigma*2=100000.0) 0
| 17 | 0.428423 NoLight[i] NoLight[i] (mu=0.0, sigma"2=100000.0) 9.75E-06
| 18] 1.257869 NaolLight[o] NoLight[o] (mu=0.0. sigma*2=100000.0) 1.115326879
| 19| 0.080993 MoLight[a] NoLight[a] (mu=0.0, sigma*2=100000.0) 0.021950285
| 20| 0.941032 NoStressedHeavy  MoStressedHeavy (mu=0.0, sigma*2=100000.0) 0
21 0.826943 NoUnstressedLight |MoUnstressedLight (mu=0.0, sigma*2=100000.0) 0
22
| 23 |
24 ] i
W 4 » M|\ Sheetl / Sheet? / Sheet3 / ‘ i v

Ready

el T p— T

| S | [ — g — ===

Now try a smaller sigma. How to do this:
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You need to make a “constraint data” file.

Open the SampleConstraintFile.txt that came with the MaxEnt Grammar tool

L@ Microsoft Excel - SampleConstraintFile.tet E@
@ File ee—2 = Format Tools Data Window Help - B X
 Arial muvalues |y g oy == = m - A-H
Ly MDY 7= C1
names of A A\ | ¢ | ) | F | G | ,
constraints ~| | 1 [C1 1 0 10000000 S84
32 0 10000000 | Vvalues =
3
4
5
B
T -
M 4 » » [, SampleConstraintFile / | « i b
Ready MM

15

16

Using this as a model, make a file for Finnish.

Keep the mu values at 0, but make sigma much, smaller, such as 0.01 for all the
constraints

Once you have this file, back in the MaxEnt Grammar Tool, click the open
constraints file.

Choose your constraints file

Use the select output file button to give a new name to your next output file

Run the learner again, and look at the results again. How do the weights and fits change?
Play with different values of sigma

Optional: Now try adding some more constraints to the Finnish OTSoft input file:
perhaps you’d like to split the *V constraints according to first vs. non-first syllable.
Remember to save the OTSoft file as *.txt

Remember to add the new constraints to your Constraints file

When you use a very high sigma, does this constraint get any weight? How about with a
very low sigma (where each constraint really has to justify itself)?

Your own data

Use the MaxEnt grammar tool to learn a MaxEnt grammar for your own data.

Try different values of sigma

With lower sigma, the fit will always get worse—but is this good (avoiding overfitting) or

bad (underfitting)?

= If you finished the step in Tuesday’s lab where you made 10 different training and
testing files, you can use them to do 10-fold cross-validation.

= Do testing and training on all 10 files with a higher value of sigma and with a lower
value

=  Which one provides a better average fit to the testing files?

Replicating Martin 2007

If you still have time, make an OTSoft input file for Martin’s schematic geminates (see
the table in this handout).

Remember to save it as *.txt

Apply learning in the MaxEnt Grammar Tool under some different values of sigma.

How much of Martin’s “leakage” do you get under different values of sigma?
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Once again, save all your output files!! They will be useful for your presentation.

Next time: Grammar architecture and variation patterns.
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